

DevOps for Networking

Boost your organization's growth by incorporating
networking in the DevOps culture

Steven Armstrong

BIRMINGHAM - MUMBAI

DevOps for Networking

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2016

Production reference: 1261016

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78646-485-9

www.packtpub.com

www.packtpub.com

Credits

Author
Steven Armstrong

Reviewer
Daniel Jonathan Valik

Commissioning Editor
Pratik Shah

Acquisition Editor
Namrata Patil

Content Development Editor
Abhishek Jadhav

Technical Editor
Mohd Riyan Khan

Copy Editor
Dipti Mankame

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Pratik Shirodkar

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Author

Steven Armstrong is a DevOps solution architect, a process automation
specialist, and an honors graduate in Computer and Electronic Systems (BEng)
from Strathclyde University in Glasgow.

He has a proven track record of streamlining company's development architecture
and processes so that they can deliver software at pace. Specializing in agile,
continuous integration, infrastructure as code, networking as code, Continuous
Delivery, and deployment, he has worked for 10 years for leading consulting,
financial services, benefits and gambling companies in the IT sector to date.

After graduating, Steven started his career at Accenture Technology solutions as part
of the Development Control Services graduate scheme, where he worked for 4 years,
then as a configuration management architect helping Accenture's clients automate
their build and deployment processes for Siebel, SAP, WebSphere, Weblogic, and
Oracle B2B applications.

During his time at Accenture, he worked within the development control services
group working for clients, such as the Norwegian Government, EDF Energy, Bord
Gais, and SABMiller. The EDF Energy implementation led by Steven won awards for
“best project industrialization” and “best use of Accenture shared services”.

After leaving Accenture, Steven moved on to the financial services company,
Cofunds, where he spent 2 years creating continuous integration and Continuous
Delivery processes for .Net applications and Microsoft SQL databases to help deploy
the financial services platform.

After leaving Cofunds, Steven moved on to Thomsons Online Benefits, where
he helped create a new DevOps function for the company. Steven also played an
integral part in architecting a new private cloud solution to support Thomsons
Online Benefits production applications and set up a Continuous Delivery process
that allowed the Darwin benefits software to be deployed to the new private cloud
platform within minutes.

Steven currently works as the technical lead for Paddy Power Betfair's i2 project,
where he has led a team to create a new greenfield private cloud platform for Paddy
Power Betfair. The implementation is based on OpenStack and Nuage VSP for
software-defined networking, and the platform was set up to support Continuous
Delivery of all Paddy Power Betfair applications. The i2 project implementation was
a finalist for the OpenStack Super User Award and won a RedHat Innovation Award
for Modernization.

Steven is an avid speaker at public events and has spoken at technology events
across the world, such as DevSecCon London, OpenStack Meetup in Cluj, the
OpenStack Summit in Austin, HP Discover London, and most recently gave a
keynote at OpenStack Days Bristol.

Acknowledgments

I would most importantly like to thank my girlfriend Georgina Mason. I know I
haven't been able to leave the house much at weekends for 3 months as I have been
writing this book, so I know it couldn't have been much fun. But thank you for your
patience and support, as well as all the tea and coffee you made for me to keep me
awake during the late nights. Thank you for being an awesome girlfriend.

I would like to thank my parents, June and Martin, for always being there and
keeping me on track when I was younger. I would probably have never got through
university never mind written a book if it wasn't for your constant encouragement,
so hopefully, you both know how much I appreciate everything you have done for
me over the years.

I would like to thank Paddy Power Betfair for allowing me the opportunity to write
this book and our CTO Paul Cutter to allow our team to create the i2 project solution
and talk to the technology community about what we have achieved.

I would also like to thank Richard Haigh, my manager, for encouraging me to take
on the book and all his support in my career since we started working together at
Thomsons Online Benefits.

I would like to thank my team, the delivery enablement team at Paddy Power
Betfair, for continually pushing the boundaries of what is possible with our
solutions. You are the people who made the company a great innovative place
to work.

I would like to thank all the great people I worked with throughout my career at
Paddy Power Betfair, Thomsons Online Benefits, Cofunds, and Accenture, as without
the opportunities I was given, I wouldn't have been able to pull in information from
all those experiences to write this book.

I would also like to thank Nuage networks for permitting me to write about their
software-defined networking solution in this book.

About the Reviewer

Daniel Jonathan Valik is an industry expert in cloud services, cloud native
technologies, IOT, DevOps, infrastructure automation, containerization,
virtualization, microservices, unified communications, collaborations technologies,
Hosted PBX, telecommunications, WebRTC, unified messaging, Communications
Enabled Business Process (CEBP) design, and Contact Center Technologies.

He has worked in several disciplines such as product management, product
marketing, program management, evangelist, and strategic adviser for almost two
decades in the industry.

He has lived and worked in Europe, South East Asia, and now in the US. Daniel is
also an author of several books about cloud services, universal communications
and collaborations technologies, which includes Microsoft, Cisco, Google, Avaya,
and others.

He holds dual master’s degrees: Master of Business Administration (MBA) and
Master of Advanced Studies (MAS) in general business. He also has a number of
technical certifications, including Microsoft Certified Trainer (MCT). For more
information about Daniel, refer to his blogs, videos, and profile on LinkedIn
(https://www.linkedin.com/in/danielvalik).

https://www.linkedin.com/in/danielvalik

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www.packtpub.com/mapt

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

http://

[i]

Table of Contents
Preface	 ix
Chapter 1: The Impact of Cloud on Networking	 1

An overview of cloud approaches	 1
Public clouds	 2
Private cloud	 3
Hybrid cloud	 4
Software-defined	 4

The difference between Spanning Tree and Leaf-Spine networking	 5
Spanning Tree Protocol	 5
Leaf-Spine architecture	 7
OVSDB	 9

Changes that have occurred in networking with the introduction
of public cloud	 12

An overview of AWS	 12
OpenStack overview	 14

The AWS approach to networking	 16
Amazon VPC	 16
Amazon IP addressing	 19
Amazon security groups	 19
Amazon regions and availability zones	 20
Amazon Elastic Load Balancing	 20

The OpenStack approach to networking	 21
OpenStack services	 22
OpenStack tenants	 23
OpenStack neutron	 23

Table of Contents

[ii]

Provisioning OpenStack networks	 24
OpenStack regions and availability zones	 35
OpenStack instance provisioning workflow	 36
OpenStack LBaaS	 37

Summary	 38
Chapter 2: The Emergence of Software-defined Networking	 39

Why SDN solutions are necessary	 39
How the Nuage SDN solution works	 41
Integrating OpenStack with the Nuage VSP platform	 44

Nuage or OpenStack managed networks	 47
The Nuage VSP software-defined object model	 49

Object model overview	 49
How the Nuage VSP platform can support greenfield
and brownfield projects	 62
The Nuage VSP multicast support	 68
Summary	 71

Chapter 3: Bringing DevOps to Network Operations	 73
Initiating a change in behavior	 74

Reasons to implement DevOps	 75
Reasons to implement DevOps for networking	 77

Top-down DevOps initiatives for networking teams	 79
Analyzing successful teams	 79
Mapping out activity diagrams	 81
Changing the network team’s operational model	 84
Changing the network team's behavior	 86

Bottom-up DevOps initiatives for networking teams	 88
Evangelizing DevOps in the networking team	 88
Seeking sponsorship from a respected manager or engineer	 90
Automating a complex problem with the networking team	 91

Summary	 93
Chapter 4: Configuring Network Devices Using Ansible	 95

Network vendors' operating systems	 96
Cisco Ios and Nxos operating system	 96
Juniper Junos operating system	 98
Arista EOS operating system	 98

Introduction to Ansible	 99
Ansible directory structure	 100
Ansible inventory	 101
Ansible modules	 102

Table of Contents

[iii]

Ansible roles	 103
Ansible playbooks	 104
Executing an Ansible playbook	 106
Ansible var files and jinja2 templates	 106
Prerequisites using Ansible to configure network devices	 107
Ansible Galaxy	 108

Ansible core modules available for network operations	 110
The _command module	 112
The _config module	 113
The _template module	 114

Configuration management processes to manage network devices	 114
Desired state	 115
Change requests	 119
Self-service operations	 119

Summary	 121
Chapter 5: Orchestrating Load Balancers Using Ansible	 123

Centralized and distributed load balancers	 123
Centralized load balancing	 125
Distributed load balancing	 126

Popular load balancing solutions	 126
Citrix NetScaler	 127
F5 Big-IP	 130
Avi Networks	 132
Nginx	 133
HAProxy	 135

Load balancing immutable and static infrastructure	 137
Static and immutable servers	 138
Blue/green deployments	 139

Using Ansible to Orchestrate load balancers	 142
Delegation	 142
Utilizing serial to control roll percentages	 143
Dynamic inventories	 147
Tagging metadata	 147
Jinja2 filters	 148
Creating Ansible networking modules	 149

Summary	 150

Table of Contents

[iv]

Chapter 6: Orchestrating SDN Controllers Using Ansible	 153
Arguments against software-defined networking	 154

Added network complexity	 155
Lack of software-defined networking skills	 156
Stateful firewalling to support regularity requirements	 158

Why would organizations need software-defined networking?	 159
Software-defined networking adds agility and precision	 160
A good understanding of Continuous Delivery is key	 161
Simplifying complex networks	 162
Splitting up network operations	 162

New responsibilities in API-driven networking	 164
Overlay architecture setup	 164
Self-service networking	 171

Immutable networking	 174
A/B immutable networking	 174
The clean-up of redundant firewall rules	 176
Application decommissioning	 177

Using Ansible to orchestrate SDN controllers	 178
Using SDN for disaster recovery	 179
Storing A/B subnets and ACL rules in YAML files	 181

Summary	 183
Chapter 7: Using Continuous Integration Builds
for Network Configuration	 185

Continuous integration overview	 186
Developer continuous integration	 188
Database continuous integration	 190

Tooling available for continuous integration	 194
Source control management systems	 194

Centralized SCM systems	 195
Distributed SCM systems	 196
Branching strategies	 197

Continuous integration build servers	 199
Network continuous integration	 201

Network validation engines	 203
Simple continuous integration builds for network devices	 205
Configuring a simple Jenkins network CI build	 206
Adding validations to network continuous integration builds	 209

Continuous integration for network devices	 210
Continuous integration builds for network orchestration	 211

Summary	 213

Table of Contents

[v]

Chapter 8: Testing Network Changes	 215
Testing overview	 216

Unit testing	 216
Component testing	 217
Integration testing	 217
System testing	 218
Performance testing	 219
User acceptance testing	 220
Why is testing relevant to network teams?	 221
Network changes and testing today	 222

Quality assurance best practices	 227
Creating testing feedback loops	 230
Continuous integration testing	 231
Gated builds on branches	 233
Applying quality assurance best practices to networking	 234
Assigning network testing to quality gates	 236

Available test tools	 238
Unit testing tools	 238
Test Kitchen example using OpenStack	 239
Network checklist	 241
Network user journey	 242
Quality of Service	 243
Failover testing	 244
Network code quality tooling	 244

Summary	 246
Chapter 9: Using Continuous Delivery Pipelines to
Deploy Network Changes	 249

Continuous integration package management	 250
Continuous Delivery and deployment overview	 254
Deployment methodologies	 258

Pull model	 258
Push model	 260
When to choose pull or push	 261

Packaging deployment artifacts	 262
Deployment pipeline tooling	 265

Artifact repositories	 266
Artifactory	 266

CD pipeline scheduler	 268
Jenkins	 269

Table of Contents

[vi]

Deploying network changes with deployment pipelines	 273
Network self-service	 273
Steps in a deployment pipeline	 273
Incorporating configuration management tooling	 275
Network teams' role in Continuous Delivery pipelines	 276
Failing fast and feedback loops	 276

Summary	 277
Chapter 10: The Impact of Containers on Networking	 279

Overview of containers	 279
Solaris Zones	 282
Linux namespaces	 283
Linux control groups	 285
Benefits of containers	 285
Deploying containers	 286

CoreOS	 287
etcd	 287

Docker	 288
Docker registry	 288
Docker daemon	 288
Packaging containers	 289

Dockerfile	 289
Packer-Docker integration	 289

Docker workflow	 291
Default Docker networking	 292
Docker user-defined bridge network	 293
Docker Swarm	 294

Docker machine	 294
Docker Compose	 295
Swarm architecture	 296

Kubernetes	 298
Kubernetes architecture	 298

Impact of containers on networking	 303
Summary	 304

Chapter 11: Securing the Network	 307
The evolution of network security and debunking myths	 307

Account management	 308
Network device configuration	 310
Firewalling	 310
Vulnerability detection	 311
Network segmentation	 312

Table of Contents

[vii]

Securing a software-defined network	 314
Attacks at Overlay	 315
Attacks on the underlay network?	 316
Attacks on the SDN controller	 318

Network security and Continuous Delivery	 319
Application connectivity topology	 320
Wrapping security checks into continuous integration	 321
Using Cloud metadata	 322

Summary	 325
Index	 327

[ix]

Preface
The title of this book is "DevOps For Networking". DevOps, as you are probably
well-aware, is an abbreviated amalgamation of "Development" and "Operations",
so why does it have any significance to networking? It is true that there is no "Net"
in the DevOps name, though it is fair to say that the remit of DevOps has extended
well beyond its initial goal.

The initial DevOps movement sought to remove the "chucking it over the fence"
and reactive mentality that existed between development and operations teams, but
DevOps can be efficiently used to promote collaboration between all teams in IT, not
just Development and Operations staff.

DevOps, as a concept, initially aimed to solve the scenario where developers
would develop code, make significant architectural changes, and not consider the
Operations team that needed to deploy the code to production. So when the time
came for the operations team to deploy the developers' code changes to production,
this would result in a broken deployment, meaning crucial software fixes or new
products would not reach customers as planned, and the deployment process
would typically take days or weeks to fix.

This led to frustration to all the teams involved, as developers would have to
stop coding new features and instead would have to help operations staff fix the
deployment process. Operations teams would also be frustrated, as often they
would not have been told that infrastructure changes were required to deploy
the new release to production. As a result, the operations team did not have
the idea to adequately prepare the production environment to support the
architectural changes.

This common IT scenario highlights the broken process and operational model
that would happen continually and cause friction between development and
operations teams.

Preface

[x]

"DevOps" was an initiative setup to foster an environment of collaboration and
communication between these previously conflicting teams. It promotes teams to
speak daily, making each other aware of changes and consequently preventing
avoidable situations from happening. So, it just so happens that development and
operations staff were the first set of silos that DevOps aimed to solve. Consequently,
it branded DevOps as a way to unify the teams to work, as one consolidated fluid
function, but it could easily have been called something else.

DevOps aims to create better working relationships between teams and a happier
working environment, as frankly nobody enjoys conflict or firefighting preventable
issues on a daily basis. It also aims to share knowledge between teams to prevent
the development teams being viewed as "ignorant to infrastructure" and operations
teams to be "blockers to changes" and "slowing down devs". These are the common
misconceptions that teams working in silos have of one another when they don't take
the time to understand each other's goals.

DevOps strives to build an office environment where teams appreciate other
teams and their aims, and they are respectful of their common goals. DevOps
is undoubtedly one most talked about topics in the IT industry today. It is not
a coincidence that its popularity has risen with the emergence of agile software
development, as an alternative to using the more traditional waterfall approach.

Waterfall development and the "V-Model" encompass the separate phases of
analysis, design, implementation (coding), and testing. These phases are split up
traditionally into different isolated teams, with formalized project hand-off dates
that are set in stone.

Agile was born out of the realization that in the fast-paced software industry, long
running projects were suboptimal and not the best way of delivering real value
to customers. As a result, agile has moved projects to shorter iteration cycles that
incorporated analysis, design, implementation, and testing into two-week cycles
(sprints) and aimed at using a prototyping approach instead.

The prototyping approach uses the notion of incremental development, which has
allowed companies to gather feedback on products earlier in the release cycle, rather
than utilizing a big bang approach that delivered the full solution in one big chunk at
the end of the implementation phase.

Delivering projects in a waterfall fashion at the end of the waterfall implementation
stage ran the risk of delivering products that customers did not want or where
developers had misinterpreted requirements. These issues were typically only
discovered in the final test phase when the project was ready to be taken to market.
This often resulted in projects being deemed a failure or resulting in huge delays,
whereas costly rework and change requests could be actioned.

Preface

[xi]

Agile software development for the best part has fostered the need to collapse down
those team silos that were typically associated with waterfall software development,
and this strengthened the need for daily collaboration.

With the introduction of agile software development, it also has changed the way
software testing is carried out too, with the same DevOps principles also being
applied to testing functions.

Quality assurance test teams can no longer afford to be reactive either, much like
operations teams before them. So, this promoted the need for test teams to work
more efficiently and not delay products reaching market. This, however, could
not be done at the expense of the product, so they needed to find a way to make
sure applications are tested adequately and pass all quality assurance checks while
working in a smarter way.

It was readily accepted that quality assurance test teams can no longer operate in
silos separate from development teams; instead, agile software development has
promoted test cases being written in parallel to the software development, so they
are not a separate activity. This is in stark contrast to code being deployed into a test
environment and left to a team of testers to execute manual tests or run a set of test
packs where they deal with issues reactively.

Agile has promoted developers and quality assurance testers to instead work
together in scrum teams on a daily basis to test software before it is packaged for
deployment, with those same tests then being maintained and kept up to date and
used to seed the regression test packs.

This has been used to mitigate the friction caused by developers checking in code
changes that break quality assurance test team's regression packs. With siloed test
teams, a common scenario that would often cause friction is be that a graphical user
interface (GUI) would suddenly be changed by a developer, resulting in a portion
of regression tests breaking. This change would be done without notifying the test
team. The tests would be failing because they were written for an old GUI and
were suddenly outdated, as opposed to breaking because developers had actually
introduced a software failure or a bug.

This reactive approach to testing did not build confidence in the validity of the test
failures reported by automated test packs as they are not always conclusively down
to a software failure, and this introduced unnecessary delays due to suboptimal
IT structure.

Instead if the communication between development and test teams had been better,
using the principles promoted by DevOps, then these delays and suboptimal ways of
working can be avoided.

Preface

[xii]

More recently, we have seen the emergence of DevSecOps that have looked at
integrating security and compliance into the software delivery process, as opposed
to being bolted on manual actions and separate reactive initiatives. DevSecOps has
looked at using DevOps and agile philosophies and embraced the idea of embedding
security engineers in scrum teams to make sure that security requirements are met at
the point of inception.

This means that security and compliance can be integrated as automated phases in
Continuous Delivery pipelines, to run security compliance checks on every software
release, and not slow down the software development lifecycle for developers and
generate the necessary feedback loops.

So networking teams can learn from DevOps methodologies too much like
development, operations, quality assurance, and security teams. These teams have
utilized agile processes to improve their interaction with the software development
process and benefit from using feedback loops.

How many times have network engineers had no choice but to delay a software
release, as network changes need to be implemented and have been done so
inefficiently using ticket-based systems that are not aligned with the processes other
departments use? How many times have manually implemented network changes
broken production services? This isn't a criticism of network teams or the ability of
network engineers; it's the realization that the operational model needs to change
and they can.

What this book covers
This book will look at how networking changes can be made more efficient so as
not to slow down the software development lifecycle. It will help outline strategies
network engineers can adopt to automate network operations. We will focus on
setting up network teams to succeed in an automation-driven environment, enabling
the teams to work in a more collaborative fashion, and improve efficiency.

It will also show that network teams need to build new skills and learn configuration
management tools such as Ansible to help them achieve this goal. The book will
show the advantages that these tools bring, using the network modules they provide,
and that they will help make automation easy and act as a self-starter guide.

We will focus on some of the cultural challenges that need to be overcome to
influence and implement automation processes for network functions and convince
network teams to make the most of networking APIs that are now provided by
vendors can be trusted.

Preface

[xiii]

The book will discuss public and private clouds such as AWS and OpenStack, and
ways they are used to provide networking to users. It will also discuss the emergence
of software-defined networking solutions, such as Juniper Contrail, VMWare NSX,
CISCO ACI, and focus on the Nokia Nuage VSP solution, which aims to make
networking functions a self-service commodity.

The book will also highlight how continuous integration and delivery processes and
deployment pipelines can be applied to govern network changes. It will also show
ways that unit testing can be applied to automated network changes to integrate
them with the software delivery lifecycle.

A detailed chapter overview for the book is detailed below:

Chapter 1, The Impact of Cloud on Networking, will discuss ways in which the
emergence of AWS for public cloud and OpenStack for private cloud have changed
the way developers want to consume networking. It will look at some of the
networking services AWS and OpenStack provide out of the box and look at some
of the networking features they provide. It will show examples of how these cloud
platforms have made networking a commodity much like infrastructure.

Chapter 2, The Emergence of Software-defined Networking, will discuss how software-
defined networking has emerged. It will look at the methodology and focus on some
of the scaling benefits and features this provides over and above the out-of-the-box
experience from AWS and OpenStack. It will illustrate how one of the market-
leading SDN solutions, Nuage, applies these concepts and principles and discusses
other SDN solutions on the market.

Chapter 3, Bringing DevOps to Network Operations, will detail the pros and cons of
a top-down and bottom-up DevOps initiatives with regards to networking. It will
give readers food for thought on some of the strategies that have been a success and
which ones have typically failed. This chapter will help CTOs, senior managers, and
engineers who are trying to initiate a DevOps model in their company's network
department and outline some of the different strategies they could use to achieve the
cultural changes they desire.

Chapter 4, Configuring Network Devices Using Ansible, will outline the benefits of using
configuration management tools to install and push configuration to network devices
and discuss some of the open source network modules available to do this at the
moment and how they work. It will give some examples of process flows that could
be adopted to maintain device configuration.

Preface

[xiv]

Chapter 5, Orchestrating Load Balancers Using Ansible, will describe the benefits of
using Ansible to orchestrate load balancers and the approaches to roll new software
releases into service without the need for downtime or manual intervention. It
will give some examples of some process flows that could be adopted to allow
orchestration of both immutable and static servers looking at the different load
balancer technologies available.

Chapter 6, Orchestrating SDN Controllers Using Ansible, will outline the benefits of
using Ansible to orchestrate SDN controllers. It will outline the benefits of software-
defined networking and why it is paramount to automate the network functions
that an SDN controller exposes. This includes setting ACL rules dynamically, which
will allow network engineers to provide a Network as a Service (NaaS) allowing
developers to self-service their networking needs. It will discuss deployment
strategies such as blue green networks as well as exploring some of the process
flows that could be used to implement a NaaS approach.

Chapter 7, Using Continuous Integration Builds for Network Configuration, will discuss
moving to a model where network configuration is stored in source control
management systems, so it is easily audited and versioned and changes can
be rolled back.

It will look at workflows that can be used to set up network configuration CI builds
using tools such as Jenkins and Git.

Chapter 8, Testing Network Changes, will outline the importance of using test
environments to test network changes before applying them in production. It will
explore some of the open source tooling available and walk through some of the test
strategies that can be applied to make sure that network changes are thoroughly
tested before applying them to production.

Chapter 9, Using Continuous Delivery Pipelines to Deploy Network Changes, will show
readers how to use continuous integration and Continuous Delivery pipelines
to deliver network changes to production and put them through associated test
environments. It will give some examples of some process flows that could be
adopted to deliver network changes to production and how they can easily sit
alongside infrastructure and code changes in deployment pipelines.

Chapter 10, The Impact of Containers on Networking, dedicated container technologies
such as Docker and container orchestration engines such as Kubernetes and
Swarm are becoming more and more popular with companies that are moving to
microservice architectures. As a result, this has changed networking requirements.
This chapter will look at how containers operate and the impact they have had
on networking.

Preface

[xv]

Chapter 11, Securing the Network, will look at how this approach makes a security
engineer's job of auditing the network easier. It will look at the possible attack
vectors in a software-defined network and ways that security checks can be
integrated into a DevOps model.

What you need for this book
This book assumes a medium level on networking knowledge, a basic level of
Linux knowledge, a basic knowledge of cloud computing technologies, and a broad
knowledge of IT. It is focusing primarily on particular process workflows that can be
implemented rather than base technologies, so the ideas and content can be applied
to any organization, no matter the technology that is used.

However, that being said, it could be beneficial to readers to access the following
technologies when digesting some of the chapters' content:

•	 AWS https://aws.amazon.com/free/
•	 OpenStack http://trystack.org/
•	 Nuage VSP http://nuagex.io/

Who this book is for
The target audience for this book is network engineers who want to automate the
manual and repetitive parts of their job or developers or system admins who want
to automate all network functions.

This book will also provide a good insight to CTOs or managers who want to
understand ways in which they can make their network departments more agile
and initiate real cultural change within their organizations.

The book will also aid casual readers who want to understand more about DevOps,
continuous integration, and Continuous Delivery and how they can be applied to
real-world scenarios as well as insights on some of the tooling that is available to
facilitate automation.

https://aws.amazon.com/free/
http://trystack.org/
http://nuagex.io/

Preface

[xvi]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"These services are then bound to the lbvserver entity."

Any command-line input or output is written as follows:

ansible-playbook -I inevntories/openstack.py -l qa -e environment=qa
-e current_build=9 playbooks/add_hosts_to_netscaler.yml

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Click the Search button on Google."

 Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message. If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[xvii]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/DevOpsforNetworking_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/sites/default/files/downloads/DevOpsforNetworking_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/DevOpsforNetworking_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

The Impact of Cloud on
Networking

This chapter will look at ways that networking has changed in the private data
centers and evolved in the past few years. It will focus on the emergence of Amazon
Web Services (AWS) for public cloud and OpenStack for private cloud and ways
in which this has changed the way developers want to consume networking. It will
look at some of the networking services that AWS and OpenStack provide out of
the box and look at some of the features they provide. It will show examples of how
these cloud platforms have made networking a commodity much like infrastructure.

In this chapter, the following topics will be covered:

•	 An overview of cloud approaches
•	 The difference between Spanning Tree networks and Leaf-Spine networking
•	 Changes that have occurred in networking with the introduction of

public cloud
•	 The Amazon Web Services approach to networking
•	 The OpenStack approach to networking

An overview of cloud approaches
The cloud provider market is currently saturated with a multitude of different
private, public, and hybrid cloud solutions, so choice is not a problem for companies
looking to implement public, private, or hybrid cloud solutions.

Consequently, choosing a cloud solution can sometimes be quite a daunting task,
given the array of different options that are available.

The Impact of Cloud on Networking

[2]

The battle between public and private cloud is still in its infancy, with only around
25 percent of the industry using public cloud, despite its perceived popularity, with
solutions such as Amazon Web Services, Microsoft Azure, and Google Cloud taking
a large majority of that market share. However, this still means that 75 percent of the
cloud market share is available to be captured, so the cloud computing market will
likely go through many iterations in the coming years.

So why are many companies considering public cloud in the first place and why does
it differ from private and hybrid clouds?

Public clouds
Public clouds are essentially a set of data centers and infrastructure that are made
publicly available over the Internet to consumers. Despite its name, it is not magical
or fluffy in any way. Amazon Web Services launched their public cloud based on the
idea that they could rent out their servers to other companies when they were not
using them during busy periods of the year.

Public cloud resources can be accessed via a Graphical User Interface (GUI) or,
programmatically, via a set of API endpoints. This allows end users of the public
cloud to create infrastructure and networking to host their applications.

Public clouds are used by businesses for various reasons, such as the speed it takes to
configure and using public cloud resources is relatively low. Once credit card details
have been provided on a public cloud portal, end users have the freedom to create
their own infrastructure and networking, which they can run their applications on.

This infrastructure can be elastically scaled up and down as required, all at a cost of
course to the credit card.

Public cloud has become very popular as it removes a set of historical impediments
associated with shadow IT. Developers are no longer hampered by the restrictions
enforced upon them by bureaucratic and slow internal IT processes. Therefore, many
businesses are seeing public cloud as a way to skip over these impediments and
work in a more agile fashion allowing them to deliver new products to market at a
greater frequency.

When a business moves its operations to a public cloud, they are taking the bold step
to stop hosting their own data centers and instead use a publicly available public
cloud provider, such as Amazon Web Services, Microsoft Azure, IBM BlueMix,
Rackspace, or Google Cloud.

The reliance is then put upon the public cloud for uptime and Service Level
Agreements (SLA), which can be a huge cultural shift for an established business.

Chapter 1

[3]

Businesses that have moved to public cloud may find they no longer have a need for
a large internal infrastructure team or network team, instead all infrastructure and
networking is provided by the third-party public cloud, so it can in some quarters be
viewed as giving up on internal IT.

Public cloud has proved a very successful model for many start-ups, given
the agility it provides, where start-ups can put out products quickly using
software-defined constructs without having to set up their own data center
and remain product focused.

However, the Total Cost of Ownership (TCO) to run all of a business's
infrastructure in a public cloud is a hotly debated topic, which can be an expensive
model if it isn't managed and maintained correctly. The debate over public versus
private cloud TCO rages on as some argue that public cloud is a great short-term fix
but growing costs over a long period of time mean that it may not be a viable long-
term solution compared with private cloud.

Private cloud
Private cloud is really just an extension of the initial benefits introduced by
virtualization solutions, such as VMware, Hyper-V, and Citrix Xen, which were
the cornerstone of the virtualization market. The private cloud world has moved on
from just providing virtual machines, to providing software-defined networking
and storage.

With the launch of public clouds, such as Amazon Web Services, private cloud
solutions have sought to provide like-for-like capability by putting a software-
defined layer on top of their current infrastructure. This infrastructure can be
controlled in the same way as the public cloud via a GUI or programmatically
using APIs.

Private cloud solutions such as Apache CloudStack and open source solutions such
as OpenStack have been created to bridge the gap between the private cloud and the
public cloud.

This has allowed vendors the agility of private cloud operations in their own data
center by overlaying software-defined constructs on top of their existing hardware
and networks.

However, the major benefit of private cloud is that this can be done within the
security of a company's own data centers. Not all businesses can use public cloud for
compliance, regularity, or performance reasons, so private cloud is still required for
some businesses for particular workloads.

The Impact of Cloud on Networking

[4]

Hybrid cloud
Hybrid cloud can often be seen as an amalgamation of multiple clouds. This allows
a business to seamlessly run workloads across multiple clouds linked together by a
network fabric. The business could select the placement of workloads based on cost
or performance metrics.

A hybrid cloud can often be made up of private and public clouds. So, as an
example, a business may have a set of web applications that it wishes to scale up
for particular busy periods and are better suited to run on public cloud so they are
placed there. However, the business also needs a highly regulated, PCI-compliant
database, which would be better-suited to being deployed in a private on-premises
cloud. So a true hybrid cloud gives a business these kinds of options and flexibility.

Hybrid cloud really works on the premise of using different clouds for different
use cases, where each horse (application workload) needs to run a particular course
(cloud). So, sometimes, a vendor-provided Platform as a Service (PaaS) layer can be
used to place workloads across multiple clouds or alternately different configuration
management tools, or container orchestration technologies can be used to orchestrate
application workload placement across clouds.

Software-defined
The choice between public, private, or hybrid cloud really depends on the business,
so there is no real right or wrong answer. Companies will likely use hybrid cloud
models as their culture and processes evolve over the next few years.

If a business is using a public, private, or hybrid cloud, the common theme
with all implementations is that they are moving towards a software-defined
operational model.

So what does the term software-defined really mean? In simple terms, software-defined
means running a software abstraction layer over hardware. This software abstraction
layer allows graphical or programmatic control of the hardware. So, constructs, such
as infrastructure, storage, and networking, can be software defined to help simplify
operations, manageability as infrastructure and networks scale out.

When running private clouds, modifications need to be made to incumbent data
centers to make them private cloud ready; sometimes, this is important, so the
private data center needs to evolve to meet those needs.

Chapter 1

[5]

The difference between Spanning Tree
and Leaf-Spine networking
When considering the private cloud, traditionally, company's private datacenters
have implemented 3-tier layer 2 networks based on the Spanning Tree Protocol
(STP), which doesn't lend itself well to modern software-defined networks.
So, we will look at what a STP is in more depth as well as modern Leaf-Spine
network architectures.

Spanning Tree Protocol
The implementation of STP provides a number of options for network architects
in terms of implementation, but it also adds a layer of complexity to the network.
Implementation of the STP gives network architects the certainty that it will prevent
layer 2 loops from occurring in the network.

A typical representation of a 3-tier layer 2 STP-based network can be shown
as follows:

•	 The Core layer provides routing services to other parts of the data center and
contains the core switches

•	 The Aggregation layer provides connectivity to adjacent Access layer
switches and the top of the Spanning Tree core

The Impact of Cloud on Networking

[6]

The bottom of the tree is the Access layer; this is where bare metal (physical) or
virtual machines connect to the network and are segmented using different VLANs.

The use of layer 2 networking and STP mean that at the access layer of the network
will use VLANs spread throughout the network. The VLANs sit at the access layer,
which is where virtual machines or bare metal servers are connected. Typically, these
VLANs are grouped by type of application, and firewalls are used to further isolate
and secure them.

Traditional networks are normally segregated into some combination of
the following:

•	 Frontend: It typically has web servers that require external access
•	 Business Logic: This often contains stateful services
•	 Backend: This typically contains database servers

Applications communicate with each other by tunneling between these firewalls,
with specific Access Control List (ACL) rules that are serviced by network teams
and governed by security teams.

When using STP in a layer 2 network, all switches go through an election process to
determine the root switch, which is granted to the switch with the lowest bridge ID,
with a bridge ID encompassing the bridge priority and MAC address of the switch.

Once elected, the root switch becomes the base of the spanning tree; all other
switches in the Spanning Tree are deemed non-root will calculate their shortest
path to the root and then block any redundant links, so there is one clear path.
The calculation process to work out the shortest path is referred to as network
convergence. (For more information refer to the following link: http://
etutorials.org/Networking/Lan+switching+fundamentals/Chapter+10.+Impl
ementing+and+Tuning+Spanning+Tree/Spanning-Tree+Convergence/)

Network architects designing the layer 2 Spanning Tree network need to be careful
about the placement of the root switch, as all network traffic will need to flow
through it, so it should be selected with care and given an appropriate bridge
priority as part of the network reference architecture design. If at any point, switches
have been given the same bridge priority then the bridge with the lowest MAC
address wins.

http://etutorials.org/Networking/Lan+switching+fundamentals/Chapter+10.+Implementing+and+Tuning+Spanning+Tree/Spanning-Tree+Convergence/
http://etutorials.org/Networking/Lan+switching+fundamentals/Chapter+10.+Implementing+and+Tuning+Spanning+Tree/Spanning-Tree+Convergence/
http://etutorials.org/Networking/Lan+switching+fundamentals/Chapter+10.+Implementing+and+Tuning+Spanning+Tree/Spanning-Tree+Convergence/

Chapter 1

[7]

Network architects should also design the network for redundancy so that if a root
switch fails, there is a nominated backup root switch with a priority of one value less
than the nominated root switch, which will take over when a root switch fails. In the
scenario, the root switch fails the election process will begin again and the network
will converge, which can take some time.

The use of STP is not without its risks, if it does fail due to user configuration error,
data center equipment failure or software failure on a switch or bad design, then
the consequences to a network can be huge. The result can be that loops might form
within the bridged network, which can result in a flood of broadcast, multicast or
unknown-unicast storms that can potentially take down the entire network leading
to long network outages. The complexity associated with network architects or
engineers troubleshooting STP issues is important, so it is paramount that the
network design is sound.

Leaf-Spine architecture
In recent years with the emergence of cloud computing, we have seen data centers
move away from a STP in favor of a Leaf-Spine networking architecture. The Leaf-
Spine architecture is shown in the following diagram:

In a Leaf-Spine architecture:

•	 Spine switches are connected into a set of core switches
•	 Spine switches are then connected with Leaf switches with each Leaf switch

deployed at the top of rack, which means that any Leaf switch can connect to
any Spine switch in one hop

The Impact of Cloud on Networking

[8]

Leaf-Spine architectures are promoted by companies such as Arista, Juniper, and
Cisco. A Leaf-Spine architecture is built on layer 3 routing principle to optimize
throughput and reduce latency.

Both Leaf and Spine switches communicate with each other via external Border
Gate Protocol (eBGP) as the routing protocol for the IP fabric. eBGP establishes
a Transmission Control Protocol (TCP) connection to each of its BGP peers
before BGP updates can be exchanged between the switches. Leaf switches in the
implementation will sit at top of rack and can be configured in Multichassis Link
Aggregation (MLAG) mode using Network Interface Controller (NIC) bonding.

MLAG was originally used with STP so that two or more switches are bonded to
emulate like a single switch and used for redundancy so they appeared as one switch
to STP. In the event of a failure this provided multiple uplinks for redundancy in
the event of a failure as the switches are peered, and it worked around the need to
disable redundant paths. Leaf switches can often have internal Border Gate Protocol
(iBGP) configured between the pairs of switches for resiliency.

In a Leaf-Spine architecture, Spine switches do not connect to other Spine switches,
and Leaf switches do not connect directly to other Leaf switches unless bonded
top of rack using MLAG NIC bonding. All links in a Leaf-Spine architecture are set
up to forward with no looping. Leaf-Spine architectures are typically configured
to implement Equal Cost Multipathing (ECMP), which allows all routes to be
configured on the switches so that they can access any Spine switch in the layer 3
routing fabric.

ECMP means that Leaf switches routing table has the next-hop configured to
forward to each Spine switch. In an ECMP setup, each leaf node has multiple paths
of equal distance to each Spine switch, so if a Spine or Leaf switch fails, there is no
impact as long as there are other active paths to another adjacent Spine switches.
ECMP is used to load balance flows and supports the routing of traffic across
multiple paths. This is in contrast to the STP, which switches off all but one
path to the root when the network converges.

Normally, Leaf-Spine architectures designed for high performance use 10G access
ports at Leaf switches mapping to 40G Spine ports. When device port capacity
becomes an issue, new Leaf switches can be added by connecting it to every Spine on
the network while pushing the new configuration to every switch. This means that
network teams can easily scale out the network horizontally without managing or
disrupting the switching protocols or impacting the network performance.

An illustration of the protocols used in a Leaf-Spine architecture are shown later,
with Spine switches connected to Leaf switches using BGP and ECMP and Leaf
switches sitting top of rack and configured for redundancy using MLAG and iBGP:

Chapter 1

[9]

The benefits of a Leaf-Spine architecture are as follows:

•	 Consistent latency and throughput in the network
•	 Consistent performance for all racks
•	 Network once configured becomes less complex
•	 Simple scaling of new racks by adding new Leaf switches at top of rack
•	 Consistent performance, subscription, and latency between all racks
•	 East-west traffic performance is optimized (virtual machine to virtual

machine communication) to support microservice applications
•	 Removes VLAN scaling issues, controls broadcast and fault domains

The one drawback of a Leaf-Spine topology is the amount of cables it consumes in
the data center.

OVSDB
Modern switches have now moved towards open source standards, so they can use
the same pluggable framework. The open standard for virtual switches is Open
vSwitch, which was born out of the necessity to come up with an open standard that
allowed a virtual switch to forward traffic to different virtual machines on the same
physical host and physical network. Open vSwitch uses Open vSwitch database
(OVSDB) that has a standard extensible schema.

The Impact of Cloud on Networking

[10]

Open vSwitch was initially deployed at the hypervisor level but is now being used in
container technology too, which has Open vSwitch implementations for networking.

The following hypervisors currently implement Open vSwitch as their virtual
switching technology:

•	 KVM
•	 Xen
•	 Hyper-V

Hyper-V has recently moved to support Open vSwitch using the implementation
created by Cloudbase (https://cloudbase.it/), which is doing some fantastic
work in the open source space and is testament to how Microsoft's business model
has evolved and embraced open source technologies and standards in recent years.
Who would have thought it? Microsoft technologies now run natively on Linux.

The Open vSwitch exchanges OpenFlow between virtual switch and physical
switches in order to communicate and can be programmatically extended to fit
the needs of vendors. In the following diagram, you can see the Open vSwitch
architecture. Open vSwitch can run on a server using the KVM, Xen, or Hyper-V
virtualization layer:

https://cloudbase.it/

Chapter 1

[11]

The ovsdb-server contains the OVSDB schema that holds all switching information
for the virtual switch. The ovs-vswitchd daemon talks OpenFlow to any Control
& Management Cluster, which could be any SDN controller that can communicate
using the OpenFlow protocol.

Controllers use OpenFlow to install flow state on the virtual switch, and OpenFlow
dictates what actions to take when packets are received by the virtual switch.

When Open vSwitch receives a packet it has never seen before and has no matching
flow entries, it sends this packet to the controller. The controller then makes a
decision on how to handle this packet based on the flow rules to either block or
forward. The ability to configure Quality of Service (QoS) and other statistics is
possible on Open vSwitch.

Open vSwitch is used to configure security rules and provision ACL rules at the
switch level on a hypervisor.

A Leaf-Spine architecture allows overlay networks to be easily built, meaning that
cloud and tenant environments are easily connected to the layer 3 routing fabric.
Hardware Vxlan Tunnel Endpoints (VTEPs) IPs are associated with each Leaf
switch or a pair of Leaf switches in MLAG mode and are connected to each physical
compute host via Virtual Extensible LAN (VXLAN) to each Open vSwitch that is
installed on a hypervisor.

This allows an SDN controller, which is provided by vendors, such as Cisco, Nokia,
and Juniper to build an overlay network that creates VXLAN tunnels to the physical
hypervisors using Open vSwitch. New VXLAN tunnels are created automatically if a
new compute is scaled out, then SDN controllers can create new VXLAN tunnels on
the Leaf switch as they are peered with the Leaf switch's hardware VXLAN Tunnel
End Point (VTEP).

Modern switch vendors, such as Arista, Cisco, Cumulus, and many others, use
OVSDB, and this allows SDN controllers to integrate at the Control & Management
Cluster level. As long as an SDN controller uses OVSDB and OpenFlow protocol,
they can seamlessly integrate with the switches and are not tied into specific vendors.
This gives end users a greater depth of choice when choosing switch vendors and
SDN controllers, which can be matched up as they communicate using the same
open standard protocol.

The Impact of Cloud on Networking

[12]

Changes that have occurred in
networking with the introduction of
public cloud
It is unquestionable that the emergence of the AWS, which was launched in
2006, changed and shaped the networking landscape forever. AWS has allowed
companies to rapidly develop their products on the AWS platform. AWS has created
an innovative set of services for end users, so they can manage infrastructure,
load balancing, and even databases. These services have led the way in making
the DevOps ideology a reality, by allowing users to elastically scale up and down
infrastructure. They need to develop products on demand, so infrastructure
wait times are no longer an inhibitor to development teams. AWS rich feature
set of technology allows users to create infrastructure by clicking on a portal or
more advanced users that want to programmatically create infrastructure using
configuration management tooling, such as Ansible, Chef, Puppet, Salt or
Platform as a Service (PaaS) solutions.

An overview of AWS
In 2016, the AWS Virtual Private Cloud (VPC) secures a set of Amazon EC2
instances (virtual machines) that can be connected to any existing network using a
VPN connection. This simple construct has changed the way that developers want
and expect to consume networking.

In 2016, we live in a consumer-based society with mobile phones allowing us instant
access to the Internet, films, games, or an array of different applications to meet our
every need, instant gratification if you will, so it is easy to see the appeal of AWS has
to end users.

AWS allows developers to provision instances (virtual machines) in their own
personal network, to their desired specification by selecting different flavors (CPU,
RAM, and disk) using a few button clicks on the AWS portal's graphical user
interface, alternately using a simple call to an API or scripting against the AWS-
provided SDKs.

So now a valid question, why should developers be expected to wait long periods
of time for either infrastructure or networking tickets to be serviced in on-premises
data centers when AWS is available? It really shouldn't be a hard question to answer.
The solution surely has to either be moved to AWS or create a private cloud solution
that enables the same agility. However, the answer isn't always that straightforward,
there are following arguments against using AWS and public cloud:

Chapter 1

[13]

•	 Not knowing where the data is actually stored and in which data center
•	 Not being able to hold sensitive data offsite
•	 Not being able to assure the necessary performance
•	 High running costs

All of these points are genuine blockers for some businesses that may be highly
regulated or need to be PCI compliant or are required to meet specific regularity
standards. These points may inhibit some businesses from using public cloud so as
with most solutions it isn't the case of one size fits all.

In private data centers, there is a cultural issue that teams have been set up to
work in silos and are not set up to succeed in an agile business model, so a lot of
the time using AWS, Microsoft Azure, or Google Cloud is a quick fix for broken
operational models.

Ticketing systems, a staple of broken internal operational models, are not a concept
that aligns itself to speed. An IT ticket raised to an adjacent team can take days or
weeks to complete, so requests are queued before virtual or physical servers can
be provided to developers. Also, this is prominent for network changes too, with
changes such as a simple modification to ACL rules taking an age to be implemented
due to ticketing backlogs.

Developers need to have the ability to scale up servers or prototype new features at
will, so long wait times for IT tickets to be processed hinder delivery of new products
to market or bug fixes to existing products. It has become common in internal IT
that some Information Technology Infrastructure Library (ITIL) practitioners
put a sense of value on how many tickets that processed over a week as the main
metric for success. This shows complete disregard for customer experience of their
developers. There are some operations that need to shift to the developers, which
have traditionally lived with internal or shadow IT, but there needs to be a change in
operational processes at a business level to invoke these changes.

Put simply, AWS has changed the expectations of developers and the expectations
placed on infrastructure and networking teams. Developers should be able to service
their needs as quickly as making an alteration to an application on their mobile
phone, free from slow internal IT operational models associated with companies.

But for start-ups and businesses that can use AWS, which aren't constrained by
regulatory requirements, it skips the need to hire teams to rack servers, configure
network devices, and pay for the running costs of data centers. It means they can
start viable businesses and run them on AWS by putting in credit card details the
same way as you would purchase a new book on Amazon or eBay.

The Impact of Cloud on Networking

[14]

OpenStack overview
The reaction to AWS was met with trepidation from competitors, as it disrupted the
cloud computing industry and has led to PaaS solutions such as Cloud Foundry and
Pivotal coming to fruition to provide an abstraction layer on top of hybrid clouds.

When a market is disrupted, it promotes a reaction, from it spawned the idea for a
new private cloud. In 2010, a joint venture by Rackspace and NASA, launched an
open source cloud-software initiative known as OpenStack, which came about as
NASA couldn't put their data in a public cloud.

The OpenStack project intended to help organizations offer cloud computing services
running on standard hardware and directly set out to mimic the model provided by
AWS. The main difference with OpenStack is that it is an open source project that can
be used by leading vendors to bring AWS-like ability and agility to the private cloud.

Since its inception in 2010, OpenStack has grown to have over 500 member
companies as part of the OpenStack Foundation, with platinum members and gold
members that comprise the biggest IT vendors in the world that are actively driving
the community.

The platinum members of the OpenStack foundation are:

OpenStack is an open source project, which means its source code is publicly
available and its underlying architecture is available for analysis, unlike AWS, which
acts like a magic box of tricks but it is not really known for how it works underneath
its shiny exterior.

OpenStack is primarily used to provide an Infrastructure as a Service (IaaS) function
within the private cloud, where it makes commodity x86 compute, centralized
storage, and networking features available to end users to self-service their needs,
be it via the horizon dashboard or through a set of common API's.

Chapter 1

[15]

Many companies are now implementing OpenStack to build their own data centers.
Rather than doing it on their own, some companies are using different vendor
hardened distributions of the community upstream project. It has been proven
that using a vendor hardened distributions of OpenStack, when starting out, mean
that OpenStack implementation is far likelier to be successful. Initially, for some
companies, implementing OpenStack can be seen as complex as it is a completely
new set of technology that a company may not be familiar with yet. OpenStack
implementations are less likely to fail when using professional service support from
known vendors, and it can create a viable alternative to enterprise solutions, such as
AWS or Microsoft Azure.

Vendors, such as Red Hat, HP, Suse, Canonical, Mirantis, and many more, provide
different distributions of OpenStack to customers, complete with different methods
of installing the platform. Although the source code and features are the same, the
business model for these OpenStack vendors is that they harden OpenStack for
enterprise use and their differentiator to customers is their professional services.

There are many different OpenStack distributions available to customers with the
following vendors providing OpenStack distributions:

•	 Bright Computing
•	 Canonical
•	 HPE
•	 IBM
•	 Mirantis
•	 Oracle OpenStack for Oracle Linux, or O3L
•	 Oracle OpenStack for Oracle Solaris
•	 Red Hat
•	 SUSE
•	 VMware Integrated OpenStack (VIO)

OpenStack vendors will support build out, on-going maintenance, upgrades, or
any customizations a client needs, all of which are fed back to the community.
The beauty of OpenStack being an open source project is that if vendors customize
OpenStack for clients and create a real differentiator or competitive advantage, they
cannot fork OpenStack or uniquely sell this feature. Instead, they have to contribute
the source code back to the upstream open source OpenStack project.

This means that all competing vendors contribute to its success of OpenStack and
benefit from each other's innovative work. The OpenStack project is not just for
vendors though, and everyone can contribute code and features to push the
project forward.

The Impact of Cloud on Networking

[16]

OpenStack maintains a release cycle where an upstream release is created every
six months and is governed by the OpenStack Foundation. It is important to note
that many public clouds, such as AT&T, RackSpace, and GoDaddy, are based on
OpenStack too, so it is not exclusive to private clouds, but it has undeniably become
increasingly popular as a private cloud alternative to AWS public cloud and now
widely used for Network Function Virtualization (NFV).

So how does AWS and OpenStack work in terms of networking? Both AWS and
OpenStack are made up of some mandatory and optional projects that are all
integrated to make up its reference architecture. Mandatory projects include
compute and networking, which are the staple of any cloud solution, whereas
others are optional bolt-ons to enhance or extend capability. This means that end
users can cherry-pick the projects they are interested in to make up their own
personal portfolio.

The AWS approach to networking
Having discussed both AWS and OpenStack, first, we will explore the AWS
approach to networking, before looking at an alternative method using OpenStack
and compare the two approaches. When first setting up networking in AWS, a tenant
network in AWS is instantiated using VPC, which post 2013 deprecated AWS classic
mode; but what is VPC?

Amazon VPC
A VPC is the new default setting for new customers wishing to access AWS. VPCs
can also be connected to customer networks (private data centers) by allowing AWS
cloud to extend a private data center for agility. The concept of connecting a private
data center to an AWS VPC is using something AWS refers to as a customer gateway
and virtual private gateway. A virtual private gateway in simple terms is just two
redundant VPN tunnels, which are instantiated from the customer's private network.

Customer gateways expose a set of external static addresses from a customer site,
which are typically Network Address Translation-Traversal (NAT-T) to hide the
source address. UDP port 4500 should be accessible in the external firewall in
the private data center. Multiple VPCs can be supported from one customer
gateway device.

Chapter 1

[17]

A VPC gives an isolated view of everything an AWS customer has provisioned
in AWS public cloud. Different user accounts can then be set up against VPC
using the AWS Identity and Access Management (IAM) service, which has
customizable permissions.

The Impact of Cloud on Networking

[18]

The following example of a VPC shows instances (virtual machines) mapped with
one or more security groups and connected to different subnets connected to the
VPC router:

A VPC simplifies networking greatly by putting the constructs into software and
allows users to perform the following network functions:

•	 Creating instances (virtual machines) mapped to subnets
•	 Creating Domain Name System (DNS) entries that are applied to instances
•	 Assigning public and private IP addresses
•	 Creating or associating subnets
•	 Creating custom routing
•	 Applying security groups with associated ACL rules

Chapter 1

[19]

By default, when an instance (virtual machine) is instantiated in a VPC, it will either
be placed on a default subnet or custom subnet if specified.

All VPCs come with a default router when the VPC is created, the router can have
additional custom routes added and routing priority can also be set to forward traffic
to particular subnets.

Amazon IP addressing
When an instance is spun up in AWS, it will automatically be assigned a mandatory
private IP address by Dynamic Host Configuration Protocol (DHCP) as well as
a public IP and DNS entry too unless dictated otherwise. Private IPs are used in
AWS to route east-west traffic between instances when virtual machine needs to
communicate with adjacent virtual machines on the same subnet, whereas public IPs
are available through the Internet.

If a persistent public IP address is required for an instance, AWS offers the elastic
IP addresses feature, which is limited to five per VPC account, which any failed
instances IP address can be quickly mapped to another instance. It is important to
note that it can take up to 24 hours for a public IP address's DNS Time To Live (TTL)
to propagate when using AWS.

In terms of throughput, AWS instances can support a Maximum Transmission
Unit (MTU) of 1,500 that can be passed to an instance in AWS, so this needs to be
considered when considering application performance.

Amazon security groups
Security groups in AWS are a way of grouping permissive ACL rules, so don't allow
explicit denies. AWS security groups act as a virtual firewall for instances, and they
can be associated with one or more instances' network interfaces. In a VPC, you can
associate a network interface with up to five security groups, adding up to 50 rules
to a security group, with a maximum of 500 security groups per VPC. A VPC in an
AWS account automatically has a default security group, which will be automatically
applied if no other security groups are specified.

Default security groups allow all outbound traffic and all inbound traffic only from
other instances in a VPC that also use the default security group. The default security
group cannot be deleted. Custom security groups when first created allow no
inbound traffic, but all outbound traffic is allowed.

The Impact of Cloud on Networking

[20]

Permissive ACL rules associated with security groups govern inbound traffic and
are added using the AWS console (GUI) as shown later in the text, or they can be
programmatically added using APIs. Inbound ACL rules associated with security
groups can be added by specifying type, protocol, port range, and the source
address. Refer to the following screenshot:

Amazon regions and availability zones
A VPC has access to different regions and availability zones of shared compute,
which dictate the data center that the AWS instances (virtual machines) will be
deployed in. Regions in AWS are geographic areas that are completely isolated by
design, where availability zones are isolated locations in that specific region, so an
availability zone is a subset of a region.

AWS gives users the ability to place their resources in different locations for
redundancy as sometimes the health of a specific region or availability zone can
suffer issues. Therefore, AWS users are encouraged to use more than one availability
zones when deploying production workloads on AWS. Users can choose to replicate
their instances and data across regions if they choose to.

Within each isolated AWS region, there are child availability zones. Each availability
zone is connected to sibling availability zones using low latency links. All
communication from one region to another is across the public Internet, so using
geographically distant regions will acquire latency and delay. Encryption of data
should also be considered when hosting applications that send data across regions.

Amazon Elastic Load Balancing
AWS also allows Elastic Load Balancing (ELB) to be configured within a VPC as a
bolt-on service. ELB can either be internal or external. When ELB is external, it allows
the creation of an Internet-facing entry point into your VPC using an associated DNS
entry and balances load between different instances. Security groups are assigned to
ELBs to control the access ports that need to be used.

Chapter 1

[21]

The following image shows an elastic load balancer, load balancing 3 instances:

The OpenStack approach to networking
Having considered AWS networking, we will now explore OpenStack's approach to
networking and look at how its services are configured.

OpenStack is deployed in a data center on multiple controllers. These controllers
contain all the OpenStack services, and they can be installed on either virtual
machines, bare metal (physical) servers, or containers. The OpenStack controllers
should host all the OpenStack services in a highly available and redundant fashion
when they are deployed in production.

Different OpenStack vendors provide different installers to install OpenStack. Some
examples of installers from the most prominent OpenStack distributions are RedHat
Director (based on OpenStack TripleO), Mirantis Fuel, HPs HPE installer (based
on Ansible), and Juju for Canonical, which all install OpenStack controllers and are
used to scale out compute nodes on the OpenStack cloud acting as an OpenStack
workflow management tool.

The Impact of Cloud on Networking

[22]

OpenStack services
A breakdown of the core OpenStack services that are installed on an OpenStack
controller are as follows:

•	 Keystone is the identity service for OpenStack that allows user access,
which issues tokens, and can be integrated with LDAP or Active directory.

•	 Heat is the orchestration provisioning tool for OpenStack infrastructure.
•	 Glance is the image service for OpenStack that stores all image templates for

virtual machines or bare metal servers.
•	 Cinder is the block storage service for OpenStack that allows centralized

storage volumes to be provisioned and attached to vms or bare metal servers
that can then be mounted.

•	 Nova is the compute service for OpenStack used to provision vms and uses
different scheduling algorithms to work out where to place virtual machines
on available compute.

•	 Horizon is the OpenStack dashboard that users connect to view the status of
vms or bare metal servers that are running in a tenant network.

•	 Rabbitmq is the message queue system for OpenStack.
•	 Galera is the database used to store all OpenStack data in the Nova

(compute) and neutron (networking) databases holding VM, port,
and subnet information.

•	 Swift is the object storage service for OpenStack and can be used as a
redundant storage backend that stores replicated copies of objects on
multiple servers. Swift is not like traditional block or file-based storage;
objects can be any unstructured data.

•	 Ironic is the bare metal provisioning service for OpenStack. Originally,
a fork of part of the Nova codebase, it allows provisioning of images on to
bare metal servers and uses IPMI and ILO or DRAC interfaces to manage
physical hardware.

•	 Neutron is the networking service for OpenStack and contains ML2 and L3
agents and allows configuration of network subnets and routers.

In terms of neutron networking services, neutron architecture is very similar in
constructs to AWS.

Chapter 1

[23]

Useful links covering OpenStack services can be found at:
http://docs.openstack.org/admin-guide/common/
get-started-openstack-services.html.
https://www.youtube.com/watch?v=N90ufYN0B6U

OpenStack tenants
A Project, often referred to in OpenStack as a tenant, gives an isolated view of
everything that a team has provisioned in an OpenStack cloud. Different user
accounts can then be set up against a Project (tenant) using the keystone identity
service, which can be integrated with Lightweight Directory Access Protocol
(LDAP) or Active Directory to support customizable permission models.

OpenStack neutron
OpenStack neutron performs all the networking functions in OpenStack.

The following network functions are provided by the neutron project in an
OpenStack cloud:

•	 Creating instances (virtual machines) mapped to networks
•	 Assigning IP addresses using its in-built DHCP service
•	 DNS entries are applied to instances from named servers
•	 The assignment of private and Floating IP addresses
•	 Creating or associating network subnets
•	 Creating routers
•	 Applying security groups

OpenStack is set up into its Modular Layer 2 (ML2) and Layer 3 (L3) agents that are
configured on the OpenStack controllers. OpenStack's ML2 plugin allows OpenStack
to integrate with switch vendors that use either Open vSwitch or Linux Bridge
and acts as an agnostic plugin to switch vendors, so vendors can create plugins, to
make their switches OpenStack compatible. The ML2 agent runs on the hypervisor
communicating over Remote Procedure Call (RPC) to the compute host server.

http://docs.openstack.org/admin-guide/common/get-started-openstack-services.html
http://docs.openstack.org/admin-guide/common/get-started-openstack-services.html
https://www.youtube.com/watch?v=N90ufYN0B6U

The Impact of Cloud on Networking

[24]

OpenStack compute hosts are typically deployed using a hypervisor that uses Open
vSwitch. Most OpenStack vendor distributions use the KVM hypervisor by default
in their reference architectures, so this is deployed and configured on each compute
host by the chosen OpenStack installer.

Compute hosts in OpenStack are connected to the access layer of the STP 3-tier
model, or in modern networks connected to the Leaf switches, with VLANs
connected to each individual OpenStack compute host. Tenant networks are then
used to provide isolation between tenants and use VXLAN and GRE tunneling to
connect the layer 2 network.

Open vSwitch runs in kernel space on the KVM hypervisor and looks after firewall
rules by using OpenStack security groups that pushes down flow data via OVSDB
from the switches. The neutron L3 agent allows OpenStack to route between tenant
networks and uses neutron routers, which are deployed within the tenant network to
accomplish this, without a neutron router networks are isolated from each other and
everything else.

Provisioning OpenStack networks
When setting up simple networking using neutron in a Project (tenant) network, two
different networks, an internal network, and an external network will be configured.
The internal network will be used for east-west traffic between instances. This
is created as shown in the following horizon dashboard with an appropriate
Network Name:

Chapter 1

[25]

The Subnet Name and subnet range are then specified in the Subnet section,
as shown in the following screenshot:

The Impact of Cloud on Networking

[26]

Finally, DHCP is enabled on the network, and any named Allocation Pools (specifies
only a range of addresses that can be used in a subnet) are optionally configured
alongside any named DNS Name Servers, as shown below:

An external network will also need to be created to make the internal network
accessible from outside of OpenStack, when external networks are created by an
administrative user, the set External Network checkbox needs to be selected, as
shown in the next screenshot:

Chapter 1

[27]

A router is then created in OpenStack to route packets to the network,
as shown below:

The Impact of Cloud on Networking

[28]

The created router will then need to be associated with the networks; this is achieved
by adding an interface on the router for the private network, as illustrated in the
following screenshot:

The External Network that was created then needs to be set as the router's gateway,
as per the following screenshot:

Chapter 1

[29]

This then completes the network setup; the final configuration for the internal and
external network is displayed below, which shows one router connected to an
internal and external network:

In OpenStack, instances are provisioned onto the internal private network by
selecting the private network NIC when deploying instances. OpenStack has the
convention of assigning pools of public IPs (floating IP) addresses from an external
network for instances that need to be externally routable outside of OpenStack.

The Impact of Cloud on Networking

[30]

To set up a set of floating IP addresses, an OpenStack administrator will set up an
allocation pool using the external network from an external network, as shown in
the following screenshot:

OpenStack like AWS, uses security groups to set up firewall rules between instances.
Unlike AWS, OpenStack supports both ingress and egress ACL rules, whereas AWS
allows all outbound communication, OpenStack can deal with both ingress and
egress rules. Bespoke security groups are created to group ACL rules as
shown below

Chapter 1

[31]

Ingress and Rules can then be created against a security group. SSH access is
configured as an ACL rule against the parent security group, which is pushed down
to Open VSwitch into kernel space on each hypervisor, as seen in the next screenshot:

Once the Project (tenant) has two networks, one internal and one external, and an
appropriate security group has been configured, instances are ready to be launched
on the private network.

An instance is launched by selecting Launch Instance in horizon and setting the
following parameters:

•	 Availability Zone
•	 Instance Name
•	 Flavor (CPU, RAM, and disk space)

The Impact of Cloud on Networking

[32]

•	 Image Name (base operating system)

The private network is then selected as the NIC for the instance under the
Networking tab:

Chapter 1

[33]

This will mean that when the instance is launched, it will use OpenStack's internal
DHCP service to pick an available IP address from the allocated subnet range.

A security group should also be selected to govern the ACL rules for the
instance; in this instance, the testsg1 security group is selected as shown
in the following screenshot:

The Impact of Cloud on Networking

[34]

Once the instance has been provisioned, a floating IP address can be associated from
the external network:

A floating IP address from the external network floating IP address pool is then
selected and associated with the instance:

The floating IP addresses NATs OpenStack instances that are deployed on the
internal public IP address to the external network's floating IP address, which
will allow the instance to be accessible from outside of OpenStack.

Chapter 1

[35]

OpenStack regions and availability zones
OpenStack like AWS, as seen on instance creation, also utilizes regions and
availability zones. Compute hosts in OpenStack (hypervisors) can be assigned to
different availability zones.

An availability zone in OpenStack is just a virtual separation of compute resources.
In OpenStack, an availability zone can be further segmented into host aggregates.
It is important to note that a compute host can be assigned to only one availability
zone, but can be a part of multiple host aggregates in that same availability zone.

Nova uses a concept named nova scheduler rules, which dictates the placement
of instances on compute hosts at provisioning time. A simple example of a nova
scheduler rule is the AvailabiltyZoneFilter filter, which means that if a user
selects an availability zone at provisioning time, then the instance will land only
on any of the compute instances grouped under that availability zone.

Another example of the AggregateInstanceExtraSpecsFilter filter that means
that if a custom flavor (CPU, RAM, and disk) is tagged with a key value pair and a
host aggregate is tagged with the same key value pair, then if a user deploys with
that flavor the AggregateInstanceExtraSpecsFilter filter will place all instances
on compute hosts under that host aggregate.

These host aggregates can be assigned to specific teams, which means that teams
can be selective about which applications they share their compute with and can be
used to prevent noisy neighbor syndrome. There is a wide array of filters that can be
applied in OpenStack in all sorts of orders to dictate instance scheduling. OpenStack
allows cloud operators to create a traditional cloud model with large groups of
contended compute to more bespoke use cases where the isolation of compute
resources is required for particular application workloads.

The following example shows host aggregates with groups and shows a host
aggregate named 1-Host-Aggregate, grouped under an Availability Zone named
DC1 containing two compute hosts (hypervisors), which could be allocated to a
particular team:

The Impact of Cloud on Networking

[36]

OpenStack instance provisioning workflow
When an instance (virtual machine) is provisioned in OpenStack, the following
high-level steps are carried out:

•	 The Nova compute service will issue a request for a new instance (virtual
machine) using the image selected from the glance images service

•	 The nova request may then be queued by RabbitMQ before being
processed (RabbitMQ allows OpenStack to deal with multiple
simultaneous provisioning requests)

•	 Once the request for a new instance is processed, the request will write a new
row into the nova Galera database in the nova database

•	 Nova will look at the nova scheduler rules defined on the OpenStack
controllers and will use those rules to place the instance on an available
compute node (KVM hypervisor)

•	 If an available hypervisor is found that meets the nova scheduler rules,
then the provisioning process will begin

•	 Nova will check whether the image already exists on the matched
hypervisor. If it doesn't, the image will be transferred from the hypervisor
and booted from local disk

•	 Nova will issue a neutron request, which will create a new VPort in
OpenStack and map it to the neutron network

•	 The VPort information will then be written to both the nova and neutron
databases in Galera to correlate the instance with the network

•	 Neutron will issue a DHCP request to assign the instance a private IP address
from an unallocated IP address from the subnet it has been associated with

•	 A private IP address will then be assigned, and the instance will start to start
up on the private network

•	 The neutron metadata service will then be contacted to retrieve cloud-init
information on boot, which will assign a DNS entry to the instance from the
named server, if specified

Chapter 1

[37]

•	 Once cloud-init has run, the instance will be ready to use
•	 Floating IPs can then be assigned to the instance to NAT to external networks

to make the instances publicly accessible

OpenStack LBaaS
Like AWS OpenStack also offers a Load-Balancer-as-a-Service (LBaaS) option that
allows incoming requests to be distributed evenly among designated instances using
a Virtual IP (VIP). The features and functionality supported by LBaaS are dependent
on the vendor plugin that is used.

Popular LBaaS plugins in OpenStack are:

•	 Citrix NetScaler
•	 F5
•	 HaProxy
•	 Avi networks

These load balancers all expose varying degrees of features to the OpenStack LBaaS
agent. The main driver for utilizing LBaaS on OpenStack is that it allows users to use
LBaaS as a broker to the load balancing solution, allowing users to use the OpenStack
API or configure the load balancer via the horizon GUI.

LBaaS allows load balancing to be set up within a tenant network in OpenStack.
Using LBaaS means that if for any reason a user wishes to use a new load balancer
vendor as opposed to their incumbent one; as long as they are using OpenStack
LBaaS, it is made much easier. As all calls or administration are being done via
the LBaaS APIs or Horizon, no changes would be required to the orchestration
scripting required to provision and administrate the load balancer, and they
wouldn't be tied into each vendor's custom APIs and the load balancing
solution becomes a commodity.

The Impact of Cloud on Networking

[38]

Summary
In this chapter, we have covered some of the basic networking principles that are
used in today's modern data centers, with special focus on the AWS and OpenStack
cloud technologies which are two of the most popular solutions.

Having read this chapter, you should now be familiar with the difference between
Leaf-Spine and Spanning Tree network architectures, it should have demystified
AWS networking, and you should now have a basic understanding of how private
and public networks can be configured in OpenStack.

In the forthcoming chapters, we will build on these basic networking constructs
and look at how they can be programmatically controlled using configuration
management tools and used to automate network functions. But first, we will focus
on some of the software-defined networking controllers that can be used to extend
the capability of OpenStack even further than neutron in the private clouds and
some of the feature sets and benefits they bring to ease the pain of managing
network operations.

Useful links for Amazon content are:
https://aws.amazon.com/

https://www.youtube.com/watch?v=VgzzHCukwpc

https://www.youtube.com/watch?v=jLVPqoV4YjU

Useful links for OpenStack content are:
https://wiki.openstack.org/wiki/Main_Page

https://www.youtube.com/watch?v=Qz5gyDenqTI

https://www.youtube.com/watch?v=Li0Ed1VEziQ

https://aws.amazon.com/
https://www.youtube.com/watch?v=VgzzHCukwpc
https://www.youtube.com/watch?v=jLVPqoV4YjU
https://wiki.openstack.org/wiki/Main_Page
https://www.youtube.com/watch?v=Qz5gyDenqTI
https://www.youtube.com/watch?v=Li0Ed1VEziQ

[39]

The Emergence of
Software-defined Networking

This chapter will discuss the emergence of open protocols that have helped
Software-defined Networking (SDN) solutions. It will focus specifically on the
Nuage VSP SDN solution, which is an SDN platform from Nokia, formerly known
as Alcatel-Lucent, which allows users to create a virtual overlay network. We will
look at some of the scaling benefits and features Nuage VSP provides over and
above the out of the box experience from AWS and OpenStack. It will articulate why
these networking solutions have become a necessity for notoriously complex private
cloud networks, by simplifying networking using software constructs while aiding
automation of the network by providing a set of programmable APIs and SDKs.

This chapter will focus on the following topics in detail:

•	 Why SDN solutions are necessary
•	 How the Nuage SDN solution works
•	 The integration of OpenStack with the Nuage VSP Platform
•	 The Nuage VSP Software-defined object model
•	 How the Nuage VSP can support Greenfield and Brownfield Projects
•	 The Nuage VSP Multicast Support

Why SDN solutions are necessary
SDN solutions are necessary as they allow businesses to simplify their network
operations, and it also allows them to automate network functions. It fits well with
the DevOps initiative and the need to make network operations more agile.

The Emergence of Software-defined Networking

[40]

A byproduct of SDN is that it allows network functions to become as accurate and
repeatable as creating a new virtual machine on a hypervisor.

SDN solutions from vendors are made up of a centralized controller that is
implemented to become the nerve center of the network. SDN controllers rely
heavily on Open vSwitch database (OVSDB), which is a programmable, open
standard schema which utilizes the OpenFlow protocol, which integrates directly
with switches to route packets in the network as well as applying ACL policies to
particular virtual machines, physical servers, or containers.

As long as a switch can talk OVSDB and OpenFlow, then it can integrate with
common SDN controllers. There are now a wide variety of SDN controllers
currently on the market:

•	 CISCO ACI
http://www.cisco.com/c/en/us/solutions/data-center-
virtualization/application-centric-infrastructure/index.html

•	 Nokia Nuage VSP
http://www.nuagenetworks.net/products/virtualized-services-
platform/

•	 Juniper Contrail
http://www.juniper.net/uk/en/products-services/sdn/contrail/

•	 VMWare NSX
http://www.vmware.com/products/nsx.html

•	 Open Daylight
https://www.opendaylight.org/

•	 MidoNet Midokura

http://www.midokura.com/midonet/

SDN controllers do the following for enterprises:

•	 Provide an easy-to-use solution for network functions, with the SDN
controllers abstracting the network functions from hardware devices and
instead expose GUIs and API endpoints that can be programmatically
altered to control network operations.

•	 SDN controllers lend themselves to DevOps models such as self-service
network operations for developers, which allow Continuous Delivery of
network functions and increased collaboration between teams.

http://www.cisco.com/c/en/us/solutions/data-center-virtualization/application-centric-infrastructure/index.html
http://www.cisco.com/c/en/us/solutions/data-center-virtualization/application-centric-infrastructure/index.html
http://www.nuagenetworks.net/products/virtualized-services-platform/
http://www.nuagenetworks.net/products/virtualized-services-platform/
http://www.juniper.net/uk/en/products-services/sdn/contrail/
http://www.vmware.com/products/nsx.html
https://www.opendaylight.org/
http://www.midokura.com/midonet/

Chapter 2

[41]

•	 Provide increased visibility of network configuration as it is described in
easy-to-understand software constructs.

•	 Provide better integration with infrastructure through the use of open
networking standards, so this gives companies choice over which switch
vendors they integrate.

•	 Allow the same set of policies in a private datacenter to be applied across
private and public clouds. This makes the aim of distributing different
workloads into different cloud providers a reality and makes security
governance of hybrid clouds much easier for security teams.

The emergence of AWS undoubtedly influenced network vendors to adapt their
solutions to be less hardware centric and focus more on a software approach to
networking, which, in turn, has simplified network operations and made networking
easier to scale.

Vendors have now adopted and implemented open protocols to allow centralized
management of network functions and allowed network operators to manage the
whole network using an SDN controller.

Software-defined networking is being used by businesses to maximize the
performance of their network and create repeatable workflows for network
operations in the same way hypervisor virtualization helped infrastructure
teams automate server provisioning and management.

However, based on my personal experience, software-defined networking in the
private cloud is being used to run OpenStack at massive scale. The continued
uptake on OpenStack projects by many major companies, such as Walmart, Ebay,
PayPal, Go Daddy, and my company Paddy Power Betfair, means that companies
are turning to SDN solutions to allow them to meet necessary scaling targets and
simplifying network operations.

How the Nuage SDN solution works
One of the market-leading SDN solutions is the Nuage SDN (VSP) platform, which is
Nokia's SDN solution (formerly Alcatel Lucent), so we will explore how this market-
leading SDN solution works.

The Nuage VSP platform comprises three main components—the VSD, VSC,
and VRS.

•	 Virtualized Service Directory (VSD): This is the policy engine for the overall
platform, and it provides a graphical user interface and exposes a restful API
for network engineers to use and interact with network functions.

The Emergence of Software-defined Networking

[42]

•	 Virtualized Service Controller (VSC): This is the SDN controller for Nuage,
and it uses OpenFlow and OVSDB management protocol to distribute
switching and routing information to hypervisors, bare metal servers,
or containers.

•	 Virtual Routing and Switching (VRS): This is Nuage's customized version
of Open vSwitch, which is installed on compute nodes (hypervisors).

The Nuage VSP can integrate with OpenStack, CloudStack, and VMWare private
cloud platforms or public cloud solutions such as AWS. Nuage creates an overlay
network that has the ability to secure virtual machines, bare metal servers, and
containers in an isolated tenant network, so it is highly flexible depending on what
kind of workload needs to be deployed.

Chapter 2

[43]

Virtual machines, of course, are deployed as a virtual abstraction on top of physical
hypervisors, where containers can run on top of virtual machines or physical
servers. Containers are used to isolate particular processes or resources using Linux
namespaces and control groups, which divide resources at operating system level, so
the networking requirements for virtual machines and containers are very different.
Containers are used because they are portable and can run on either virtual machines
or bare metal (physical) servers. Another advantage is they are encapsulated by the
Linux operating system and multiple containers can run on a virtual machine or
physical server.

Nuage also supports multicast between tenant networks by routing multicast traffic
via hypervisors on the underlay network via hypervisors or physical machines and
flooding it to specific virtual or physical machines within a tenant network, which
has been somewhat of an issue with cloud solutions, but Nuage has a solution to that
particular problem.

The Nuage VSPs SDN Controller (VSC) integrates with switches using OVSDB via
hardware VTEPs exposed by switches at the access or leaf layer of the network. VSCs
are deployed redundantly and communicate with each other with Multipath Border
Gate Protocol (MP-BGP) and program VXLAN encapsulation to the switches as they
are hardware VTEP aware.

The VSD component is set up in an active cluster containing three VSD
servers, which are load balanced using a viable load balancer solution. The load
balancer provides a Virtual IP (VIP), which load balances three VSDs servers in
round-robin mode.

The VSDs VIP exposes the graphical user interface for the Nuage VSP platform and
API entry point to programmatically control the overlay network using REST calls.
Any operation carried out on the Nuage VSD GUI initiates a REST API call to the
VSD, so both the GUI and the REST API are carrying out identical programmatic
calls and all operations are exposed via the REST API.

The Nuage VSD governs layer 2 and 3 domains, zones, subnets, and ACL policies.
The VSD communicates policy information to the VSC using Extensible Messaging
and Presence Protocol (XMPP), and the VSC uses OpenFlow to push down flow
information to a customized version of Open vSwitch (VRS) on the compute hosts
(hypervisor) to create firewall policy for applications.

The Nuage VSP allows bare metal servers to be connected to overlay networks too
by pushing down OpenFlow Data to the Virtualized Services Gateway (VSG) and
leaking routing information into the overlay network.

The Emergence of Software-defined Networking

[44]

An overview of the VSP platform protocol integration can be found in the
following figure:

Integrating OpenStack with the Nuage
VSP platform
Private data center networks can be very complex, so using vanilla OpenStack
neutron to meet all use cases may not provide all the features that are required. It
is important to note that the features in neutron are maturing very quickly with
every new OpenStack release, so neutron is likely as feature rich as dedicated SDN
controllers in the future.

Neutron lends itself to integration with SDN controllers by providing a
REST API extension, so SDN controllers can easily be used to extend the base
networking functions provided by neutron if required to provide a very rich
set of networking features.

Chapter 2

[45]

The use of SDN solutions have helped OpenStack to scale massively, as it moves the
networking aspect of OpenStack away from the centralized layer 3 agent and instead
requests are moved to the dedicated SDN controllers with distributed firewalling.

This means that one OpenStack cloud can potentially scale the amount of compute
instances that are supported horizontally, without having to worry about bottlenecks
or scaling issues associated with the current neutron network architecture.

OpenStack is one of the most popular private cloud solutions, and the Nuage VSP
platform integrates with OpenStack using the Nuage plug-in. The Nuage plugin is
installed on each of the Highly Available (HA) OpenStack controllers.

The Neutron ML2 and L3 agents are both switched off on the controllers in favor
of the Nuage plugin. The following image shows the architecture for OpenStack
neutrons SDN controller framework with SDN controllers communicating with
OpenStack neutron via REST API calls:

The VSD, which is the Nuage policy engine, integrates with OpenStack by setting up
a net partition that can be used to map one Nuage VSP to an OpenStack cloud and
communicates with neutron using REST API calls.

Multiple instances of OpenStack can be mapped to a single Nuage VSP via the use
of net partitions. Net partitions are a way of telling the Nuage VSP platform, which
OpenStack instance to map its subnets to and wait for VPort commands to be issued,
which signify that the OpenStack nova compute service, has provisioned a virtual
machine instance that needs to be governed by Nuage ACL policies.

The Emergence of Software-defined Networking

[46]

When Nuage VSP is integrated with OpenStack, OpenStack vendor installers
need to either support Nuage natively or the installer will need to be customized
slightly to install the Nuage plugin on OpenStack controllers. The Nuage version of
OpenvSwitch (VRS) also needs to be installed on each compute node (hypervisor)
that is deployed within an OpenStack cloud.

The Nuage plugin integrates with the OpenStack Controllers and KVM compute
using the following workflow:

When a neutron command is issued to OpenStack, the Nuage plugin uses REST
API calls to communicate with the Nuage VSD to say that a new network has been
created or a new VPort on that network has been created, this is possible due to
neutrons SDN controller pluggable REST API architecture.

The Nuage VSD policy engine then communicates with the VSC to push flow data
using XMPP. The VSC (SDN Controller) then administers flow data (OpenFlow)
to the Nuage VRS (Open vSwitch), and the Nuage VRS secures OpenStack virtual
machines or physical servers with the predefined firewall policies.

Firewall policies can either be OpenStack Security Groups or Nuage ACL rules
depending if OpenStack managed mode or Nuage VSD managed mode are selected.

Chapter 2

[47]

Nuage or OpenStack managed networks
The Nuage OpenStack plugin can be used in two modes of operation to manage
networks that are provisioned in OpenStack:

•	 Nuage VSD-managed mode
•	 OpenStack-managed mode

Nuage VSD-managed mode allows Nuage to become the master of network
provisioning; this allows Nuage VSP platform to provide a rich feature set to manage
networks within an OpenStack environment. Network functions are provisioned
directly via the VSD using the Nuage REST API by the GUI or direct API calls and
mapped one-to-one with OpenStack subnets.

The alternative mode of operation is the OpenStack-managed mode, which requires
no direct provisioning on VSD. All commands are issued via neutron; however,
functionality is limited to the commands that OpenStack neutron supports.

All networks that are created in Nuage are replicated in OpenStack in a one-to-one
mapping with the Nuage VSD being the master in VSD-managed mode, whereas
OpenStack neutron is the master of configuration in OpenStack-managed mode.

In OpenStack-managed mode, all ACL rules are governed by OpenStack Security
Groups, whereas in VSD-managed mode, ACL rules are held instead of the Nuage
VSD with security groups disabled.

Nuage integrates with OpenStack by setting up a net partition. Using net partitions,
one Nuage VSP Platform can be mapped to multiple instances of OpenStack. Net
partitions are a way of mapping an OpenStack cloud to a Nuage organization entity.

Using the Nuage VSP platform with an organization named Company, whenever
a subnet is created under the organization, it is subsequently assigned a unique
nuage_subnet_uuid on creation. In order to map the organization and Nuage
subnet to OpenStack neutron, the following command is issued:

neutron subnet-create "Subnet Application1" 10.102.144.0/24 --nuagenet
nuage_subnet_uuid --net-partition "Company" --name "Subnet Application1"

The Emergence of Software-defined Networking

[48]

Once a net partition has been established by the Nuage VSP Platform and
OpenStack, the firewall policies are secured at the compute host (hypervisor) using
the Nuage VRS. The following workflow is triggered when a new instance is created
on a Nuage-managed subnet:

1.	 An instance is added to an OpenStack network and subnet owned by the
Nuage VSP Platform.

2.	 A placeholder VPort is created (VM id, MAC) on VSD by the Nuage Plugin,
within the requested layer 3 domain.

3.	 Nova service creates the VM on the Hypervisor. This is detected by VRS
(VM id, MAC).

4.	 The VRS queries VSC, the VSC then queries the VSD in order to retrieve the
associated networking information from the placeholder VPort.

5.	 The VSD matches the VM id, MAC against the VPort it created and
associates VM with the correct network services.

6.	 The policy is downloaded from the VSD through the VSC to the VRS using
OpenFlow, and the required flows are dynamically created.

Chapter 2

[49]

The Nuage VSP software-defined object
model
As Nuage creates the overlay network in software, it needs to have a simple object
model to allow network operators to manage it. The Nuage VSP software-defined
object model provides a graphical hierarchy of the network meaning that the
structure of the overlay can be easily viewed and audited.

Object model overview
•	 Organization: This governs all Layer 3 domains.

•	 Layer 3 domain Template: A layer 3 domain template is required before
child layer 3 domains are created. The layer 3 domain template is used to
govern overarching default policies that will be propagated to all child layer
3 domains. If a layer 3 domain template is updated at template level, then the
update will be implemented on all layer 3 domains that have been created
underneath it immediately.

•	 Layer 3 domain: This can be used to segment different environments, so
users cannot hop from subnets deployed under a layer 3 Test domain to an
adjacent layer 3 Production domain.

The Emergence of Software-defined Networking

[50]

•	 Zones: A zone segments firewall policies at application level, so each
microservice application can have its own zone and associated Ingress
and Egress policy per layer 3 domain.

•	 Layer 3 Subnet: This is where VMs or bare metal servers that are deployed to.

In this example, we see Subnet Application1 and Subnet Application2,
as follows:

Chapter 2

[51]

The hierarchy in Nuage VSD is shown below:

•	 One organization has been created named Company.
•	 Two layer 3 domains named Test and Production have been created

underneath the Company.
•	 The Test layer 3 domain has a zone for Application1 and Application2 with

1 child subnet underneath the Application1 and Application2 zones.
•	 The Production layer 3 domain has a zone for Application1 and

Application2 with 1 child subnet underneath the Application1 only.
Application2 zone does not have a child subnet yet.

For security and compliance purposes, demonstrating to security auditors
segmentation between Development and Production environments is very
important. Frequently, Development environments do not have the same stringent
production controls applied to them. Production applications can be secured
using the convention of least privilege possible, to minimize access and reduce the
probability of a security breach.

The Emergence of Software-defined Networking

[52]

The Nuage VSP Platform can set up segregation between environments using its
layer 3 domain template construct. A domain template can be set up with a default
Deny All policy at Ingress and Egress level. This is given the highest priority of all
the policies and will explicitly drop all packets no matter the protocol for inbound
and outbound connections, unless explicitly allowed by the policy for that specific
application. The default Deny All is the bottom policy on the list of ACL rules
applied to an application.

The explicit drop on Egress Security Policy domain template is shown as the Bottom
policy as follows:

Chapter 2

[53]

The contents of the Egress Security Policy are shown with the highest possible
priority as follows:

The Emergence of Software-defined Networking

[54]

Likewise, the explicit drop on Ingress is applied to the domain template as the
Bottom policy:

Chapter 2

[55]

While the explicit drop on the Ingress Security Policy on the domain template is
shown as follows:

The default Ingress and Egress policies applied to the domain template Company L3
Domain Template are illustrated below, which shows the policy applied to all the
child layer 3 domains, in this instance, Production and Test.

The Emergence of Software-defined Networking

[56]

The domain template Company L3 Domain Template is shown to be linked to the
child layer 3 domains Production and Test showing the inherited Egress policy from
the domain template:

Likewise, the domain template Company L3 Domain Template is linked to the child
layer 3 domains Production and Test showing the inherited Ingress policy from the
domain template:

It is important to note that, as policies are pushed down to VRS using OpenFlow
that ACL rules for Ingress and Egress in Nuage work on the principles:

•	 Egress: This is a packet flowing from VRS to the subnet or zone
•	 Ingress: This is a packet flowing from the subnet or zone to the VRS

Chapter 2

[57]

As an example, an Egress ACL rule will specify that any Egress traffic coming from
VRS from port 80 will be forwarded to Subnet Application1:

In this example, an Ingress ACL rule will specify that any Ingress traffic can leave
Subnet Application1 on port 80 and will be forwarded to VRS:

If application owners work on the principle that their layer 3 subnet, where their
application is deployed on, is always specified in an ACL rule as either the source or
destination in their individual application policy, then ACL rules for an application
will only exist in that self-contained policy. If this concept is adhered to, it allows
ACL rules for each application to be encapsulated in separate policies, within a
layer 3 domain, which, in turn, means that auditing them is much simpler for
security teams. It also means that applications support least privilege, meaning only
necessary ports are opened so applications can communicate, with an explicit drop
applied to anything outside those rules.

The Emergence of Software-defined Networking

[58]

Two policies are shown for two applications, Application1 and Application2,
which have separate policies for Ingress and Egress, with the Default Ingress
Policy specifying the explicit drop all for any flows not explicitly allowed.

The Ingress Security Policies are shown here:

Chapter 2

[59]

The Egress Security Policies are shown here:

Nuage VSP Platform layer 3 domain templates allow a second level of segmentation
using zones, so traditionally networks were split into three zones, where applications
would be deployed in the following tiers:

•	 Frontend
•	 Business Logic
•	 Backend

The Emergence of Software-defined Networking

[60]

As microservice architectures have grown to prominence, each applications profile
doesn't always fit into these three broad profiles. Sometimes, applications can be both
a Frontend application and Business Logic too, so where would the microservice
application be placed in the traditional three-tiered structure?

Instead of the Frontend, Business Logic and Backend segregation policies that can
be applied at zone level, meaningful microsegmentation of applications is possible
between each subnet. So how does this translate to Nuage?

If an application wishes to talk to another application it will have an ACL rule that
specifies Subnet to Zone communication for east to west communication between
applications sitting on adjacent subnets in a layer 3 domain. Nuage allows this by
allowing applications to talk Subnet to Zone.

To allow this communication, Application1 could have an ACL policy to allow
Application2 zone to allow traffic to flow into the subnet on port 22 allowing east
to west communication, so no matter how many different subnets are used then
Application1 will always be allowed to communicate with any applications sitting
under the Application2 zone.

Chapter 2

[61]

In terms of security policies, this allows development and security teams to
understand which applications are communicating with each other and the
ports they are using by reviewing the application policy.

The Emergence of Software-defined Networking

[62]

How the Nuage VSP platform can support
greenfield and brownfield projects
Overlay networks are typically set up as new network (greenfield) sites, but a
completely new network in isolation is not useful, unless there is a planned big bang
migration of all applications, which means migrating every application from the
legacy network to the new network in a single migration.

If instead a staged application migration is chosen, where only a percentage of
applications are migrated to the network, then the new overlay network will
need to communicate with the legacy network and be required to operate in a
brownfield setup.

A brownfield setup normally means applications are migrated in stages to the new
platform, as opposed to all in one go, which builds confidence in the new network
and new technology associated with that network. When moving applications to the
new platform, it will typically involve performance testing the migrated applications
in the new network, prior to throttling live traffic away from the incumbent legacy
network to the migrated application in the new overlay network.

A major requirement for a staged migration is connectivity back to the legacy
network for application dependencies that are hosted there. This connectivity is
necessary so migrated applications can operate effectively.

The Nuage VSP Platform uses its Virtualized Service Gateway (VSG) to provide
the connectivity between the new overlay and legacy network. A pair of Nuage
VSGs are connected redundantly in virtual chassis mode which connect to interfaces
on routers sitting in the legacy network. VSG performs a route table lookup based
on the destination IP of a packet coming in on its VLAN from the attached router
interface; it then updates the destination MAC with the next hop address and
forwards the packet on the corresponding VXLAN segment. All packets are
routed from the legacy network to the VSG via an underlay network.

This bridges the new overlay network, and the legacy network with VXLAN
terminated on VSG.

The pair of active VSGs is shown below in Nuage VSD:

Chapter 2

[63]

The Nuage VSG allows communication with the legacy network by leaking routes
to the overlay network. Each VSG will receive and advertise IPv4 routes using a
BGP session, this BGP session will be established between VSG, VSC and leaf switch
when using a leaf spine topology using iBGP.

The VSG must advertise its local system IP to legacy routers in the legacy network
and all routes received from the native network will then be subsequently leaked
from the native network via the underlay network into selected layer 3 domains in
the overlay.

The setup required to leak routes in the Nuage VSP Platform is the creation of a
GRThubDomain layer 3 domain. In this example, host interfaces are connected
into the Frontend, Business Logic, and Backend routers in the legacy network:

The Nuage VSP platform then allows the newly created GRThubDomain to be
associated with the Production or Test layer 3 domains by associating a leaking
domain against them.

The Emergence of Software-defined Networking

[64]

In the following example, GRThubDomain is associated with the Production
layer 3 domain.

The leaking domain in the Nuage GUI is displayed using the following icon showing
a leaking domain named GRThubDomain:

The Production domain with an associated leaking domain is shown in the Nuage
GUI as follows:

The association of a leaking domain allows the Nuage VSP Platform to leak routes
into and from the legacy network through to the new overlay network, meaning
applications in the overlay network can communicate with applications in the legacy
network, so long as they have appropriate Ingress and Egress ACL policies specified.

The Test and Production layer 3 domains, as explained before, have a Deny All for
Ingress and Egress as part of the Company L3 Domain Template. So although all
routes are leaked into the overlay, they are dropped by the VRS unless explicitly
stated otherwise.

The Nuage VSP platform has the ability to apply ACL rules to the routes leaked
from the external legacy network by using a concept named Network Macros. In
the Nuage VSP Platform, a network macro is simply a fancy name for an external
network range.

If an application, Application3 in this instance, resides in the legacy network, and
its routing has already been exposed by the GRThubDomain leaking domain and
leaked into the Test layer 3 domain, then a network macro can be set up to describe
the range required and isolate connectivity to it using a Nuage ACL rule.

Chapter 2

[65]

In this instance, the network range 10.58.11.0/24 is where Application3 resides
is part of the Frontend range on the GRThubdomain that is leaked into the overlay
network. The Network Macros for Application3 as it would appear in Nuage is
shown below:

An Egress ACL policy can then be configured to allow Application1 to communicate
with Application3 by creating a Network Macros to a subnet ACL rule, which allows
Application3 Network Macros to connect to Subnet Application1 on port 8080.

The Egress Security Policy to allow communication between Application3 Network
Macros and Subnet Application1 on port 8080 is shown here:

The Emergence of Software-defined Networking

[66]

After creation, the ACL list is updated to show the new Network Macro ACL:

This allows the Nuage VSP to lock down policy and the overlay network to only
allow specific flow data from the legacy network in the same way it would control
ACL policies between subnet or zones that resided within the same layer 3 domain.
Network macros can also be used to route between multiple cloud technologies
as well as different data centers, so they are a very powerful way of connecting
networks and controlling policy between them.

Multiple network macros can be grouped together into a network macro group,
which allows multiple ranges to be controlled by one ACL rule. These are then
exploded out at the OpenFlow level on VRS at the hypervisor. Nuage currently
has a limit of 100 ACL rules per VPort in the 3.x release, so only 100 ACL rules can
currently be applied to a single instance (virtual machine), so it is important to be
careful when grouping Network Macros. This has been increased to 500 ACL rules
in the 4.x release of the Nuage platform.

An example of a network macro group can be shown below and then the Front End
Services Network Macro Group can be used in the Egress ACL rule as opposed to
specifying individual policies for Application3 and Application4:

Chapter 2

[67]

The Egress Security Policy to allow port 8080 connection between the Front End
Services Network Macro Group and Subnet Application1:

The Emergence of Software-defined Networking

[68]

The applied ACL implementing the Front End Services network macro can be
found here:

The Nuage VSP multicast support
The Nuage VSP Platform has the ability to route multicast between the following
Nuage VSD entities:

•	 Layer 2 and 3 domains
•	 Zones
•	 Subnets
•	 VPorts attached to VMs

Multicast can be routed into the overlay network, which is a unique feature of the
Nuage VSP platform. Multicast traffic is routed into the overlay network in Nuage
by configuring dedicated VLANs on the underlay layer 2 network, which are
attached to compute nodes. This allows the compute (hypervisors) on the underlay
network to use the dedicated VLANs, which are IP'd on a per rack basis, to transmit
and receive multicast traffic.

To route multicast traffic across the underlay, the Nuage VRS will duplicate the
multicast packets and leak it into the overlay network in a controlled fashion. This is
so the overlay network is not flooded with unnecessary multicast traffic, which can
cause performance implications to the overlay network if it was not controlled. This
makes the Nuage multicast setup highly scalable as it only directs multicast traffic to
where it needs to in the overlay network.

Chapter 2

[69]

The Nuage VSP uses a dedicated VLAN for multicast send and VLAN for multicast
receive on the compute nodes (hypervisor). Each of these VLANs can be configured
on each hypervisor in the event applications that have a multicast requirement.

Each of the hypervisors is allocated a VLAN and unique IP address for multicast
send and receive, depending on the rack the hypervisors are provisioned on, so they
use the associated switches.

Port Channel Maps are the entity used in Nuage VSD to leak multicast from the
underlay network to the overlay network. Port Channel Maps are only required if
multicast needs to be routed subnet to subnet in the overlay network. If multicast is
required in the same subnet, then a Port Channel Maps is not required and multicast
will work within an isolated layer 3 subnet without having to route the traffic via the
VLANs on the hypervisors.

In the following example, a Multicast Channel Map is used to create Multicast
Ranges for Application2, which broadcasts multicast. This will route multicast from
Subnet Application2, via the underlay VLAN on the hypervisor, to the Nuage VRS
and then flood it into Subnet Application1.

The Multicast Channel Maps icon is shown here:

The following scenario describes the workflow an application will go through to
route multicast traffic from one layer 3 subnet to another in the overlay.

The Emergence of Software-defined Networking

[70]

Application1 will be deployed under a layer 3 domain, under its own zone, in a /26
microsubnet and on that subnet two virtual machines will be attached to two VPorts.
Against a VPort in Nuage, a virtual machine can be set up as a sender or receiver of
multicast or both:

Application1 in this instance is the sender of multicast and wants to send a multicast
stream to Application2, which is deployed under a layer 3 domain, under its own
zone, in a /26 microsubnet, and on that subnet, one virtual machines will be attached
to one VPort.

So a Port Channel Map will need to be set up on Application1 by associating it with
each of the Application1 VPorts, which lets Nuage know that Application1 is the
multicast sender.

Application2 will have its VPort configured with a Port Channel Map setup, so it can
receive multicast.

When Application1s two virtual machines broadcast multicast traffic, Nuage now
knows to route the multicast traffic on the matching multicast range specified on the
Port Channel Map to the hypervisor that Application1 is deployed on.

Nuage will transmit multicast across the hypervisor layer 2 domain using the
sender VLAN.

Each of the receiver VLANs on each hypervisor's receiver IPs will then pick up the
transmission of multicast.

Chapter 2

[71]

If a Port Channel Map is specified on any of the virtual machines on the hypervisor,
matching the Multicast Ranges configured, which Application2 does, then the
Nuage VRS will duplicate the multicast packets, leaking them into the overlay
network to Application2.

This is how Nuage leaks multicast traffic to the overlay network, using the underlay
network and sender and receiver VLANs.

Summary
In this chapter, we covered some of the advanced networking features provided
by the Nuage VSP SDN solution and also touched upon some of the other SDN
solutions that are available on the market. Having read this chapter, you should now
be familiar with the Nuage SDN controller and understand the rich set of features an
SDN controller can bring to OpenStack and the private cloud.

Given the programmability SDN controllers, AWS, and OpenStack solutions bring,
we will now shift focus and look at the cultural changes that are necessary in
organizations to make the most of these fantastic technologies. Implementing new
technologies without changing operational models is not enough, people and process
are key to a successful DevOps model.

The role of the network engineer is undergoing its biggest evolution in years, so
businesses cannot simply implement new technology and expect faster delivery
without dealing with people and cultural issues. CTOs have a responsibility to set
their networking teams up for success by implementing DevOps transformations
that include network functions, and network teams also need to learn new skills
such as coding to push forward automation using grass root initiatives.

Useful links on Nuage Networks practical use cases are:
https://www.youtube.com/watch?v=_ZfFbhmiNYo

https://www.youtube.com/watch?v=aKa2idHhk94

https://www.youtube.com/watch?v=OjXII11hYwc

https://www.youtube.com/watch?v=_ZfFbhmiNYo
https://www.youtube.com/watch?v=aKa2idHhk94
https://www.youtube.com/watch?v=OjXII11hYwc

[73]

Bringing DevOps to Network
Operations

This chapter will switch the focus from technology to people and processes. The
DevOps initiative was initially about breaking down silos between development
and operations teams and changing companys' operational models. It will highlight
methods to unblock IT staff and allow them to work in a more productive fashion,
but these mindsets have since been extended to quality assurance testing, security,
and now network operations. This chapter will primarily focus on the evolving
role of the network engineer, which is changing like the operations engineer before
them, and the need for network engineers to learn new skills that will allow network
engineers to remain as valuable as they are today as the industry moves towards a
completely programmatically controlled operational model.

This chapter will look at two differing roles, that of the CTO / senior manager and
the engineer, discussing at length some of the initiatives that can be utilized to
facilitate the desired cultural changes that are required to create a successful DevOps
transformation for a whole organization or even just allow a single department to
improve their internal processes by automating everything they do.

In this chapter, the following topics will be covered:

•	 Initiating a change in behavior
•	 Top-down DevOps initiatives for networking teams
•	 Bottom-up DevOps initiatives for networking teams

Bringing DevOps to Network Operations

[74]

Initiating a change in behavior
The networking OSI model contains seven layers, but it is widely suggested that the
OSI model has an additional eighth layer named the user layer, which governs how
end users integrate and interact with the network. People are undoubtedly a harder
beast to master and manage than technology, so there is no one size fits all solution to
the vast amount of people issues that exist. The seven layers of OSI are shown in the
following image:

Initiating cultural change and changes in behavior is the most difficult task an
organization will face, and it won’t occur overnight. To change behavior there must
first be obvious business benefits. It is important to first outline the benefits that these
cultural changes will bring to an organization, which will enable managers or change
agents to make business justifications to implement the required changes.

Cultural change and dealing with people and processes is notoriously hard, so
divorcing the tools and dealing with people and processes is paramount to the
success of any DevOps initiative or project. Cultural change needs to be carefully
planned and become a company initiative. In a recent study by Gartner, it was
shown that selecting the wrong tooling was not the main reason that cloud projects
were a failure, instead the top reason was failure to change the operational model:

Chapter 3

[75]

Reasons to implement DevOps
When implementing DevOps, some myths are often perpetuated, such as DevOps
only works for start-ups, it won’t bring any value to a particular team, or that it is
simply a buzz word and a fad.

The quantifiable benefits of DevOps initiatives are undeniable when done correctly.
Some of these benefits include improvements to the following:

•	 The velocity of change
•	 Mean time to resolve
•	 Improved uptime
•	 Increased number of deployments
•	 Cross-skilling between teams
•	 The removal of the bus factor of one

Any team in the IT industry would benefit from these improvements, so really
teams can’t afford to not adopt DevOps, as it will undoubtedly improve their
business functions.

By implementing a DevOps initiative, it promotes repeatability, measurement, and
automation. Implementing automation naturally improves the velocity of change,
increases the number of deployments a team can do in any given day and improves
time to market. Automation of the deployment process allows teams to push fixes
through to production quickly as well as allowing an organization to push new
products and features to market.

Bringing DevOps to Network Operations

[76]

A byproduct of automation is that the mean time to resolve will also become quicker
for infrastructure issues. If infrastructure or network changes are automated, they
can be applied much more efficiently than if they were carried out manually. Manual
changes depend on the velocity of the engineer implementing the change rather than
an automated script that can be measured more accurately.

Implementing DevOps also means measuring and monitoring efficiently too, so
having effective monitoring is crucial on all parts of infrastructure and networking,
as it means the pace in which root cause analysis can be carried out improves.
Having effective monitoring helps to facilitate the process of mean time to resolve,
so when a production issue occurs, the source of the issue can be found quicker than
numerous engineers logging onto consoles and servers trying to debug issues.

Instead a well-implemented monitoring system can provide a quick notification to
localize the source of the issue, silencing any resultant alarms that result from the
initial root cause, allowing the issue to be highlighted and fixed efficiently.

The monitoring then hands over to the repeatable automation, which can then push
out the localized fix to production. This process provides a highly accurate feedback
loop, where processes will improve daily. If alerts are missed, they will ideally be
built into the monitoring system over time as part of the incident post-mortem.

Effective monitoring and automation results in quicker mean time to resolve, which
leads to happier customers, and results in improved uptime of products. Utilizing
automation and effective monitoring also means that all members of a team have
access to see how processes work and how fixes and new features are pushed out.

This will mean less of a reliance on key individuals removing the bus factor of one
where a key engineer needs to do the majority of tasks in the team as he is the most
highly skilled individual and has all of the system knowledge stored in his head.

Using a DevOps model means that the very highly skilled engineer can instead use
their talents to help cross skill other team members and create effective monitoring
that can help any team member carry out the root cause analysis they normally do
manually. This builds the talented engineer's deep knowledge into the monitoring
system, so the monitoring system as opposed to the talented engineer becomes
the go-to point of reference when an issue first occurs, or ideally the monitoring
system becomes the source of truth that alerts on events to prevent customer facing
issues. To improve cross-skilling, the talented engineer should ideally help write
automation too, so they are not the only member of the team that can carry out
specific tasks.

Chapter 3

[77]

Reasons to implement DevOps for networking
So how do some of those DevOps benefits apply to traditional networking
teams? Some of the common complaints with siloed networking teams today
are the following:

•	 Reactive
•	 Slow, often using ticketing systems to collaborate
•	 Manual processes carried out using admin terminals
•	 Lack of preproduction testing
•	 Manual mistakes leading to network outages
•	 Constantly in firefighting mode
•	 Lack of automation in daily processes

Network teams like infrastructure teams before them are often used to working
in siloed teams, interacting with other teams in large organizations via ticketing
systems or using suboptimal processes. This is not a streamlined or optimized way of
working, it is scenarios such as this which led to the DevOps initiative being started,
that sought to break down barriers between Development and Operations staff, but its
remit has since widened.

Networking does not seem to have been initially included in this DevOps movement
yet, but software delivery can only operate as fast as the slowest component. The
slowest component will eventually become the bottleneck or blocker of the entire
delivery process. That slowest component often becomes the star engineer in a siloed
team that can’t process enough tickets in a day manually to keep up with demand,
thus becoming the bus factor of one. If that engineer takes a holiday or has a sick
day, then work is blocked, the company becomes too reliant and cannot function
efficiently without them.

If a team is not operating in the same way as the rest of the business, then all other
departments will be slowed down as the siloed department is not agile enough. Put
simply, the reason networking teams exist in most companies is to provide a service
to development teams. Development teams require networking to be deployed,
so they can test product changes and also deploy products to production, once
deployed to production the business can start making money from those products.

Bringing DevOps to Network Operations

[78]

Networking changes to ACL policies, load balancing rules, and provisioning of new
subnets for new applications can no longer be deemed a success if they take days,
months or even weeks. Networking has a direct impact on the velocity of change, mean
time to resolve, uptime, as well as the number of deployments, which are four of the key
performance indicators of a successful DevOps initiative. So networking needs to
be included in a DevOps model by companies, otherwise all of these quantifiable
benefits will become constrained.

Given the rapid way AWS, Microsoft Azure, OpenStack, and Software-defined
Networking (SDN) can be used to provision network functions in the private
and public cloud, it is no longer acceptable for network teams to not adapt their
operational processes and learn new skills. But the caveat is that the evolution of
networking has been quick, and they need the support and time to do this.

If a cloud solution is implemented and the operational model does not change,
then no real quantifiable benefits will be felt by the organization. Cloud projects
traditionally do not fail because of technology, cloud projects fail because of the
incumbent operational models that hinder them from being a success. There is zero
value to be had from building a brand new OpenStack private cloud, with its open
set of extensible APIs to manage compute, networking, and storage if a company
doesn’t change its operational model and allow end users to use those APIs to self-
service their requests.

If network engineers are still using the GUI to point and click and cut and paste
then this doesn’t bring any real business value as the network engineer that cuts
and pastes the slowest is the bottleneck. The company may as well stick with their
current technology and processes as implementing a private cloud solution with
manual processes will not result in speeding up time to market or mean time to
recover from failure.

However, cloud should not be used as an excuse to deride your internal network
staff, as incumbent operational models in companies are typically not designed or
set up by current staff, they are normally inherited. Moving to public cloud doesn’t
solve the problem of the operational agility of a company’s network team, it is a
quick fix and bandage that disguises the deeper rooted cultural challenges that exist.

However, smarter ways of working allied with use of automation, measurement,
and monitoring can help network teams refine their internal processes and facilitate
the developers and operations staff that they work with daily. Cultural change can
be initiated in two different ways, grass roots bottom-up initiatives coming from
engineers, or top-down management initiatives.

Chapter 3

[79]

Top-down DevOps initiatives for
networking teams
Top-down DevOps initiatives are when a CTO, director, or senior manager have to
buy in from the company to make changes to the operational model. These changes
are required as the incumbent operational model is deemed suboptimal and not
set up to deliver software at the speed of competitors, which inherently delays new
products or crucial fixes from being delivered to market.

When doing DevOps transformations from a top-down management level, it is
imperative that some ground work is done with the teams involved, if large changes
are going to be made to the operational model, it can often cause unrest or stress to
staff on the ground.

When implementing operational changes, upper management need to have the buy
in of the people on the ground as they will operate within that model daily. Having
teams buy in is a very important aspect; otherwise, the company will end up with an
unhappy workforce, which will mean the best staff will ultimately leave.

It is very important that upper management engage staff when implementing new
operational processes and deal with any concerns transparently from the outset,
as opposed to going for an offsite management meeting and coming back with an
enforced plan, which is all too common theme.

Management should survey the teams to understand how they operate on a daily
basis, what they like about the current processes and where their frustrations lie.
The biggest impediment to changing an operational model is misunderstanding the
current operational model. All initiatives should ideally be led and not enforced. So
let’s focus on some specific top-down initiatives that could be used to help.

Analyzing successful teams
One approach would be for the management to look at other teams within the
organization whose processes are working well and are delivering in an incremental
agile fashion, if no other team in the organization is working in this fashion, then
reach out to other companies.

Bringing DevOps to Network Operations

[80]

Ask if it would be possible to go and look at the way another company operates for a
day. Most companies will happily use successful projects as reference cases to public
audiences at conferences or meet-ups, as they enjoy showing their achievements, so
it shouldn’t be difficult to seek out companies that have overcome similar cultural
challenges. It is good to attend some DevOps conferences and look at who is
speaking, so approach the speakers and they will undoubtedly be happy to help.

Management teams should initially book a meeting with the high-performing team
and do a question and answer session focusing on the following points, if it is an
external vendor then an introduction phone call can suffice.

Some important questions to ask in the initial meeting are the following:

•	 Which processes normally work well?
•	 What tools do they actually use on a daily basis?
•	 How is work assigned?
•	 How do they track work?
•	 What is the team structure?
•	 How do other teams make requests to the team?
•	 How is work prioritized?
•	 How do they deal with interruptions?
•	 How are meetings structured?

It is important not to reinvent the wheel, if a team in the organization already
has a proven template that works well, then that team could also be invaluable
in helping facilitate cultural change within the networks team. It will be slightly
more challenging if focus is put on an external team as the evangelist as it opens up
excuses such as it being easier for them because of x, y, and z in their company.

A good strategy, when utilizing a local team in the organization as the evangelist, is
to embed a network engineer in that team for a few weeks and have them observe
and give feedback how the other teams operate and document their findings. This is
imperative, so the network engineers on the ground understand the processes.

Flexibility is also important, as only some of the successful team’s processes may
be applicable to a network team, so don’t expect two teams to work identically. The
sum of parts and personal individuals in the team really do mean that every team
is different, so focus on goals rather than the implementation of strict processes. If
teams achieve the same outcomes in slightly different ways, then as long as work can
be tracked and is visible to management, it shouldn’t be an issue as long as it can be
easily reported on.

Chapter 3

[81]

Make sure pace is prioritized, select specific change agents to make sure teams are
comfortable with new processes, so empower change agents in the network team to
choose how they want to work by engaging with the team by creating new processes
and also put them in charge of eventual tool selection. However, before selecting any
tooling, it is important to start with process and agree on the new operational model
to prevent tooling driving processes, this is a common mistake in IT.

Mapping out activity diagrams
A good piece of advice is to use an activity diagram as a visual aid to understand
how a team’s interactions work and where they can be improved.

A typical development activity diagram, with manual hand-off to a quality assurance
team is shown here:

Bringing DevOps to Network Operations

[82]

Utilizing activity diagrams as a visual aid is important as it highlights suboptimal
business process flows. In the example, we see a development team’s activity
diagram. This process is suboptimal as it doesn’t include the quality assurance team
in the Test locally and Peer review phases. Instead it has a formalized QA hand-off
phase, which is very late in the development cycle, and a suboptimal way of working
as it promotes a development and QA silo, which is a DevOps anti-pattern.

A better approach would be to have QA engineers work on creating test tasks and
creating automated tests, whereas the development team works on coding tasks.
This would allow the development Peer review process to have a QA engineers’
review and test developer code earlier in the development lifecycle and make sure
that every piece of code written has appropriate test coverage before the code is
checked in.

Another shortcoming in the process is that it does not cater for software bugs found
by the quality assurance team or in production by customers, so mapping these
streams of work into the activity diagram would also be useful to show all potential
feedback loops.

If a feedback loop is missed in the overall activity diagram, then it can cause a
breakdown in the process flow, so it is important to capture all permutations in the
overarching flow that could occur before mapping tooling to facilitate the process.

Each team should look at ways of shortening interactions to aid mean time to
resolve and improve the velocity of change at which work can flow through the
overall process.

Management should dedicate some time in their schedule with the development,
infrastructure, networking, and test teams and map out what they believe the team
processes to be in their individual teams. Keep it high level, this should represent a
simple activity swim-lane utilizing the start point where they accept work and the
process the team goes through to deliver that work.

Once each team has mapped out the initial approach, they should focus on
optimizing it and removing the parts of the process they dislike and discuss ways
the process could be improved as a team. It may take many iterations before this is
mapped out effectively, so don’t rush this process, it should be used as a learning
experience for each team.

The finalized activity diagram will normally include management and technical
functions combined in an optimized way to show the overall process flow. Try not to
bother using Business Process Management (BPM) software at this stage; a simple
white board will suffice to keep it simple and informal.

Chapter 3

[83]

It is a good practice to utilize two layers of an activity diagram, so the first layer
can be a box that simply says Peer review, which then references a nested activity
diagram outlining what the team's peer review process is. Both need refined but the
nested tier of business processes should be dictated by the individual teams as these
are specific to their needs, so it’s important to give teams the flexibility they need at
this level.

It is important to split the two tiers out; otherwise, the overall top layer of the activity
diagram will be too complex to extract any real value from, so try and minimize
the complexity at the top layer, as this will need to be integrated with other teams'
processes. The activity doesn’t need to contain team-specific details such as how an
internal team’s Peer review process operates as this will always be subjective to that
team; this should be included but will be a nested layer activity that won’t be shared.

Another team should be able to look at a team’s top layer activity diagram and
understand the process without explanation. It can sometimes be useful to first map
out a high-performing teams' top layer activity diagram to show how an integrated
joined-up business process should look.

This will help teams that struggle a bit more with these concepts and allow them to
use that team’s activity diagram as a guide. This can be used as a point of reference
and show how these teams have solved their cross-team interaction issues and
facilitated one or more teams interacting without friction. The main aim of this
exercise is to join up business processes, so they are not siloed between teams, so the
planning and execution of work is as integrated as possible for joined-up initiatives.

Once each team has completed their individual activity diagram and optimized it
to the way the team wants, the second phase of the process can begin. This involves
layering each team’s top layer of their activity diagrams together to create a
joined-up process.

Teams should use this layering exercise as an excuse to talk about suboptimal
processes and how the overall business process should look end to end. Utilize this
session to remove perceived bottlenecks between teams, completely ignoring existing
tools and the constraints of current tools, this whole exercise should be focusing on
process not tooling.

A good example of a suboptimum process flow that is constrained by tooling would
be a stage on a top layer activity diagram that says raise ticket with ticketing system.
This should be broken down so work is people focused, what does the person
requesting the change actually require?

Bringing DevOps to Network Operations

[84]

A Developers day job involves writing code and building great features and
products, so if a new feature needs a network change, then networking should be
treated as part of that feature change. So the time taken for the network changes
needs to be catered for as part of the planning and estimation for that feature rather
than a ticketed request that will hinder the velocity of change when it is done
reactively as an afterthought.

This is normally a very successful exercise when engagement is good, it is good
to utilize a senior engineer and manager from each team in the combined activity
diagram layering exercise with more junior engineers involved in each team
included in the team-specific activity diagram exercise.

Changing the network team’s operational
model
The network team’s operational model at the end of the activity diagram exercise
should ideally be fully integrated with the rest of the business. Once the new
operational model has been agreed with all teams, it is time to implement it.

It is important to note that because the teams on the ground created the operational
model and joined-up activity diagram, it should be signed off by all parties as
the new business process. So this removes the issue of an enforced model from
management as those using it have been involved in creating it. The operational
model can be iterated and improved over time, but interactions shouldn’t change
greatly although new interaction points may be added that have been initially
missed. A master copy of the business process can then be stored and updated, so
anyone new joining the company knows exactly how to interact with other teams.

In the short term, it may seem the new approach is slowing down development
estimates as automation is not in place for network functions, so estimation for
developer features becomes higher when they require network changes.

This is often just a truer reflection of reality, as estimations didn’t take into account
network changes and then they became blockers as they were tickets, but once
reported, it can be optimized and improved over time.

Once the overall activity diagram has been merged together and agreed with all
the teams, it is important to remember if the processes are properly optimized,
there should not be pages and pages of high-level operations on the diagram. If the
interactions are too verbose, it will take any change hours and hours to traverse each
of the steps on the activity diagram.

Chapter 3

[85]

The activity diagram mentioned later shows a joined-up business process, where
work is defined from a single roadmap producing user stories for all teams. New
user stories, which are units of work, are then estimated out by cross-functional
teams, including developers, infrastructure, quality assurance, and network
engineers. Each team will review the user story and work out which cross-functional
tasks are involved to deliver the feature.

The user story then becomes part of the sprint with the cross-functional teams
working on the user story together making sure that it has everything it needs to
work prior to the check-in. After Peer review, the feature or change is then handed
off to the automated processes to deliver the code, infrastructure, and network
changes to production.

The checked-in feature then flows through unit testing, quality assurance,
integration, and performance testing quality gates, which will include any new
tests that were written by the quality assurance team before check-in. Once every
stage is passed, the automation is invoked by a button press to push the changes to
production. Each environment has the same network changes applied, so network
changes are made first on test environments before production.

This relies on treating networking as code, meaning automated network processes
need to be created so the network team can be as agile as the developers.

Bringing DevOps to Network Operations

[86]

Once the agreed operational model is mapped out only then should the DevOps
transformation begin. This will involve selecting the best of breed tools at every
stage to deliver the desired outcome with the focus on the following benefits:

•	 The velocity of change
•	 Mean time to resolve
•	 Improved uptime
•	 Increased number of deployments
•	 Cross-skilling between teams
•	 The removal of the bus factor of one

All business processes will be different for each company, so it is important to
engage each department and have the buy-in from all managers to make this
activity a success.

Changing the network team's behavior
Once a new operational model has been established in the business, it is important to
help prevent the network team from becoming the bottleneck in a DevOps-focused
Continuous Delivery model.

Traditionally, network engineers will be used to operating command lines and
logging into admin consoles on network devices to make changes. Infrastructure
engineers adjusted to automation as they already had scripting experience in bash
and PowerShell coupled with a firm grounding in Linux or Windows operating
systems, so transitioning to configuration management tooling was not a huge step.

However, it may be more difficult to persuade network engineers to make that same
transition initially. Moving network engineers towards coding against APIs and
adopting configuration management tools may initially appear daunting, as it is a
higher barrier to entry, but having an experienced automation engineer on hand can
help network engineers make this transition.

It is important to be patient, so try to change this behavior gradually by setting some
automation initiatives for the network team in their objectives. This will encourage
the correct behavior and try and incentivize it too. It may be useful to start off
automation initiatives by offering training or purchasing particular coding
books for teams.

Chapter 3

[87]

It may also be useful to hold an initial automation hack day; this will give network
engineers a day away from their day jobs and time to attempt to automate a small
process, which is repeated everyday by network engineers. If possible, make this a
mandatory exercise, so that the engineers have to participate and make other teams
available to cover for the network team, so they aren’t distracted. This is a good way
of seeing which members of the network team may be open to evangelizing DevOps
and automation. If any particular individual stands out, then work with them to
help push automation initiatives forward to the rest of the team by making them the
champion for process automation.

Establishing an internal DevOps meet-up where teams present back their automation
achievements is also a good way of promoting automation in network teams and
this keeps the momentum going. Encourage each team across the business to present
back interesting things they have achieved each quarter and incentivize this too by
allowing each team time off from their day job to attend if they participate. This
leads to a sense of community and shows teams they are part of a bigger movement
that is bringing real cost benefits to the business. This also helps to focus teams on
the common goal of making the company better and breaks down barriers between
teams in the process.

One approach that should be avoided at all costs is having other teams write all
the network automation for the network team. Ideally, it should be the networking
team that evolves and adopts automation, so giving the network team a sense of
ownership over the network automation is very important. This though requires full
buy-in from networking teams and discipline not to revert back to manual tasks at
any point even if issues occur.

To ease the transition, offer to put an automation engineer into the network team
from the infrastructure or developments teams, but this should only be a temporary
measure. It is important to select an automation engineer that is respected by the
network team and knowledgeable in networking, as no one should ever attempt to
automate network processes that they cannot operate by hand, so having someone
well-versed in networking to help with network automation is crucial, as they will
be training the network team so have to be respected. If an automation engineer
is assigned to the network team and isn’t knowledgeable or respected, then the
initiative will likely fail, so choose wisely.

It is important to accept at an early stage that this transition towards DevOps and
automation may not be for everyone, so not every network engineer will be able
to make the journey. It is all about the network team seizing the opportunity and
showing initiative and willingness to pick up and learn new skills. Disruptive or
negative behavior to new automation initiatives should be stamped out early on
as it may have a bad influence on the network team.

Bringing DevOps to Network Operations

[88]

It is fine to have for people to have a cynical skepticism at first, but not attempting to
change or build new skills shouldn’t be tolerated, as it will disrupt the team dynamic
and this should be monitored so it doesn’t cause automation initiatives to fail or stall,
just because individuals are proving to be blockers or being disruptive.

Every organization has its own unique culture and a company’s rate of change
will be subject to cultural uptake of the new processes and ways of working. When
initiating cultural change, change agents are necessary and can come from internal
IT staff or external sources depending on the aptitude and appetite of the staff to
change. Every change project is different, but it is important that it has the correct
individuals involved to make it a success along with the correct management
sponsorship and backing.

Bottom-up DevOps initiatives for
networking teams
Bottom-up DevOps initiatives are when an engineer, team leads, or lower
management don’t necessarily have buy-in from the company to make changes to
the operational model. However, they realize that although changes can’t be made to
the overall incumbent operational model, they can try and facilitate positive changes
using DevOps philosophies within their team that can help the team perform better
and make their productivity more efficient.

When implementing DevOps initiatives from a bottom-up initiative, it is much more
difficult and challenging at times as some individuals or teams may not be willing to
change the way they work and operate as they don’t have to. But it is important not
to become disheartened and do the best possible job for the business.

It is still possible to eventually convince upper management to implement a
DevOps initiative using grass roots initiatives to prove the process brings real
business benefits.

Evangelizing DevOps in the networking team
Try and stay positive at all times, working on a bottom-up initiative can be
exhausting at times, but it is important to roll with the punches and not take things
too personally. Always remain positive and try to focus on evangelizing the benefits
associated with DevOps processes and positive behavior first within your own team.
The first challenge is to convince your own team of the merits of adopting a DevOps
approach before even attempting to convince other teams in the business.

Chapter 3

[89]

A good way of doing this is by showing the benefits that the DevOps approach has
made to other companies, such as Google, Facebook, and Etsy, focusing on what
they have done in the networking space. A pushback from individuals may be the
fact that these companies are unicorns and DevOps has only worked for companies
for this reason, so be prepared to be challenged. Seek out initiatives that have been
implemented by these companies that the networking team could adopt and are
actually applicable to your company.

In order to facilitate an environment of change, work out what your colleagues'
drivers are, what motivates them? Try tailoring the sell to individual's motivations,
the sell to an engineer or manager may be completely different. An engineer on the
ground may be motivated by the following:

•	 Doing more interesting work
•	 Developing skills and experience
•	 Helping automate menial daily tasks
•	 Learning sought-after configuration management skills
•	 Understanding the development lifecycle
•	 Learning to code

A manager on the other hand will probably be more motivated by offering to
measure KPIs that make his team look better such as:

•	 Time taken to implement changes
•	 Mean time to resolve failures
•	 Improved uptime of the network

Another way to promote engagement is to invite your networking team to DevOps
meet-ups arranged by forward-thinking networking vendors. They may be amazed
that most networking and load balancing vendors are now actively promoting
automation and DevOps and not yet be aware of this. Some of the new innovations
in this space may be enough to change their opinions and make them interested in
picking up some of the new approaches, so they can keep pace with the industry.

Bringing DevOps to Network Operations

[90]

Seeking sponsorship from a respected
manager or engineer
After making the network team aware of the DevOps initiatives, it is important
to take this to the next stage. Seek out a respected manager or senior engineer in
the networking team that may be open to trying out DevOps and automation.
It is important to sell this person the dream, state how you are passionate about
implementing some changes to help the team, and that you are keen to utilize some
proven best practices that have worked well for other successful companies.

It is important to be humble, try not to rant or spew generalized DevOps jargon to
your peers, which can be very off-putting. Always make reasonable arguments and
justify them while avoiding to make sweeping statements or generalizations. Try
not to appear to be trying to undermine the manager or senior engineer, instead
ask for their help to achieve the goal by seeking their approval to back the initiative
or idea. A charm offensive may be necessary at this stage to convince the manager
or engineer that it’s a good idea but gradually building up to the request can help
otherwise it may appear insincere if the request comes out the blue. Potentially
analyze the situation over lunch or drinks and gauge if it is something they would be
interested in, there is little point trying to convince people that are stubborn as they
probably will not budge unless the initiative comes from above.

Once you have found the courage to broach the subject, it is now time to put forward
numerous suggestions on how the team could work differently with the help of a
mediator that could take the form of a project manager. Ask for the opportunity to
try this out on a small scale and offer to lead the initiative and ask for their support
and backing. It is likely that the manager or senior engineer will be impressed at
your initiative and allow you to run with the idea, but they may choose the initiative
you implement. So, never suggest anything you can’t achieve, you may only get one
opportunity at this so it is important to make a good impression.

Try and focus on a small task to start with; that’s typically a pain point, and attempt
to automate it. Anyone can write an automation script, but try and make the
automation process easy to use, find what the team likes in the current process, and
try and incorporate aspects of it. For example, if they often see the output from a
command line displayed in a particular way, write the automation script so that it
still displays the same output, so the process is not completely alien to them.

Chapter 3

[91]

Try not to hardcode values into scripts and extract them into a configuration
files to make the automation more flexible, so it could potentially be used again in
different ways. By showing engineers the flexibility of automation, it will encourage
them to use it more, show others in the teams how you wrote the automation and
ways they could adapt it to apply it to other activities. If this is done wisely, then
automation will be adopted by enthusiastic members of the team, and you will gain
enough momentum to impress the sponsor enough to take it forward onto more
complex tasks.

Automating a complex problem with the
networking team
The next stage of the process after building confidence by automating small
repeatable tasks is to take on a more complex problem; this can be used to
cement the use of automation within the networking team going forward.

This part of the process is about empowering others to take charge, and lead
automation initiatives themselves in the future, so will be more time-consuming.
It is imperative that the more difficult to work with engineers that may have been
deliberately avoided while building out the initial automation are involved this time.

These engineers more than likely have not been involved in automation at all at
this stage. This probably means the most certified person in the team and alpha of
the team, nobody said it was going to be easy, but it will be worth it in the long run
convincing the biggest skeptics of the merits of DevOps and automation. At this
stage, automation within the network team should have enough credibility and
momentum to broach the subject citing successful use cases.

It’s easier to involve all difficult individuals in the process rather than presenting
ideas back to them at the end of the process. Difficult senior engineers or managers
are less likely to shoot down your ideas in front of your peers if they are involved in
the creation of the process and have contributed in some way.

Try and be respectful, even if you do not agree with their viewpoints, but don’t
back down if you believe that you are correct, or give up. Make arguments fact
based and non-emotive, write down pros and cons, and document any concerns
without ignoring them, you have to be willing to compromise but not to the point
of devaluing the solution.

There may actually be genuine risks involved that need addressed, so valid
points should not be glossed over or ignored. Where possible seek backup from
your sponsor if you are not sure on some of the points or feel individuals are
being unreasonable.

Bringing DevOps to Network Operations

[92]

When implementing the complex automation task work as a team, not as an
individual, this is a learning experience for others as well as yourself. Try and teach
the network team a configuration management tool, they may just be scared try out
new things, so go with a gentle approach. Potentially stop at times to try out some
online tutorials to familiarize everyone with the tool and try out various approaches
to solve problems in the easiest way possible.

Try and show the network engineers how easy it is to use configuration management
tools and the benefits. Don’t use complicated configuration management tools as it
may put them off. The majority of network engineers can’t currently code, something
that will potentially change in the coming years. As stated before, infrastructure
engineers at least had a grounding in bash or PowerShell to help get started, so pick
tooling that they like and give them options. Try not to enforce tools they are not
comfortable with. When utilizing automation, one of the key concerns for network
engineers is peer review as they have a natural distrust that the automation has
worked. Try and build in gated processes to address these concerns, automation
doesn’t mean no peer review so create a lightweight process to help. Make the
automation easy to review by utilizing source control to show diffs and educate
the network engineers on how to do this.

Coding can be a scary prospect initially, so propose to do some team exercises each
week on a coding or configuration management task. Work on it as a team. This
makes it less threatening, and it is important to listen to feedback. If the consensus
is that something isn’t working well or isn’t of benefit, then look at alternate ways
to achieve the same goal that works for the whole team. Before releasing any
new automated process, test it in the preproduction environment, alongside an
experienced engineer and have them peer review it, and try to make it fail against
numerous test cases. There is only one opportunity to make a first impression,
with a new process, so make sure it is a successful one.

Try and set up knowledge-sharing sessions between the team to discuss the
automation and make sure everyone knows how to do operations manually too, so
they can easily debug any future issues or extend or amend the automation. Make
sure that output and logging is clear to all users as they will all need to support the
automation when it is used in production.

Chapter 3

[93]

Summary
In this chapter, we covered practical initiatives, which when combined, will allow IT
staff to implement successful DevOps models in their organization. Rather than just
focusing on departmental issues, it has promoted using a set of practical strategies to
change the day-to-day operational models that constrain teams. It also focuses on the
need for network engineers to learn new skills and techniques in order to make the
most of a new operational model and not become the bottleneck for delivery.

This chapter has provided practical real-world examples that could help senior
managers and engineers to improve their own companies, emphasizing collaboration
between teams and showing that networking departments is now required to
automate all network operations to deliver at the pace expected by businesses.

Key takeaways from this chapter are that DevOps is not just about development and
operations staff it can be applied to network teams. It is important to understand
that before starting a DevOps initiative, take the time to analyze successful teams
or companies and focus on what made them successful, but senior management
sponsorship is the key to creating a successful DevOps model.

Your own company's model will not identically mirror other companies, so try not to
copy like for like. Adapt the model so that it works in your own organization, allow
teams to create their own processes, but don’t dictate processes. Also, allow change
agents to initiate changes that teams are comfortable with.

Try to automate all operational work, start small, and build up to larger, more
complex problems once the team is comfortable with new ways of working. Always
try and remember that successful change will not happen overnight. It will only
work through a model of continuous improvement.

In the following chapters, we will look at ways of applying automation to
networking and concentrate on configuration management tools such as Ansible.
These configuration management tools can be used to increase the pace that network
engineers can implement changes as well as making sure all network changes that
are made are done in the same way and are less error-prone.

Useful links on DevOps are as follows:
https://www.youtube.com/watch?v=TdAmAj3eaFI

https://www.youtube.com/watch?v=gqmuVHw-hQw

https://www.youtube.com/watch?v=TdAmAj3eaFI
https://www.youtube.com/watch?v=gqmuVHw-hQw

[95]

Configuring Network Devices
Using Ansible

This chapter will focus on some of the most popular networking vendors in the
market today, namely Cisco, Juniper, and Arista, and look at how each of these
market leading vendors have developed their own proprietary operating system to
control network operations. The aim of this book is not to discuss which network
vendor's solution is better, but instead look at ways network operators can utilize
configuration management tooling today to manage network devices, now that
most network vendors have created APIs and SDKs to programmatically control
the network.

Once the basics of each operating system have been established, we will then shift
focus to the hugely popular open source configuration management tool from Red
Hat named Ansible (https://www.ansible.com/).

We will look at ways it can be used to configure network devices programmatically
and assist with network operations. This chapter will show practical configuration
management processes that can be used to manage network devices.

In this chapter, the following topics will be covered:

•	 Network vendors' operating systems
•	 Introduction to Ansible
•	 Ansible modules currently available for network automation
•	 Configuration management processes to manage network devices

https://www.ansible.com/

Configuring Network Devices Using Ansible

[96]

Network vendors' operating systems
Market leading networking vendors, such as Cisco, Juniper, and Arista, have all
developed their own operating systems that allow network operators to issue a
series of commands to network devices via a command-line interface (CLI).

Each vendor's CLI is run from their bespoke operating systems:

•	 Cisco Ios and Nxos
•	 Juniper Junos
•	 Arista Eos

All of these operating systems have meant that it has become easier to
programmatically control switches, routers, and security devices provided
by these vendors, as they seek to simplify operating network devices.

The rise of DevOps in industry has also meant that it is no longer acceptable to not
provide programmatic APIs or SDK to aid automation, with networking vendors
now integrating with configuration management tooling, such as Puppet, Chef,
Ansible, and Salt, to plug into DevOps tool chains.

Cisco Ios and Nxos operating system
The Cisco IOS operating system when released was the first of its kind, providing
a set of command lines that network operators could use to mutate the state of the
network. However, it still had its challenges; it had a monolithic architecture, which
meant that all processes shared the same memory space, with no protection between
parallel processes, so it didn't align itself well to parallel updates, but at the time
it was the clear market leader. This changed network operations and meant that
network engineers would each individually log onto network switches and routers
to make updates using its fully featured CLI.

At the time, this greatly reduced the complexity of network operations, and Cisco
standardized the way the networking industry carried out network operations in
a data center. Network operators would log onto appliances and run an industry
standard series of command lines to make changes to routers or switches, and Cisco
ran certification programs to teach administrators how to operate the equipment and
learn all the commands.

Today with efficiency and cost reductions key to businesses surviving and a shift
towards more agile processes, this model in the modern data centers has an obvious
scaling issue with x amount of network engineers required per network device.

Chapter 4

[97]

The emergence of private clouds has meant that the number of network devices
each network engineer needs to manage has grown dramatically, so automation has
become key to managing the growing amount of devices in a consistent way. If a
businesses competitors can put products to market quicker if they have automated
operational models, then they will be able to put products to market quicker than
organizations that are doing manual changes. Automation has become a necessity to
keep up with the rapid churn of change required on the network. As IT is changing
and evolving, then automation has become a prerequisite to facilitate that evolution.

Cisco, as the networking market has evolved in recent years, has since developed
a new operating system named Nxos, which has allowed itself to integrate with
open source technologies and lend itself to automation. The Nxos operating system
is deployed with all new Nexus switches and routers, and this operating system
has shifted Cisco towards open and modular standards by integrating with open
protocols, such as BGP, EVNP, and VXLAN, and the appliances can even run LXC
containers, which is an operating system-level virtualization method in order to run
multiple isolated processes on a virtual machine or physical server.

Cisco have also provided a set of REST APIs that allows network operators to run
native Linux and bash shells to carry out regular administration commands server
side. In a world where AWS and OpenStack programmatic APIs are available to
mutate network infrastructure, networking vendors needed to adapt to survive or
they risked being left behind, so Cisco have made their own switches and routers as
easy to configure and operate as the virtual appliances.

The Nxos operating system allows the use of the Red Hat enterprise Linux rpm
package manager to control software updates. This means that software updates
can be done on the Nxos in an industry standard way, the same as patching a
Linux guest operating system would be carried out by an infrastructure system
administrator. Consequently, Cisco network devices are now more intuitive to
Linux system administrators and more like native Linux to end users, which has
undoubtedly made them simpler to administrate.

The Cisco Nxos operating system means that the speed that network changes can be
pushed increases, as operations staff can use their own tool chains and configuration
management tools to automate updates. The Nxos operating system has become less
vendor specific; therefore, lowering the barrier to entry to use networking products
and automation of its product suites have become easier.

Configuring Network Devices Using Ansible

[98]

Juniper Junos operating system
The Juniper Junos operating systems driver is programmatically controlled to control
network operations, Junipers Junos operating system was created to provide CLI
that users can execute to retrieve facts about the running system. The Junos operating
system is based on a clearly defined hierarchical model as opposed to using a series
of unrelated configuration files. The hierarchical model also comes complete with
operational and configuration modes of operation.

Intuitively, operational mode is used to upgrade the operating system, monitor
the system, and also check the status of juniper devices. Configuration mode, on
the other hand, allows network operators to configure user access and security,
interfaces, hardware, and the set of protocols used on the device, which gives a
clear separation of roles between those installing the system and those operating it.
The Junos operating system supports all open protocols, such as BGP, VXLAN, and
EVPN, as well as in-built roll forward and roll back capability.

Juniper provide a Python library named PyEZ for the Junos operating system as
well as a PowerShell option for Windows administrators that utilizes PowerShell
wrapped in Python. The Python library PyEZ can retrieve any configuration
information using tables and views that allow network operators to script against
runtime information provided by the Junos operating system. Once a table items
have been extracted by utilizing a python script using a get() method, tables can
subsequently be treated as a Python dictionary and iterated, which allows users to
carry out complex scripting if required, allowing network operators to automate all
network operations. The Junos PYEZ library is also fully extensible and network
operators can add functionality they deem appropriate using its widget system.

Arista EOS operating system
The Arista EOS operating system is based on open standards to promote automation
of network functions. It relies upon a centralized CloudVision eXchange (CVX)
and the CVX servers hold the centralized state of the network. The EOS operating
system separates the functional control on every switch using Sysdb, which is the
Arista EOS operating systems database. The Arista Sysdb is an in-memory database
running in user space and contains the complete state of the Arista switch. Sysdb
is maintained in memory on the device so if an Arista switch is either restarted or
powered down all information for that switch is lost.

The CVX server acts as an aggregator managing all the state information from
every switch's Sysdb into a network-wide database depending on what services
are enabled on the cluster of CVX servers. When state changes occur to Sysdb on
a switch then the change is pushed to the CVX centralized database, which then
updates its configuration and notifies agents running on CVX of the change.

Chapter 4

[99]

The Arista EOS operating system supports modern open protocols, such as MLAG,
ECMP, BGP, and VXLAN. It utilizes overlay technologies such as VXLAN allowing
applications to be deployed and remain portable in the modern data center. Arista
heavily promotes the use of the Leaf-Spine architecture with ECMP, which allows a
scale out model to be implemented; this aligns itself to modern cloud solutions such
as OpenStack and makes it agnostic to SDN controller solutions.

The Arista EOS operating system is a Linux-based operating system designed to be
programmatically controlled. The main driver for the EOS operating system is to
allow network operators to carry out network operations' using a well structured set
of APIs including the eAPI, CLI command as well as Python, Ruby, and GO libraries
available as part of its SDK portfolio.

The EOS operating system also allows Smart System Upgrade (SSU) to allow
scale out of Arista appliances with live patching and upgrades simplified and made
more intuitive, this helps to support businesses 99.99% uptime targets. Switches can
now be racked and cabled in the data center by data center operations teams, then
handed over to Arista's Zero Touch Provisioning (ZTP) process that automates the
initialization of switches and Zero Touch Replacement (ZTR) allows switches to be
replaced in the data center.

The Arista EOS solution CVX product can be used to automate networking workflow
tasks through the portal if users require a visual view of switches and routers and
the CVX allows integration with SDN controllers using OVSDB, eAPI, or OpenFlow.
Like Cisco and Juniper, the EOS API lends due to it having multiple SDK options so
Arista products can be easily managed by configuration management tools, such as
Puppet, Chef, Ansible, and Salt, so that no network operation needs to be carried
out manually.

Introduction to Ansible
Ansible is primarily a push-based configuration management tool that uses a single
Ansible Control Host, and it can connect to multiple Linux guest operating systems
via SSH to configure them and recently added WinRM support, so it can now also
configure Windows guests in the same way as Linux-based operating systems. As
Ansible can connect to multiple servers simultaneously, it aids operators by allowing
them to carry out uniform operations across multiple Linux or Windows servers at
the same time. This allows Ansible to help simplify the automation of repeatable
tasks by defining them in YAML, so they can be consistently executed against target
servers. Ansible can also be used as a centralized orchestration tool that can connect
to API endpoints and sequence API operations.

Configuring Network Devices Using Ansible

[100]

Here, we can see an example of the way an Ansible Control Host connects to servers
or acts as a centralized orchestration tool:

Every operation that Ansible carries out should be idempotent as a standard,
meaning that if the desired state is already configured on a server, then Ansible will
check the intended state from a playbook or role and not take any action if a server
is already in the correct state. Only if the state is different from what is specified in a
playbook or role will the operation be executed to mutate the state of the server.

Ansible is a Python-based configuration management tool that controls servers
from a Linux-based Control Host, using YAML files to define and describe desired
state. Ansible is packaged with a rich set of extensible modules, which are primarily
written in Python, but can also be written in any language that a user wishes.
Ansible modules allow Python SDKs or REST API's to be wrapped in Ansible's
plug-in boilerplate and then utilized from Ansible roles or playbooks in an
easy-to-use architecture. Before going into more detailed examples, it is
important to understand some of the Ansible terminology.

Ansible directory structure
Ansible is made up of a series of YAML files that are laid out in a customizable
directory structure.

Chapter 4

[101]

In this customized structure, the Ansible Controller Node has the following
directory structure:

•	 The inventories folder holds the Ansible inventory
•	 The library folder holds any custom python plugins
•	 The playbooks folder holds all playbooks
•	 The roles folder holds all the Ansible roles

The overall directory structure is shown here:

This provides logical groupings of all Ansible components, which will be useful
as the amount of playbooks or roles grow in size. It is best practice to version the
ansible folder structure in a source control management system such as Git.
Git is a distributed open source version control repository, which is designed to
version control development code to facilitate speed and efficiency (https://
en.wikipedia.org/wiki/Git).

Ansible inventory
An Ansible inventory file is simply a set of DNS hostnames or IP addresses defined
in a YAML file. This allows Ansible to connect to those target hosts and execute
specific commands on servers.

Ansible allows users to use inventory files to group servers into particular types or
use cases. For example, in networking terms, when utilizing Ansible to set up a Leaf-
Spine architecture, a network operator could have a group for Leaf switches and
another for the Spine switches. This is because a different set of run-book commands
would be required to configure each, so limits can be applied upon execution to only
execute a command against a small subset of servers limited to one particular group.

https://en.wikipedia.org/wiki/Git).
https://en.wikipedia.org/wiki/Git).

Configuring Network Devices Using Ansible

[102]

An example of an inventory file defining Leaf and Spine switches can be found in the
following image, showing the definition of two groups in the inventory file, one for
Leaf switches named leaf and one for Spine switches named spine containing all
the DNS entries for the switches:

The same inventory can be described in an abbreviated format:

Ansible modules
An Ansible module is typically written in Python or can be written in any other
programming language. An Ansible module's code defines a set of operations to
add or remove functionality from a guest operating system or alternately execute a
command against an API if it is being used for orchestration. Ansible modules can
be used to wrap either a simple command line, API call or any other operation a
user desires that can be coded programmatically. Modules are set up, so they can
be reused in multiple playbooks or roles in order to promote reusing code and the
standardization of operations.

Code specified in an Ansible module is wrapped in Ansible's module boilerplate,
which structures the layout of the module. The boilerplate promotes a set of
standards, so each module is idempotent by design, meaning that the code will first
detect the state of the system and then determine if a change in state is required or
not before executing the operation.

Chapter 4

[103]

When a state change is executed in Ansible, it is donated by a yellow output on the
console. If no action is taken, it will display the color green to state that the operation
ran successfully, but no state change was made, whereas a red console output
indicates a failure on the module.

Ansible modules expose a set of command-line arguments for the module that can
either be mandatory or optional and can have default values. Modules that adhere
to the Ansible standard are created with a state variable that contains present or
absent, as one of the command-line variables. A module, when set to present, will
add the feature that has been specified by the playbook and when it is set to absent,
it will remove the specified feature. All modules will typically have code to deal with
both of these use cases.

Once an Ansible module has been written, it is placed in the library folder, which
means that it is available as a library to the Python interpreter and the code can then
be utilized by defining it in an Ansible playbooks or roles. Ansible comes with a
set of prepackaged core and extras modules that can all be accessed by writing some
YAML to describe the operation that is required, all modules are packaged with
documentation that are part of the boilerplate and available on the Ansible website.

Core modules are maintained by the Ansible core team in joint initiatives with
software vendors and are generally of high quality. Extras modules can also be
of a good quality but are not maintained by vendors and sometimes maintained
by users that have committed back the modules to Ansible to help out the open
source community.

A simple core yum module donated by yum: can be seen in the following screenshot
that takes two command-line variables name which is used to specify the rpm
to install and state, which determines whether to install or remove it from the
target server:

Ansible roles
Roles are a further level of abstraction in Ansible and also defined using YAML
files. Roles can be called from playbooks; this aims to simplify playbooks as much
as possible. As increased sets of functionality are added to playbooks, they can
become cluttered and difficult to maintain from a single file. So roles allow operators
to create minimal playbooks that then pull all the information from the Ansible
directory structure, which then determines the configuration steps that need to
execute on servers or be run locally.

Configuring Network Devices Using Ansible

[104]

Ansible roles attempt to strip out repeatable parts of playbooks and group them, so
they can be used by multiple playbooks if required. Roles are groupings to determine
what the server profile should actually be, rather than just focusing on multiple ad
hoc instructions, so a playbook could be named spine.yml and the playbook could
contain a set of modular roles used to define the particular Spine switches run-
list, when executed this playbook will build the Spine switch on each target server
specified in the Ansible inventory. If designed correctly some of these roles should be
modular enough that they can be reused when creating Leaf switches.

Ansible playbooks
An Ansible playbook is a YAML file that dictates the run-list to carry out on a
particular set of host servers that are defined in an inventory file. A playbook
specifies an ordered set of instructions to execute commands locally from Ansible
Controller Node or on a target set of hosts specified in the Ansible inventory file.

An Ansible playbook can be used to create a run-list that calls out to modules or
specific roles, which dictate the operations that should be executed against a server.

In this example, we see a playbook targeting the spine hosts in the inventory file and
executing multiple roles to set up the Spine servers:

An alternate playbook could not use roles at all and call Ansible yum core module
directly to install the apache httpd-2.2.29 yum package on the inventory group
named server:

Chapter 4

[105]

Playbooks can also specify when conditions to dictate if an action in the playbook
should be executed or not based on the output of a proceeding operation. The
register command is used to store JSON output from a task that can then be
utilized in playbooks or roles by subsequent tasks to validate if they should be
invoked by reading the result of the JSON and evaluating the when condition.

Ansible playbooks from version 2.x onwards can now utilize block rescue
functionality too. So if an operation nested in a block command fails, then the rescue
section of the playbook is invoked. This can be useful for doing cleanup of failed
actions to make playbooks more robust.

The usefulness of a block rescue operation shouldn't be underestimated, when
requiring to copy a large database dmp file to a backup location this operation could
sometimes be error-prone due to the volume of data being copied. So if the disk
space is too low on the target directory, then that operation could fail half way
through leaving only part of the file copied and the server in an unusable state and
the server could run out of disk space. Therefore, a rescue command could be used to
clean up the copied file immediately, so the server isn't left in a bad state if the copy
operation fails. After the rescue command has completed, the playbook will exit with
an error but remain in its original state.

In the following example, we can see a playbook using the copy: module to copy the
source file /var/files/db.dmp to /backups/db.dmp and the file: module being used
to delete the file if the original command fails:

Configuring Network Devices Using Ansible

[106]

Executing an Ansible playbook
After playbook and inventory files have been created utilizing the specified folder
structure, it can now be executed by specifying the ansible-playbook command.

In the following example, the:

•	 ansible-playbook tells Ansible that a YAML playbook file should
be specified

•	 -i flag is used to specify the inventory file
•	 -l limits the execution only to the servers under the inventory

group (servers)
•	 -e passes additional variables to the playbook in this example production
•	 -v sets the verbosity of the output:

ansible-playbook –i inventories/inventory –l servers –e
environment=production playbooks/devops-for-networking.yml -v

Ansible var files and jinja2 templates
Ansible var files are just another YAML file that specify a set of variables that will be
substituted into a playbook at runtime using the Ansible include_vars statement.

The var files are just a way of breaking out variables that are required by playbooks
or roles at runtime. This means that different var files can be passed at runtime
without having to hardcode variables into playbooks or roles.

An example of a var file syntax is shown in the following screenshot, this shows the
contents of a common.yml var file containing one defined variable named cert_name:

The following example shows the common.yml variable above and other
environment.yml variables , both being loaded into the playbook. The {{
environment }} is useful as it means that different values could be passed from the
ansible-playbook command line to control the variables that are imported into the
playbook using the -e “environment=production” option at runtime:

Chapter 4

[107]

The common.yml var files variables value cert1 can then be used by specifying {{
cert_name }} variable in the playbook:

Ansible also has the ability to utilize Python jinja2 templates that can be transformed
at runtime, to populate the configuration files information utilizing a set of var
files; for example, the {{ environment }} variable in the preceding example
can be specified at runtime to load variables that populate unique environment
information. The jinja2 template once transformed using the template module
will be parameterized to use the variables specified in the environment.yml file.

In the following example, we can see the Ansible template: module being executed
as part of a role copying a jinja2 template network_template.j2 and transforming it
to /etc/network.conf:

Prerequisites using Ansible to configure
network devices
The base constructs covered in the Introduction to Ansible section in this chapter are
all relevant to the Ansible networking modules, and to a networking team wishing
to utilize Ansible for configuration management. Before starting, it is important to
check with the networking vendors that the version of the networking operating
system can be used with Ansible. The next step is to configure a small provisioning
server to utilize as the Ansible Control Host, this is typically created on the
management network so it has access appropriate to all switches.

Configuring Network Devices Using Ansible

[108]

The provisioning server can be relatively small in size as it will just be required to
connect over SSH to the Linux-based networking operating systems. Ensure that the
API command line is enabled on the network device. It is also a good idea to create a
temporary user account on each of the networking devices, which will allow you to
set up a public key on the Ansible Control Host and Secure Copy (SCP) the created
id_rsa.pub to the authorized_keys folder on the network devices using the
temporary account. This will allow Ansible to use that private key to connect to all of
the hosts without the need for dealing with passwords. The temporary password can
then be deleted from each of the network devices once this setup activity has been
completed, you could even use Ansible to do this as a first activity.

All being well, the next step would be to create the Ansible folder structure on the
provisioning server and fill out the Ansible inventory file with all the DNS names
of all the network devices and finally install Ansible when you are ready to start
executing playbooks. Ansible is now packaged by Red Hat in rpm format, so this
should just be a simple yum install as long as the Ansible Control Host has outbound
Internet access to the Red Hat repositories when using a centos image or Red Hat
Enterprise Linux. Ansible will of course work on any Linux-based operating system
as is still available as a PyPi package that can be installed on Ubuntu.

Ansible Galaxy
If a network operator is looking for a start point and not well-versed in coding, they
could look for examples on Ansible Galaxy, which hosts open source community
roles that carry out many complex commands.

The network engineer can navigate to the Ansible Galaxy repository at
https://galaxy.ansible.com/.

https://galaxy.ansible.com/

Chapter 4

[109]

Ansible Galaxy houses thousands of Ansible roles that have been developed by the
Open Source community.

Some available examples of networking roles are the Arista EOS role that can be used
to automate Arista switch devices. Alternately, the Cisco EVPN VXLAN Spine role
can be used to build Spine switches on Cisco devices or the Juniper Junos role can be
used to automate Juniper network devices. So there is a wide variety of modules for
a variety of technologies and use cases.

Take a look at the following useful links:

•	 Arista EOS (https://galaxy.ansible.com/arista/eos-system/)
•	 Cisco (https://galaxy.ansible.com/rogerscuall/evpn_vxlan-spine/)
•	 Juniper (https://galaxy.ansible.com/Juniper/junos/)

Users can browse roles and search for a particular networking vendor.
In this example, a search for Arista has returned the eos role, as shown in
the following screenshot:

https://galaxy.ansible.com/arista/eos-system/
https://galaxy.ansible.com/rogerscuall/evpn_vxlan-spine/
https://galaxy.ansible.com/Juniper/junos/

Configuring Network Devices Using Ansible

[110]

Each role returned has a link to their corresponding GitHub repository:

Ansible Galaxy is a very useful tool, where users can take roles as a start point and
customize them to meet their needs. Rather than just taking from the community,
any new roles that may be of use to others should be contributed back to the
Ansible community.

Ansible core modules available for
network operations
Since the release of Ansible 2.0, the Ansible configuration management tool been
packaged with some of the core networking modules from Arista, Citrix, Cumulus,
and Juniper. Ansible can be used to edit configuration for any network device. It isn't
restricted to just these modules. Ansible Galaxy has a wide range of roles that have
been developed by the open source community.

Chapter 4

[111]

A subnet of the Ansible 2.x networking modules can be shown in the following
screenshot focusing upon the Juniper Junos, Arista Eos, Cisco Nxos, and Ios:

Ansible 2.x has sought to simplify networking modules by giving them a standard
set of operations across all modules to make it feel more intuitive to network
engineers. As many network engineers are not familiar with configuration
management tooling, having a set of standards across modules simplifies the initial
barrier to entry. As network engineers are able to see commands that they would
utilize everyday being used as part of a playbook or a role, so Ansible can initially
be utilized as a scheduling tool, before network operators delve into more
complex modules.

One of the main fears network engineers have when first using configuration
management tooling is not trusting the system or understanding what is going
on under the covers. So, being able to easily read playbooks or roles and see the
operations that are being executed builds confidence in the tooling and makes
adoption easier.

It is fully expected that more complex networking modules will be built out over
time by the open source community some of which are already available with roles
from Arista, Juniper, and Cisco available in Ansible Galaxy. However, the following
Ansible core modules have been standardized to allow configuration of Arista, Cisco,
and Juniper network devices in the same way. These modules can be used in any
playbook or role.

Configuring Network Devices Using Ansible

[112]

The _command module
The main module packaged with a vendor's networking modules in Ansible 2.x is
the _command module. This is a conscious choice by Ansible as it is more intuitive
to network engineers initially to use native network commands when switching to
configuration management tooling.

This module allows Ansible to connect to hosts using SSH as network device's
operating systems are primarily Linux-based operating systems.

The _command module allows network operators to apply configuration changes to
switches by connecting from the Ansible Control Host. The syntax used by Ansible
on this command is identical to what network operators would execute on network
devices using CLI.

In the following example, the EOS command show ip bgp summary is executed by
the eos_command, and it connects to every specified {{ inventory_hostname }},
which is a special Ansible variable that substitutes the DNS name of every node
listed in the host group specified in the inventory file. It then registers the output of
the command in the eos_command_output variable.

Junos syntax is identical. In the following example, a similar network command
executed on Junos to show interfaces with the JSON output captures in the
junos_command_output variable.

Chapter 4

[113]

The Cisco example shows Nxos, but the configuration is also the same in IOS. The
nxos_command command issues a show version command and places the result in
the nxos_command_output variable:

The _config module
The _config module is used to configure updates in a deterministic way that could
be used to implement change requests, by batching up a number of commands.

This module allows operators to update selected lines or blocks of running
configuration programmatically on the network device. The module will connect to
the device, extracting the running configuration before pushing batch updates in a
completely deterministic way.

In the following example, the Arista switches configuration will be loaded by the
module. The no spanning-tree vlan 4094 command will be executed on the EOS
operating system if the running configuration doesn't match the existing state, so the
desired end state will be implemented on the switch.

Configuring Network Devices Using Ansible

[114]

The _template module
The _template module is used to update configuration utilizing a jinja2 template
file. This can be extracted from the running configuration of a network device,
updated and then pushed back to the device.

Another use case for the _template module would be allowing network
administrators to extract the running config into a jinja2 template from one network
device and apply it to other's switches to propagate the same changes.

The _template module will only push incremental changes unless the force
command is specified as a command-line variable, which will carry out overwrite.

In the following example, the eos_config jinja2 template is pushed to the Arista
device and will do an incremental change to the configuration if the jinja2 template
has configuration changes.

Configuration management processes to
manage network devices
DevOps is primarily all about people and process, so just focusing on some examples
of playbooks or roles in isolation against a switch or firewall wouldn't help network
engineer deal with the real-world networking challenges that they encounter every
day. Selecting the correct tooling to facilitate processes is also important after the
actual goals of a project have been established. Tooling should be selected after the
business requirements have been made clear and not the opposite way round.

A network engineer could easily type in those commands into a network operating
system as they could type commands into an Ansible playbook, so it is important to
look at where the use of a configuration management tool such as Ansible adds real
business value.

Chapter 4

[115]

Implementing a new tool in isolation doesn't really help the network teams improve
efficiency as a standalone activity, but the modules that have been created in Ansible
to manage Arista, Juniper, and Cisco are facilitators of process that help simplify and
standardize processes and approaches. However, it really is the process that wraps
and utilizes these modules that is the key differentiator.

Ansible can be used to help with network operations in many ways, but it is good to
try and categorize tasks into the following categories:

•	 Desired state
•	 Change requests
•	 Self-service operations

Desired state
A day one set of playbooks should be used to set the desired state of the network,
utilizing a set of roles and modules to build out brand new network devices and are
and control the network's intended state. An example of a day one playbook could
be the first time a network engineer needs to configure a Leaf-Spine architecture
utilizing Arista Leaf and Spine switches, which can seem a pretty daunting activity
at first. But the beauty is that the state of the whole underlay network could be
described in Ansible, but the same can be said for a firewall or any other device.

In the case of the Leaf-Spine network, activities will include configuring multiple
Leaf and Spine switches, so creating a set of roles to abstract the common operations
and calling them from a playbook is desirable, as the same configuration will need to
be carried out on multiple servers.

A network engineer will begin by setting up the Ansible Control Host as covered in
the Ansible prerequisites section. They will then create their inventory file for the
Leaf-Spine architecture to configure the network devices.

The network engineer should define the inventory for all the network devices they
plan to configure. In the following example, we see two host groups containing two
spine switches and four leaf switches:

Configuring Network Devices Using Ansible

[116]

The network operator will also need to specify the playbook containing the roles
that they wish to execute in the spine.yml playbook, as shown in the following
screenshot, to first build out the Spine switches with the desired configuration.

In the following example playbook, we see that the playbook targets the Spine host
group and executes common, interfaces, bridging, ipv4, and bgp roles against
the servers:

The executed roles carry out the following configuration:

•	 common role: This role is used to configure the IP routing table on the Spine
•	 interfaces role: This role is used to configure interfaces on the Spine
•	 bridging role: This role is used to configure all necessary VLANs and switch

ports on the Spine
•	 ipv4 role: This role is used to configure the Spine's IP interfaces
•	 bgp role: This role is used to configure BGP protocol to allow the switches to

be meshed together

All these reusable roles combined will be used to configure the Arista Spine switches
and utilize the eos_command module heavily.

Similarly, a lot of the same modules can be utilized to configure the Leaf switches
in the leaf.yml playbook, which targets the Leaf host group in the inventory and
executes common, interfaces, bridging, ipv4, bgp, ecmp, and mlag roles, as shown
in the following screenshot:

Chapter 4

[117]

The executed roles are used to carry out the following configuration:

•	 common role: This role is used to configure the IP routing table on the Spine
•	 interfaces role: This is used to configure interfaces on the Spine
•	 Bridging role: This is used to configure all necessary VLANs and switch

ports on the Spine
•	 ipv4 role: This role is used to configure the Spine's IP interfaces
•	 bgp: This is used to configure BGP protocol to allow the switches to be

meshed together
•	 ecmp: This is used to ensure equal cost multipathing is configured in the

Leaf-Spine topology
•	 mlag: This is used to configure the switches redundantly at the top of the

rack using mlag

This shows that roles can be reused if they are kept granular enough, with var files
providing the necessary configuration changes to the roles, so it is important to avoid
any hardcoded values.

The Leaf-Spine build out is a day one playbook, but why should a network engineer
be interesting in taking all this time to set this up when it will only be used once?
This, of course, is a common misconception as playbooks and roles have described
the whole desired state of the network, and once the initial roles are written, going
forward they can be used to mutate the desired state of the network at any point in
the future.

Configuring Network Devices Using Ansible

[118]

The Ansible playbooks and roles could also be used to build the second data center
in the same way, used as a disaster recovery solution, help to mutate the state if a
data center re-IP is required, or even scale out more Spine and Leaf switches in the
data center.

Taking the last example, in terms of scaling out a data center, this would be as simple
as adding more Spine or Leaf switches to the Ansible inventory. Once the additional
Arista switches have been zero touch provisioned after being racked and cabled by a
data center operations team.

The network operator would then only need to make a small update to the var files
to specify the VLANs that need to be used and update the inventory.

In the following example, the infrastructure is scaled to 15 Spine switches and 44
Leaf switches by modifying the inventory file:

Although this is a pretty extreme scale out example, it should highlight the point
and benefits of investing in automation. As such a scale out would take a network
engineer weeks, whereas Ansible can carry out the same operations in minutes once
the initial roles have been built out.

It really is worth the investment, this also means that the switches are built out
consistently the same way as all the other switches, which alleviates manual error
and makes the delivery of network changes more precise. Some people believe
that automation is all about pace, but in networking, it should really be
about consistency.

The same spine.yml and leaf.yml playbooks could also be executed against
existing switches during the scale out, as Ansible is idempotent by nature, meaning
only state changes will be pushed to the switches if the configuration has changed. If
roles are not idempotent, then the modules being called are at fault.

This idempotency means the same day one playbook forming a site.yml that calls
both spine.yml and leaf.yml could be run over existing switches and not change
any configuration and be re-used without having to target just the changed switches.
It is important to note that all Ansible changes should be tested against a test
environment before being run in production.

Chapter 4

[119]

Change requests
Network engineers despite this automation still need a separate process for manual
change requests, right? The simple answer is no, manual changes would break the
desired state that has been described in the day one playbooks. All network changes
going forward should be pushed through the same configuration mechanism; there
should be no such thing as a separate stream of work or an ad hoc command.

Making changes outside the process will only serve to break the Ansible playbooks
and roles that were used to maintain the desired state and break the automation. It
is important to note that utilizing network automation is an all or nothing approach
that needs to be adopted by all team members and no changes should be done
outside of the process or it breaks the model of repeatability and reliable changes.
If features are lacking, the day one playbooks should be extended to incorporate
the changes.

Self-service operations
With the use of Ansible for network operations, one of the typical bottle necks is
the reluctance for network engineers to give development teams access to carry out
network changes themselves, so this places a bottle neck on networking teams as
usually a company will have more developers than network engineers.

This reluctance is because network changes are traditionally complex and a
developer's forte is to develop code and create applications, not log onto
networking devices to make firewall changes for their application.

However, if network engineers created a self-service playbook that defined a safe set
of workflow actions, then developers could use it to interface with network devices
in a safe way, this opens up a whole world of opportunity to remove that bottleneck.

This puts network engineers in the position of a subject matter expert (SME) role to
help architect and use their network experience to create network automation that
embodies networking best practices, to serve the needs of development teams.

This is instead of network engineers carrying out manual actions such as opening
firewall ports manually when a developer raises a ticket. It is of course a change in
role, but an automated approach is the way the industry is evolving.

Take the example of a firewall request, a development team have created a new
application and need a test environment to deploy it in. When configuring the test
environment, it needs networking, and a network engineer will ask the developer the
ports they need to open in the firewall.

Configuring Network Devices Using Ansible

[120]

The developer doesn't know how to answer this question yet as they haven't
finalized the application and want to start incrementally developing it in the test
environment. Therefore, each time a new port needs to be opened, it means that a
new network ticket is required to open the incremental port the development team
discovers. This is not the optimum use of the network engineer or the developer's
time as it causes frustration on both sides. A network engineer's time is better spent
optimizing the network or adding improved alerting, not processing tickets to open
firewall ports.

Instead Ansible could be used to create a self-service file. A developer could create a
jinja2 template that could be checked into source control that lists the configuration
file used to make firewall changes using the template: module. This shows the
existing firewall line items and is available to developers to add new line items and
submit a pull request to open a port on the firewall.

The network engineer then reviews the change and approves or rejects it. Ansible
upon approval can be automatically triggered to push the change to a test
environment; this makes sure that the config is valid.

In the following example, we see the playbook that replaces the firewall.config
file with the updated jinja2 firewall.j2 template and then reloads the firewall
configuration from the new template:

This allows network teams to enable a self-service model. This speeds up the pace of
network changes. It also removes the networking team as the bottleneck and pushes
them to create appropriate tests and controls for network changes.

Self-service doesn't mean network engineers are no longer required. This means that
they become the gatekeepers of the process instead of constantly rushing to keep up
with the never ending chain of ad hoc requests they receive on a daily basis.

Chapter 4

[121]

Summary
In this chapter, we looked at how Ansible can be used for server-side configuration
management of network devices and looked at some of the industry leading network
vendors, such as Arista, Cisco, and Juniper, who have all changed their operational
models to use open standards and protocols that are well-suited to automation.

After reading this chapter, you should now be familiar with networking operating
system from Cisco, Juniper, and Arista. The Ansible configuration management
tool and concepts, such as Ansible Inventory, Ansible Modules, Ansible Playbooks,
Ansible Roles, and Ansible var files and Jinja2 templates. Readers should also be
familiar with Ansible Galaxy, the core Ansible modules available for network
automation and methodologies to manage network devices using Ansible.

This chapter gave readers an understanding of use cases where tools such as
Ansible can be used to automate everyday network operations that are carried out
by network engineers. It should also give readers an insight into ways they could
improve their network automation by utilizing configuration management tooling.

The key takeaways from this chapter are that configuration management tools such
as Ansible now support network operations natively and vendors, such as Cisco,
Juniper, and Arista, have created modules to facilitate automation of network
operations. There is now no reason not to start automating network operations as
these methods are fully supported by leading network vendors who understand that
SDN operations are the future of network operations.

We have witnessed that Ansible is a very flexible tool. One of its main strengths is
its ability to orchestrate APIs and help schedule software releases. Load balancing
applications is a fundamental component of the software development release
process, so in the the following chapter we will look at configuration management
principles that can help orchestrate load balancers and help networking teams easily
maintain complex load balancing solutions.

Configuring Network Devices Using Ansible

[122]

Useful links for Ansible network automation:
https://www.youtube.com/watch?v=7FphWEFQbac

https://www.youtube.com/watch?v=VYEVjKvMKqU

Useful links for Cisco:
https://pynet.twb-tech.com/blog/automation/cisco-ios.
html

http://www.cisco.com/c/en/us/support/switches/nexus-
7000-series-switches/products-command-reference-list.
html

Useful links for Juniper:
https://www.juniper.net/documentation/en_US/junos15.1/
topics/concept/junos-script-automation-overview.html

http://www.juniper.net/techpubs/software/junos-
security/junos-security10.4/junos-security-cli-
reference/junos-security-cli-reference.pdf

Useful links for Arista:
https://www.arista.com/en/products/eos/automation

https://www.arista.com/docs/Manuals/ConfigGuide.pdf

https://www.youtube.com/watch?v=7FphWEFQbac
https://www.youtube.com/watch?v=VYEVjKvMKqU
https://pynet.twb-tech.com/blog/automation/cisco-ios.html
https://pynet.twb-tech.com/blog/automation/cisco-ios.html
http://www.cisco.com/c/en/us/support/switches/nexus-7000-series-switches/products-command-reference-list.html
http://www.cisco.com/c/en/us/support/switches/nexus-7000-series-switches/products-command-reference-list.html
http://www.cisco.com/c/en/us/support/switches/nexus-7000-series-switches/products-command-reference-list.html
https://www.juniper.net/documentation/en_US/junos15.1/topics/concept/junos-script-automation-overview.html
https://www.juniper.net/documentation/en_US/junos15.1/topics/concept/junos-script-automation-overview.html
http://www.juniper.net/techpubs/software/junos-security/junos-security10.4/junos-security-cli-reference/junos-security-cli-reference.pdf
http://www.juniper.net/techpubs/software/junos-security/junos-security10.4/junos-security-cli-reference/junos-security-cli-reference.pdf
http://www.juniper.net/techpubs/software/junos-security/junos-security10.4/junos-security-cli-reference/junos-security-cli-reference.pdf
https://www.arista.com/en/products/eos/automation
https://www.arista.com/docs/Manuals/ConfigGuide.pdf

[123]

Orchestrating Load Balancers
Using Ansible

This chapter will focus on some of the popular load balancing solutions that are
available today and the approaches that they take to load balancing applications.

With the emergence of cloud solutions, such as AWS, Microsoft Azure, Google
Cloud, and OpenStack, we will look at the impact this has had on load balancing
with distributed load and centralized load balancing strategies. This chapter
will show practical configuration management processes that can be used to
orchestrate load balancers using Ansible to help automate the load balancing
needs for applications.

In this chapter, the following topics will be covered:

•	 Centralized and distributed load balancers
•	 Popular load balancing solutions
•	 Load balancing immutable and static servers
•	 Using Ansible to orchestrate load balancers

Centralized and distributed load
balancers
With the introduction of microservice architectures allowing development teams to
make changes to production applications more frequently, developers no longer just
need to release software on a quarterly basis.

Orchestrating Load Balancers Using Ansible

[124]

With the move towards Continuous Delivery and DevOps, applications are
now released weekly, daily, or even hourly with only one or a subset of those
microservices being updated and released.

Organizations have found microservice architectures to be easier to manage and
have moved away from building monolith applications. Microservice applications
break a larger application into smaller manageable chunks. This allows application
features to be released to customers on a more frequent basis, as the business does
not have to redeploy the whole product each time they release. This means only a
small microservice needs to be redeployed to deploy a feature. As the release process
is more frequent and continuous, then it is better understood, normally completely
automated, and ultimately load balanced.

Microservice architectures can also be beneficial for large businesses, which are
distributed across many offices or countries as different teams can own different
microservices and release them independently of one another.

This, of course, means that development teams need a way of testing dependency
management, and the onus is put on adequate testing to make sure that a
microservice doesn't break other microservices when it is released.

As a result, developers need to create mocking and stubbing services, so
microservice applications can be effectively tested against multiple software
versions without having to deploy the full production estate.

Creating a microservice architecture is a huge mindset shift for a business but a
necessary one to remain competitive. Releasing monolithic applications is often
difficult and time-consuming for an organization, and businesses that have quarterly
release cycles will eventually lose out to competitors that can release their features in
a quicker, more granular way.

The use of microservice architectures has meant that being able to utilize the same
load balancing in test environments as production has become even more important
due to how dynamic environments need to be.

So having test environments load balancing configuration as close to production
environments as possible is a must. Configuration management tooling can be used
to control the desired state of the load balancer.

The delegation of responsibilities also needs to be reviewed to support microservice
architectures, so control of some of the load balancing provisioning should move
to development teams as opposed to being a request to the network team to make
it manageable and not to impede development teams. This, of course, is a change
in culture that needs sponsorship from senior management to make the required
changes to the operational model.

Chapter 5

[125]

Load balancing requirements when using microservice applications will evolve as an
application is developed or scaled up and down in size, so it is important that these
aspects are made available to developers to self-service requests rather than wait on
a centralized network team to make load balancing changes.

As a result of the shift towards microservices architectures, the networking and load
balancing landscape has needed to evolve too to support those needs with PaaS
solutions being created by many vendors to handle application deployment across
hybrid cloud and load balancing.

Off-the-shelf PaaS solutions are a great option for companies that maybe aren't
tech-savvy and are unable to create their own deployment pipelines using
configuration management tooling, such as Chef, Puppet, Ansible, and Salt,
to deploy their applications into cloud environments.

Regardless of the approach to deployment, roll your own or off-the-shelf PaaS. Both
microservice and monolith applications still need to be supported when considering
public, private, and hybrid clouds.

As a result, networking and load balancing need to be adaptable to support varied
workloads. Although the end goal for an organization is ultimately a microservice
architecture, the reality for most companies is having to adopt a hybrid approach
catering to centralized and distributed load balancing methods to support both
monolithic and cloud native microservices.

Centralized load balancing
Traditionally, load balancers were installed as external physical appliances with
very complex designs and used very expensive equipment. Load balancers would
be configured to serve web content with SSL requests terminated on the expensive
physical appliances.

The load balancer would have complex configuration to route requests to
applications using context switching, and requests would be served directly
to the static backend servers.

This was optimal for monolith configurations as applications typically were
self-contained and followed a three-tier model:

•	 A frontend webserver
•	 A business logic layer
•	 A database layer

Orchestrating Load Balancers Using Ansible

[126]

This didn't require a lot of east to west traffic within the network as the traffic was
north to south, traversing the frontend, business logic, and database. Networks were
designed to minimize the amount of time taken to process the request and serve it
back to the end user, and it was always served by the core network each time.

Distributed load balancing
With the evolution towards microservice architectures, the way that applications
operate has changed somewhat. Applications are less self-contained and need to talk
to dependent microservices applications that exist within the same tenant network,
or even across multiple tenants.

This means that east-west traffic within the data center is much higher, and that
traffic in the data center doesn't always go through the core network like it once did.

Clusters of microservices applications are instead instantiated and then load
balanced within the tenant network using x86 software load balancing solutions
with the endpoint of the microservices clusters Virtual IP (VIP) exposed to adjacent
microservices that need to utilize it.

With the growing popularity of virtual machines, containers, and software-defined
overlay networks, this means that software load balancing solutions are now used
to load balance applications within the tenant network, as opposed to having to pin
back to a centralized load balancing solution.

As a result load balancing vendors have had to adapt and produce virtualized
or containerized versions of their physical appliances to stay competitive with
open source software load balancing solutions, which are routinely used
with microservices.

Popular load balancing solutions
As applications have moved from monoliths to microservices, load balancing
requirements have undoubtedly changed. Today, we have seen a move towards
open source load balancing solutions, which are tightly integrated with virtual
machines and containers to serve east to west traffic between VPC in AWS
or a tenant network in OpenStack as opposed to pinning out to centralized
physical appliances.

Chapter 5

[127]

Open source load balancing solutions are now available from Nginx
and HAProxy to help developers load balance their applications or AWS
elastic load balancing feature:

https://aws.amazon.com/elasticloadbalancing/

Just a few years ago, Citrix NetScalers (https://www.citrix.com/products/
netscaler-adc/) and F5 Big-IP (https://f5.com/products/big-ip) solutions
had the monopoly in the enterprise load balancing space, but the load balancing
landscape has changed significantly with a multitude of new solutions available.

New load balancing start-ups such as Avi networks (https://avinetworks.com/)
focus on x86 compute and software solutions to deliver load balancing solutions,
which have been created to assist with both modern micros-service applications
and monolith applications to support both distributed and centralized load
balancing strategies.

The aim of this book is not about which load balancing vendor solution is
the best; there is no one size fits all solution, and the load balancing solution
chosen will depend on traffic patterns, performance, and portability that is
required by an organization.

This book will not delve into performance metrics; its goal is to look at the different
load balancing strategies that are available today from each vendor and the
configuration management methods that could be utilized to fully automate and
orchestrate load balancers which will in turn help network teams automate load
balancing network operations.

Citrix NetScaler
Citrix NetScaler provides a portfolio of products to service an organization's load
balancing requirements. Citrix provide various different products to end users, such
as the MPX, SDX, VPX, and more recently the CPX appliances, with flexible license
costs available for each product based on the throughput they support.

MPX and SDX are the NetScaler hardware appliances, whereas the VPX is a
virtualized NetScaler and the CPX is a containerized NetScaler.

https://aws.amazon.com/elasticloadbalancing/
https://www.citrix.com/products/netscaler-adc/
https://www.citrix.com/products/netscaler-adc/
https://f5.com/products/big-ip
https://avinetworks.com/

Orchestrating Load Balancers Using Ansible

[128]

All of these products support differing amounts of throughput based on the
license that is purchased (https://www.citrix.com/products/netscaler-adc/
platforms.html).

All of the Citrix NetScaler family of products share the same common set of APIs
and code, so the software is completely consistent. NetScaler has a REST API and a
Python, Java, and C# Nitro SDK, which exposes all the NetScaler operations that are
available in the GUI to the end user. All the NetScaler products allow programmatic
control of NetScaler objects and entities that need to be set up to control load
balancing or routing on MPX, SDX, VPX, or CPX.

The NetScaler MPX appliance is a centralized physical load balancing appliance
that is used to deal with a high number of Transactions Per Second (TPS); MPX has
numerous security features and complies with Restriction of Hazardous Substances
(RoHS) and Federal Information Processing Standard (FIPS), so the solution can be
used by heavily regulated industries that require businesses to comply with certain
regulatory standards.

MPX is typically used to do SSL offloading; it supports a massive amount of SSL
throughput, which can be very useful for very highly performant applications,
so the SSL offloading can be done on the hardware appliance.

MPX can be used to direct traffic to different tenant networks using layer 4 load
balancing and layer 7 context switching or alternately direct traffic to a second
load balancing tier.

The NetScaler SDX appliance is also a centralized physical appliance that is used to
deal with a high number of TPS. SDX allows multiple VPX appliances to be set up as
HA pairs and deployed on SDX to allow increased throughput and resiliency.

NetScaler also supports Global Server Load Balancing (GSLB), which allows load to
be distributed across multiple VPX HA pairs in a scale out model utilizing CNAME,
which directs traffic across multiple HA pairs:

https://www.citrix.com/products/netscaler-adc/platforms.html
https://www.citrix.com/products/netscaler-adc/platforms.html

Chapter 5

[129]

The VPX can be installed on any x86 hypervisor and be utilized as a VM appliance,
and a new CPX is now available that puts the NetScaler inside a Docker container,
so they can be deployed within a tenant network as opposed to being set up in a
centralized model. All appliances allow SSL certificates to be assigned and used.

Every NetScaler appliance, be it MPX, SDX, VPX, or CPX, utilize IP the same object
model and code that has the following prominent entities defined in software to
carry out application load balancing:

•	 Server: A server entity on NetScaler binds a virtual machine or bare metal
server's IP address to the server entity. This means the IP address is a
candidate for load balancing once it is bound to other NetScaler entities.

•	 Monitor: The monitor entity on NetScaler are attached to services or service
groups and provide health checks that are used to monitor the health of
attached server entities. If the health checks, which could be as simple as a
web-ping, are not positive, the service or service group will be marked as
down, and NetScaler will not direct traffic to it.

Orchestrating Load Balancers Using Ansible

[130]

•	 Service group: A service group is a NetScaler entity used to bind a group of
one or more servers to an lbvserver entity; a service group can have one or
more monitors associated with it to health check the associated servers.

•	 Service: The service entity is used to bind one server entity and one or more
monitor health checks to an lbvserver entity, which specifies the protocol
and port to check the server on.

•	 lbvserver: An lbvserver entity determines the load balancing policy such
as round robin or least connection and is connected to a service group entity
or multiple service entities and will expose a virtual IP address that can be
served to end users to access web applications or a web service endpoints.

•	 gslbvserver: When DNS load balancing between NetScaler appliances is
required, a gslbvserver entity is used to specify the gslb domain name
and TTL.

•	 csvserver: The csvserver entity is used to provide layer 7 context switching
from a gslbvserver domain or lbvserver IP address to other lbvservers. This
is used to route traffic using the NetScaler appliance.

•	 gslbservice: The gslbvservice entity binds the gslbvserver domain
to one or more gslbservers entities to distribute traffic across
NetScaler appliances.

•	 gslbserver: The gslbserver entities are is the gslb-enabled IP addresses of
the NetScaler appliances.

Simple load balancing can be done utilizing the server, monitor, service group/
service, and lbvserver combination. With gslbvserver and csvserver, context
switching allows more complex requirements for complex routing and resiliency.

F5 Big-IP
The F5 Big-IP suite is based on F5's very own custom TMOS real-time operating
system, which is self-contained and runs on Linux. TMOS has a collection of
operating systems and firmware, which all run on BIG-IP hardware appliances or
within the BIG-IP virtual instances. BIG-IP and TMOS (and even TMM) can be used
interchangeably depending on the use case.

TMOS is at the heart of every F5 appliance and allows inspection of traffic. It makes
forwarding decisions based on the type of traffic acting much in the same way as a
firewall would, only allowing predefined protocols to flow through the F5 system.

Chapter 5

[131]

TMOS also features iRules, which are programmatic scripts written using F5's very
own Tool Command Language (TCL) that enables users to create unique functions
triggered by specific events. This could be used to content switch traffic or red-
order HTTP cookies; TCL is fully extensible and programmable and can carry out
numerous operations.

The F5 Big-IP solution is primarily a hardware load balancing solution, that provides
multiple sets of physical hardware boxes that customers can purchase based on
their throughput requirements, and the hardware can be clustered together for
redundancy.

The F5 Big-IP suite provides a multitude of products that provide services catering
for load balancing, traffic management, and even firewalling.

The main load balancing services provided by the F5 Big-IP Suite are as follows:

•	 Big-IP DNS: F5's global load balancing solution
•	 Local traffic manager: The main load balancing product of the F5 Big-IP suite

The F5 Big-IP solution, like the Citrix NetScaler, implements an object model to
allow load balancing to be programmatically defined and virtualized. F5 allows SSL
certificates to be associated with entities.

The following local traffic manager object entities allow F5 Big-IP to load
balance applications:

•	 Pool members: The pool member entity is mapped to a virtual or physical
server's IP address and can be bound to one or more pools. A pool member
can have health monitors associated.

•	 Monitor: The monitor entity returns the status on specific pool members and
acts as a health check.

•	 Pool: The pool entity is a logical grouping of a cluster of pool members that
are associated; a pool can have health monitors associated with it as well as
Quality of Service (QoS).

•	 Virtual servers: The virtual server entity is associated with a pool or multiple
pools, and the virtual server determines the load balancing policy, such
as round robin or least connections. The F5 solution also will offer load
balancing solutions based on capacity or fastest connection. Layer 7 profiles
utilizing iRules can be configured against a virtual server and is used to
expose an IP address to access pool members.

•	 iRules: iRules utilize the programmatic TCL, so users can author
particular load balancing rules based on events such as context
switching to different pools.

Orchestrating Load Balancers Using Ansible

[132]

•	 Rate classes: Rate classes implement rate shaping, and they are used to
control bandwidth consumption on particular load balancing operations
to cap throughput.

•	 Traffic classes: Traffic class entities are used to regulate traffic flow based
on particular events.

Avi Networks
Avi Networks are a relatively new start-up but have a very interesting load
balancing product, which truly embraces the software-defined mandate. It is an
enterprise software load balancing solution that comprises the Avi Controller
that can be deployed on x86 compute. Avi is a pure software solution that deploys
distributed Avi service engines into tenant networks and integrates with an AWS
VPC and an OpenStack tenant:

The Avi Networks solution offers automated provisioning of load balancing services
on x86 hypervisors, and it can automatically scale out to meet load balancing needs
elastically based on utilization rules that users can configure.

The Avi Networks solution supports multiple or isolated tenants and has a
real-time application monitoring and analytics engine that can work out where
latency is occurring on the network and the location's packets are being routed from.

Avi also supports a rich graphical interface that shows load balancing entities
so users have a visual view of load balancing, and it additionally supports
anti-DDoS support.

All commands that are issued via GUI or API utilize the same REST API calls. The
Avi Networks solution supports a Python and REST API. The Net Networks object
model has numerous entities that are used to define load balancing in much the same
way as NetScalers and F5:

•	 Health monitor profile: The health monitor pool profile entity specifies
health checks for a pool of servers using health attributes.

Chapter 5

[133]

•	 Pool: The pool entity specifies the IP addresses of virtual or physical servers
in the form of a server list and has associated health monitor profiles; it also
allows an event to be specified using a data script if a pool goes down. One
or more pools are bound to the virtual service entity.

•	 Custom policy: The custom policy allows users to programmatically specify
policies against a virtual service.

•	 App profile: The app profile entity allows each application to be modeled
with associated http attributes, security, DDoS, caching, compression,
and PKI attributes specified as part of the app profile associated with a
virtual service.

•	 Analytics profile: The analytics profile makes use of the Avi analytics engine
and captures threat, metrics, health score as well as latency thresholds and
failure codes that are mapped to the virtual service entity.

•	 TCP/UDP profile: The TCP/UDP profile governs if TCP or UDP is used and
any DDoS L3/L4 profiles are set.

•	 SSL profile: The SSL entity governs SSL ciphers that will be used by a virtual
service entity.

•	 PKI profile: The PKI profile entity is bound to the virtual service entity and
specifies the certificate authority for the virtual service.

•	 Policy set: The policy set entity allows users to set security teams to set
policies against each virtual service governing request and response polices.

•	 Virtual service: The virtual service entity is the entry point IP address to the
load balanced pool of servers and is associated with all profiles to define the
application pools load balancing and is bound to the TCP/UDP, app, SSL,
SSL cert, policy, and analytics profiles.

Nginx
Nginx (https://www.nginx.com/) supports both commercial and open source
versions. It is an x86 software load balancing solution. Nginx can be used as both an
HTTP and TCP load balancer supporting HTTP, TCP, and even UDP, and can also
support SSL/TLS termination.

Nginx can be set up for redundancy in a highly available fashion using keepalived,
so if there is an outage on one Nginx load balancer, it will seamlessly fail over to a
backup with zero downtime.

Nginx Plus is the commercial offering and is more fully featured than the open
source version, supporting features such as active health checks, session persistence,
and caching.

https://www.nginx.com/
https://www.nginx.com/
https://www.nginx.com/

Orchestrating Load Balancers Using Ansible

[134]

Load balancing on Nginx is set up by declaring syntax in the nginx.conf file. It
works on the principle of wanting to simplify load balancing configuration. Unlike
NetScalers, F5s, and Avi Networks, it does not utilize an object model to define load
balancing rules, instead Nginx describes load balanced virtual or physical machines
as backend servers using declarative syntax.

In the following simple example, we see three servers, 10.20.1.2, 10.20.1.3, and
10.20.1.4, all load balanced on port 80 using Nginx declarative syntax, and it is
served on http://www.devopsfornetworking.com/devops_for_networking:

By default, Nginx will load balance servers using round-robin load balancing
method, but it also supports other load balancing methods.

The Nginx least_conn load balancing method forwards to backend servers with
the least connections at any particular time, whereas the Nginx ip_hash method of
load balancing means that users can tie the same source address to the same target
backend server for the entirety of a request.

This is useful as some applications require that all requests are tied to the same
server using sticky sessions while transactions are processed.

However, the proprietary Nginx Plus version supports an additional load balancing
method named least_time, which calculates the lowest latency of backend servers
based on the number of active connections and subsequently forwards requests
appropriately based on those calculations.

The Nginx load balancer uses a weighting system at all times when load balancing;
all servers by default have a weight of 1. If a weight other than 1 is placed on a
server, it will not receive requests unless the other servers on a backend are not
available to process requests. This can be useful when throttling specific amounts of
traffic to backend servers.

Chapter 5

[135]

In the following example, we can see that the backend servers have load balancing
method least connection configured. Server 10.20.1.3 has a weight of 5, meaning
only when 10.20.1.2 and 10.20.1.4 are maxed out will requests is sent to the
10.20.1.3 backend server:

By default, using round-robin load balancing in Nginx won't stop forwarding
requests to servers that are not responding, so it utilizes max_fails and fail_
timeouts for this.

In the following example, we can see server 10.20.1.2 and 10.20.1.4 have the
max_fail count of 2 and a fail_timeout of 1 second; if this is exceeded then Nginx
will stop directing traffic to these servers:

HAProxy
HAProxy (http://www.haproxy.org/) is an open source x86 software load balancer
that is session aware and can provide layer 4 load balancing. The HAproxy load
balancer can also carry out layer 7 context switching based on the content of the
request as well as SSL/TLS termination.

http://www.haproxy.org/
http://www.haproxy.org/

Orchestrating Load Balancers Using Ansible

[136]

HAProxy is primarily used for HTTP load balancing and can be set up in a
redundant fashion using keepalived configuration using two apache configurations,
so if the master fails, the slave will become the master to make sure there is no
interruption in service for end users.

HAProxy uses declarative configuration files to support load balancing as opposed
to an object model that proprietary load balancing solutions, such as NetScaler, F5
and Avi Networks, have adopted.

The HAProxy configuration file has the following declarative configuration sections
to allow load balancing to be set up:

•	 Backend: A backend declaration can contain one or more servers in it;
backend servers are added in the format of a DNS record or an IP address.
Multiple backend declarations can be set up on a HAProxy server. The
load balancing algorithm can also be selected, such as round robin or
least connection.
In the following example, we see two backend servers, 10.11.0.1 and
10.11.0.2, load balanced using the round-robin algorithm on port 80:

•	 Check: Checks avoid users having to manually remove a server from the
backend if for any reason, it becomes unavailable and this mitigates outages.
HAProxy's default health always attempts to establish a TCP connection to
the server using the default port and IP. HAProxy will automatically disable
servers that are unable to serve requests to avoid outages. Servers will only
be re-enabled when it passes its check. HAProxy will report whole backends
as unavailable if all servers on a backend have failed their health checks.
A number of different health checks can be put against backend servers by
utilizing the option {health-check} line item; for instance, tcp-check in the
following example can check on the health of port 8080 even though port 443
is being balanced:

Chapter 5

[137]

•	 Access Control List (ACL): ACL declarations are used to inspect headers
and forward to specific backend servers based on the headers. An ACL in
HAProxy will try to find conditions and trigger actions based on this.

•	 Frontend: The frontend declaration allows different kinds of traffic to be
supported by the HAProxy load balancer.

In the following example, HAProxy will accept http traffic on port 80, with
an ACL matching requests only if the request starts with /network and it is
then forwarded to the high-perf-backend if the ACL /web-network
is matched:

Load balancing immutable and static
infrastructure
With the introduction of public and private cloud solutions such as AWS and
OpenStack, there has been a shift towards utilizing immutable infrastructure
instead of traditional static servers.

This has raised a point of contention with pets versus cattle or, as Gartner defines it
bi-modal (http://www.gartner.com/it-glossary/bimodal/).

Gartner has said that two different strategies need to be adopted, one for new
microservices, cattle, and one for legacy infrastructure, pets. Cattle are servers that
are killed off once they have served their purpose or have an issue, typically lasting
one release iteration. Alternately, pets are servers that will have months or years of
uptime and will be patched and cared for by operations staff.

Gartner defines pets as Mode 1 and cattle as Mode 2. It is said that a cattle approach
favors the stateless microservice cloud-native applications, whereas a pet, on the
other hand, is any application that is a monolith, or potentially a single appliance or
something that contains data, such as a database.

Immutable infrastructure and solutions such as OpenStack and AWS are said by
many to favor only the cattle, with monoliths and databases remaining pets still
need a platform that caters for long-lived servers.

http://www.gartner.com/it-glossary/bimodal/
http://www.gartner.com/it-glossary/bimodal/

Orchestrating Load Balancers Using Ansible

[138]

Personally, I find the pets versus cattle debate to be a very lazy argument and
somewhat tiresome. Instead of dumping applications into two buckets, applications
should be treated as a software delivery problem, which becomes a question
of stateless read applications and stateful applications with caching and data.
Cloud-native microservice applications still need data and state, so I am puzzled
by the distinction.

However, it is undisputed that the load balancer is key to immutable infrastructure,
as at least one version of the application always needs to be exposed to a customer or
other microservices to maintain that applications incur zero downtime and remain
operational at all times.

Static and immutable servers
Historically, an operations team was used by companies to perform the following
operations on servers:

•	 Rack and cable
•	 Providing firmware updates
•	 Configuring the RAID configuration
•	 Installing an operating system
•	 Patching the operating system

This was all before making the servers available to developers. Static infrastructure
can still exist within a cloud environment; for example, databases are still typically
deployed as static, physical servers, given the volume of data that needs to be
persisted on their local disk.

Static servers mean a set of long-lived servers that typically will contain state.

Immutable servers, on the other hand, mean that every time a virtual machine is
changed, a new virtual machine is deployed, complete with a new operating system
and new software released on them, delete please. Immutable infrastructure means
no in-place changes to a server's state.

This moves away from the pain of doing in-place upgrades and makes sure that
snowflake server configurations are a thing of the past, where every server, despite
the best intentions, has drifted slightly from its desired state over a period of time.

How many times when releasing software has a release worked on four out of five
machines, and hours or days were wasted debugging why a particular software
upgrade wasn't working on a particular server.

Chapter 5

[139]

Immutable infrastructure builds servers from a known state promoting the
same configuration to quality assurance, integration, performance testing,
and production environments.

Parts of cloud infrastructure can be made completely immutable to reap these
benefits. The operating system is one such candidate; rather than doing in-place
patching, a single golden image can be created and patched using automation
tooling such as Packer in a fully automated fashion.

Applications that require a caching layer are more stateful by nature so that
cache needs to be available at all times to serve other applications. These caching
applications should be deployed as clusters, which are load balanced, and rolling
updates will be done to make sure one version of the cache data is always available.
A new software release of that caching layer should synchronize the cache to the new
release before the pervious release is destroyed.

Data, on the other hand, is always persistent, so can be stored on persistent storage
and then mounted by the operating system. When doing an immutable rolling
update, the operating system layer can mount the data on either persistent or
shared storage as part of the release process.

It is possible to separate the operating system and the data to make all virtual
machines stateless, for instance, OpenStack Cinder (https://wiki.openstack.
org/wiki/Cinder) can be utilized to store persistent data on volumes that can be
attached to virtual machines.

With all these use cases considered, most applications can be designed to be
deployed immutably through proper configuration management, even monoliths,
as long as they are not a single point of failure. If any applications are single points
of failure, they should be rearchitected as releasing software should never result in
downtime. Although applications are stateful, each state can be updated in stages so
that an overall immutable infrastructure model can be maintained.

Blue/green deployments
The blue green deployment process is not a new concept. Before cloud solutions
came to prominence, production servers would typically have a set of servers
consisting of blue (no live traffic) and green (serving customer traffic) that would
be utilized. These are typically known as blue and green servers, which alternated
per release.

https://wiki.openstack.org/wiki/Cinder
https://wiki.openstack.org/wiki/Cinder
https://wiki.openstack.org/wiki/Cinder

Orchestrating Load Balancers Using Ansible

[140]

The blue green model in simple terms means that when a software upgrade needed
to be carried out, the blue servers would be upgraded to the latest software version.
Once the upgrade had been completed, the blue servers would become the new
green servers with live traffic switched to serve from the newly upgraded servers.

The switching of live traffic was typically done by switching DNS entries to point at
the newly upgraded servers. So once the DNS Time To Live (TTL) had propagated,
end user requests would be served by the newly upgraded servers.

This means that if there was an issue with a software release, rollback could
be achieved by switching back the DNS entries to point at the previous
software version.

A typical blue green deployment process is described here:

Release 1.1 would be deployed on servers 1, 2, and 3 and served on a load balancer
to customers and made Green (live):

Release 1.2 would be deployed on servers 4, 5, and 6 and then be patched to the
latest patch version, upgraded to the latest release and tested. When ready, the
operations team would toggle the load balancer to serve boxes 4, 5, and 6 as the
new production release, as shown later, and the previously green (live) deployment
would become blue, and vice versa:

Chapter 5

[141]

When the operations team came to do the next release, servers 1, 2, and 3 would
be patched to the latest version, upgraded to Release 1.3 from Release 1.1, tested,
and when ready, the operations team would direct traffic to the new release using
the load balancer, making Release 1.2 blue and Release 1.3 green, as shown in the
following figure:

This was traditionally the procedure of running a blue green deployment using
static servers.

However, when using an immutable model, instead of using long-lived static
servers, such as Servers 1, 2, 3, 4, 5, and 6, after a release was successful, the
servers would be destroyed, as shown here, as they have served their purpose:

The next time servers 4, 5, and 6 were required, instead of doing an in-place upgrade,
three new virtual machines would be created from the golden base image in a
cloud environment. These golden images would already be patched up to the latest
version, so brand new servers 7, 8, and 9 with the old servers destroyed and the new
Release 1.4 would be deployed on them, as shown later.

Orchestrating Load Balancers Using Ansible

[142]

Once server 7, 8, and 9 were live, servers 1, 2, and 3 would be destroyed as they have
served their purpose:

Using Ansible to Orchestrate load
balancers
In Chapter 4, Configuring Network Devices Using Ansible, we covered the basics
of Ansible and how to use an Ansible Control Host, playbooks, and roles for
configuration management of network devices. Ansible, though, has multiple
different core operations that can help with orchestrating load balancers,
which we will look at in this chapter.

Delegation
Ansible delegation is a powerful mechanism that means from a playbook or role,
Ansible can carry out actions on the target servers specified in the inventory file by
connecting to them using SSH or WinRM, or alternately execute commands from the
Ansible Control Host. WinRM is the Microsoft remote management standard and the
equivalent of SSH for Windows that allows administrators to connect to Windows
guests and execute programs.

The following diagram shows these two alternative connection methods with the
Ansible Control Host either logging in to boxes using SSH or WinRM to configure
them or running an API call from the Ansible Control Host directly:

Chapter 5

[143]

Both of these options can be carried out from the same role or playbook using
delegate_to, which makes playbooks and roles extremely flexible as they can
combine API calls and server-side configuration management tasks.

An example of delegation can be found later where the Ansible extras HAProxy
modules are used, with delegate_to used to trigger an orchestration action that
disables all backend services in the inventory file:

Utilizing serial to control roll percentages
In order to release software without interruptions to service, a zero downtime
approach is preferable, as it doesn't require a maintenance window to schedule a
change or release. Ansible supports a serial option, which passes a percentage value
to a playbook.

The serial option allows Ansible to iterate over the inventory and only carry out the
action against a percentage of the boxes, completing the necessary playbook, before
moving onto the next portion of the inventory. It is important to note that Ansible
passes inventory as an unordered dictionary, so the percentage of the inventory that
is processed will not be in a specific order.

Orchestrating Load Balancers Using Ansible

[144]

Using the serial option that a blue/green strategy could be employed in Ansible, so
boxes will need to be taken out of the load balancer and upgraded before being put
back into service. Rather than doubling up on the number of boxes, three boxes are
required, as shown in the following image, which all serve Release 1.4:

Utilizing the following Ansible playbook, using a combination of delegate_to and
serial, each of the servers can be upgraded using a rolling update:

The playbook will execute the following steps:

1.	 The serial 30% will mean that only one server at a time is upgraded. So,
Server 7 will be taken out of the HAProxy backend_nodes pool by disabling
the service calling the HAProxy using a local delegate_to action on the
Ansible Control Host. A yum update will then be executed to upgrade the
server version new application1 release version 1.5 on server 7, as follows:

Chapter 5

[145]

2.	 Server 7 will then be enabled again and put into service on the load balancer
using a local delegate_to action. The serial command will iterate onto
server 8 and disable it on HAProxy, before doing a yum update to upgrade
the server version new application1 release version 1.5, as follows:

Orchestrating Load Balancers Using Ansible

[146]

3.	 The rolling update will then enable Server 8 on the load balancer, and
the serial command will iterate onto Server 9, disabling it on HAProxy
before doing a yum update, which will upgrade the server with the new
application1 release version 1.5 alternating when necessary between
execution on the local server and the server, as shown here:

4.	 Finally, the playbook will finish by enabling server 9 on the load balancer,
and all servers will be upgraded to Release 1.5 using Ansible as follows:

Chapter 5

[147]

Dynamic inventories
When dealing with cloud platforms, using just static inventories is sometimes not
enough. It is useful to understand the inventory of servers that are already deployed
within the estate and target subsets of them based on characteristics or profiles.

Ansible has an enhanced feature named the dynamic inventory. It allows users to
query a cloud platform of their choosing with a Python script; this will act as an
autodiscovery tool that can be connected to AWS or OpenStack, returning the server
inventory in JSON format.

This allows Ansible to load this JSON file into a playbook or role so that it can be
iterated over. In the same way, a static inventory file can be via variables.

The dynamic inventory fits into the same command-line constructs instead of
passing the following static inventory:

ansible-playbook –i inevntories/inevtontory –l qa –e current_build=9
playbooks/add_hosts_to_netscaler.yml

Then, a dynamic inventory script, openstack.py, for the OpenStack cloud provider
could be passed instead:

ansible-playbook –i inevntories/openstack.py –l qa –e environment=qa
playbooks/devops-for_networking.yml

The dynamic inventory script can be set up to allow specific limits. In the preceding
case, the only server inventory that has been returned is the quality assurance
servers, which is controlled using the –l qa limit.

When using Ansible with immutable servers, the static inventory file can be utilized
to spin up new virtual machines, whereas the static inventory can be used to query
the estate and do supplementary actions when they have already been created.

Tagging metadata
When using dynamic inventory in Ansible, metadata becomes a very important
component, as servers deployed in a cloud environment can be sorted and filtered
using metadata that is tagged against virtual or physical machines.

When provisioning AWS, Microsoft Azure, or OpenStack instances in a public or
private cloud, metadata can be tagged against servers to group them.

Orchestrating Load Balancers Using Ansible

[148]

In the following example, we can see a playbook creating new OpenStack servers
using the os_server OpenStack module. It will iterate over the static inventory,
tagging each newly created group, and release metadata on the machine:

The dynamic inventory can then be filtered using the –l argument to specify boxes
with group: qa. This will return a consolidated list of servers.

Jinja2 filters
Jinja2 filters allow Ansible to filter a playbook or role, allowing it to control which
conditions need to be satisfied before executing a particular command or module.
There are a wide variety of different jinja2 filters available out of the box with
Ansible or custom filters can be written.

An example of a playbook using a jinja2 filter would only add the server to the
NetScaler if its metadata openstack.metadata.build value is equal to the
current build version:

Chapter 5

[149]

Executing the ansible-playbook add_hosts_to_netscaler.yml command with a
limit –l on qa would only return boxes in the qa metadata group as the inventory.
Then, the boxes can be further filtered at playbook or role using the when jinja2 filter
to only execute the add into load balancer pool command if the openstack.
metadata.build number of the box matches the current_build variable of 9:

ansible-playbook –I inevntories/openstack.py –l qa –e environment=qa –e
current_build=9 playbooks/add_hosts_to_netscaler.yml

The result of this would be that only the new boxes would be added to the NetScaler
lbvserver VIP.

The boxes could be removed in a similar way in the same playbook with a not equal
to condition:

This could all be combined along with the serial percentage to roll percentages of
the new release into service on the load balancer and decommission the old release
utilizing dynamic inventory, delegation, jinja2 filters, and the serial rolling update
features of Ansible together for simple orchestration of load balancers.

Creating Ansible networking modules
As Ansible can be used to schedule API commands against a load balancer, it can
be easily utilized to build out a load balancer object model that popular networking
solutions, such as Citrix NetScaler, F5 Big-IP, or Avi Networks, utilize.

With the move to microservice architectures, load balancing configuration needs to
be broken out to remain manageable, so it is application-centric , as opposed to living
in a centralized monolith configuration file.

This means that there are operational concerns when doing load balancing changes,
so Ansible can be utilized by network operators to build out the complex load
balancing rules, apply SSL certificates, and set up more complex layer 7 context
switching or public IP addresses and provide this as a service to developers.

Orchestrating Load Balancers Using Ansible

[150]

Utilizing the Python APIs provided by load balancing vendors, each operation could
then be created as a module with a set of YAML var files describing the intended
state of the load balancer.

In the example mentioned later, we look at how Ansible var files could be utilized
by developers to create a service and health monitor for every new virtual server
on a NetScaler. These services are then bound to the lbvserver entity, which was
created by the network team, with a roll percentage of 10%, which can be loaded into
the playbook's serial command. The playbook or role is utilized to create services,
lbmonitors, 34 servers and bind services to lbvservers, whereas the var file describes
the desired state of those NetScaler objects:

Summary
In this chapter, we saw that the varied load balancing solutions are available
from proprietary vendors to open source solutions, and discussed the impact
that microservices have had on load balancing, moving it from a centralized to
distributed model to help serve east-west traffic.

We then looked at blue/green deployment models, the merits of immutable and
static servers, and how software releases can be orchestrated using Ansible in either
model. In the process, we illustrated how useful Ansible is at orchestrating load
balancers by utilizing dynamic inventory, rolling updates, delegation, and jinja2
filters can all be used to help fulfill load balancing requirements.

Chapter 5

[151]

The key takeaways from this chapter are that microservice applications have
changed the way applications need to be load balanced, and distributed load
balancing is better suited when deploying microservice applications, which have
more east-west traffic patterns.

The reasons that immutable infrastructure is well-suited to microservice applications
should now be clear.. The chapter also defined ways that state and data can be
separated from the operating system and that different rolling update models are
required to support stateless and stateful applications. In the next chapter, we will
look at applying these same automation principles to SDN Controllers, primarily
focusing on the Nuage solution. It will cover configuring firewall rules and other
SDN commands, so the whole network can be programmatically controlled
and automated.

[153]

Orchestrating SDN
Controllers Using Ansible

This chapter will focus on SDN controllers and the ways they can enable network
teams to simplify their daily tasks.

We will look at why SDN Controllers have been adopted and highlight some of the
immediate business benefits they will bring if utilized correctly. It will focus on ways
in which network operations need to be divided so network operations can scale, by
utilizing automation.

This chapter will discuss the benefits of utilizing software-defined networking and
look at practical configuration management processes that can be used to orchestrate
SDN Controller APIs and object models. Finally, we will look at how Ansible can be
used to execute and wrap some of these configuration management processes, using
Nuage VSP as a practical example.

In this chapter, the following topics will be covered:

•	 Arguments against software defined networking
•	 Why would a company utilize SDN?
•	 Splitting up network operations
•	 Immutable networking
•	 Using Ansible to orchestrate SDN controllers

Orchestrating SDN Controllers Using Ansible

[154]

Arguments against software-defined
networking
With the emergence of public clouds such as AWS, Microsoft Azure, and Google
Cloud, networking is now being treated more like a commodity and has moved from
silicon to software. This has allowed developers the ability to mutate the network to
best serve the applications, rather than retrofit applications into an aging network,
that is probably not optimized for modern microservice applications.

It would therefore seem nonsensical if any business would want to treat their
internal data center networking any differently. However, like all new ideas, before
acceptance and adoption comes fear and uncertainty, inherently co-related with the
new or different ways of working.

Common arguments against using a clos Leaf-Spine architecture and SDN
controllers center around one common theme, that it requires change and change is
hard. We then harp back to the mythical 8th layer of the OSI model, and that is the
User layer:

The network operators have to feel comfortable with any solution that is
implemented. This is very important, but by the same token, the User layer is equally
important as it is the networking service provided by the network team to end
users. So ease of use is important on two levels, both network operations and
the self-service operations provided to the consumers of the network.

Chapter 6

[155]

Before a company considers putting in software-defined networking, they need
to be doing it for the correct reasons and make it requirements-based. Simply
implementing a new tool, in this case an SDN Controller, will not solve operational
issues alone.

Organizations need to work out what the new operational model should be and
utilize software-defined networking as a facilitator for those new business processes,
focusing on speed of operations with the aim of removing networking as the
bottleneck for application delivery. In short, network operations need to be
DevOps friendly or they will inhibit software delivery and slow down the
whole application lifecycle.

Added network complexity
Some of the arguments used against using overlay networks are that they are more
complex than traditional layer 2 networks, with many more moving parts that could
cause a bigger variety of failures.

Although the constructs of an overlay and underlay network may be different, it
is fair to say software-defined networking is still a relatively new concept and a
lot of people fear change. As long as the base requirements in terms of network
availability, redundancy, performance, and speed of change are met, then there
should be no reason not to implement software-defined networking.

The fear of software-defined overlay networks can be likened to operations staff's
initial skepticism towards server virtualization when they initially argued against
the introduction of hypervisors. These new concepts were initially viewed as an
added layer of complexity and added abstraction layer that would probably not be
as performant.

However, the portability and opportunities introduced by running a hypervisor
greatly outweighed any performance implications for the vast majority of
application use cases. The benefits included increased portability, flexibility,
and speed of operations.

There are of course edge cases and some applications that don't fit into the
virtualized model, but the benefits that virtualization brings for 99 percent of
the data center mean that as a business solution it can't really be ignored.

Overlay networks give the same benefits to networking as hypervisors did to servers.
Of course, when implementing a software-defined overlay network, the underlay
should be built for redundancy, so that if a failure occurs, it occurs on the underlay
and does not impact the overlay.

Orchestrating SDN Controllers Using Ansible

[156]

The underlay network should be horizontally scaleable and simple, in the case of
a Leaf-Spine architecture, which has a series of Spine switches connected to Leaf
switches that sit on top of each rack. The introduction of more racks paired with
Leaf switches, or even a new Spine to prevent over-subscription of links, allow
horizontal scalability.

On the topic of overlay networks adding complexity, Any systems reliability
engineer or network engineer that has spent hours debugging an ill-performing
link in a layer 2 Spanning Tree network will testify that Spanning Tree networks
are themselves very complex by nature. The systems reliability engineer or network
engineer will also probably be able to show you the network diagram they had to
draw in an attempt to solve the issue as evidence of the complexity.

So networks are complex beasts at the best of times; however, when utilizing
underlay and overlay networks, the main focus on the underlay network should be
horizontal scalability and performance. It should ensure that network operators can
easily scale out the network based on demand.

Alternatively, the focus of the overlay network is simplicity, so it should have
easy-to-understand software constructs while at the same time ensure that the API
endpoints can cope with the desired number of concurrent requests from consumers.

If implemented correctly, networks should be componentized into two distinct
sections. The overlay user friendly software, much like AWS, Microsoft Azure,
Google Cloud, or OpenStack, and the underlay is the gritty, hardcore, networking
that needs to be well designed by a network architect and built for scale.

Lack of software-defined networking skills
Another argument against not implementing a software-defined network is lack
of skills in the industry currently; with any new technology there is initially a lack
of skilled people to support it. One viewpoint is that companies will have to hire
completely new staff to implement software defined networking.

However, this can be offset by partnering with an SDN vendor or utilizing provided
training programs for staff. It is a business transformation and as such, network staff
will need to build new skills over a period of time.

But networking staff will need to evolve with the changes software-defined
networking bring and build new skills like other teams in IT. Implementing software
defined networking is a big change at first, but good networking staff should be
excited and embrace these changes. The efficiency and benefits that can be had
from implementing software-defined networking are undeniable.

Chapter 6

[157]

Change can be daunting at first and can seem like a monumental cultural shift or
effort at times. To initiate successful change in large or even small companies it
usually has to come with top-down sponsorship or backing.

Adopting software-defined networking will mean changing the business's
operational model and automation will need to be embraced at every level; network
tasks in the overlay simply can't be manual when using an SDN controller. An
organization implementing software-defined networking also needs to look at ways
of automating the underlay. In this book we have already looked at ways in which
APIs can be utilized to configure network devices, so really, both the underlay and
overlay need to be automated.

The term software-defined data center is somewhat overused by vendors, but the
principles behind it can't be ignored if a network team wants to provide a great
user experience to the rest of the business. If a company puts in a software-defined
networking solution as a standalone initiative, then it will add no true value if
automation isn't written to speed up network operations utilizing the rich set of
APIs that are provided. If companies are going to put in a software-defined network
and have network engineers manually enter commands on network devices or use
a GUI, the company may as well not bother, as they can do that with any out-of-the-
box switch or router; they are wasting the opportunity a software-defined overlay
network offers.

Just putting in the software-defined networking solution and still having developers
raise network tickets will give zero business value; it will not increase efficiency, time
to market, or the reliability of changes. To ensure organizations extract the significant
business benefits out of software-defined networking, you need an all-or-nothing
approach; network operations are either completely automated or over time become
fragmented and broken.

If network engineers persist with doing manual updates outside the
automated workflows, then it has the opportunity to break the whole
operational mode. It changes the desired state of the network, and it could
break the automation completely.

When putting in software-defined networking, automate all the common operations
first and allow developers to serve themselves and make it immutable if possible.
Being able to rebuild the network from source control management systems should
be the aim as it acts as a record of change.

In Chapter 3, Bringing DevOps to Network Operations, we looked at ways of initiating
cultural change. Humans are creatures of habit, they tend to stick with what they
know; network engineers have spent years gathering networking certifications on
ways to configure Spanning Tree algorithms and layer 2 networks, so this is a huge
cultural shift.

Orchestrating SDN Controllers Using Ansible

[158]

Stateful firewalling to support regularity
requirements
One of the main issues highlighted with software-defined networking has been the
lack of stateful firewalling, due to Open vSwitch being based on flow data and being
traditionally stateless. Until recently, reflexive rules were utilized to emulate stateful
firewalling at the kernel user space level.

However, recent feature developments with Open vSwitch has allowed stateful
firewalling to be implemented. So the lack of stateful firewalling is no longer an issue
with Open vSwitch. Connection tracking (conntrack), previously only available
as part of iptables, has now been decoupled from iptables, meaning that it is now
possible to match on connections as well as flow data.

The Nuage VSP platform has introduced stateful firewalling as part of its 4.x release.
The Nuage VSP platform has replaced reflexive rules for stateful rules, to govern
all ICMP and TCP ACL rules on the Nuage VRS (Nuage's customized version of
Open vSwitch):

Chapter 6

[159]

Why would organizations need
software-defined networking?
Any good enterprise networks should be built with the following goals in mind:

•	 Performance
•	 Scalability
•	 Redundancy

The network, first and foremost, needs to be performant to meet customer needs.
Customers can be end users in the data center or end users of the application in the
public domain. With Continuous Delivery and deployment, if networking blocks a
developer in a test environment, it is hampering a potential feature or bug fix reaching
production, so it is not acceptable to have sub-standard pre-production networks and
they should be designed as scaled-down functional replicas of production.

Scalability focuses on the ability to scale out the network to support company growth
and demand. As more applications are added, how does the network horizontally
scale? Is it cost effective? Can it easily be adapted to cater for new services such as
third-party VPN access or point-to-point network integration? All these points need
to be given proper consideration when creating a flexible and robust network design.

Redundancy is built on the concept that any enterprise network should have no single
points of failure. This is so that the network can recover from a switch failure or
an issue with a core router and not cause outages to customers. Every part of the
network should be set up to maximize uptime.

These three points seem to have been the staple on which good networks were
designed and built in the past. However, as applications have moved from
monoliths to microservices, additional requirements are necessary for successful
network operations.

Traditionally, monolithic applications have tended to have one setup operation and
then remained fairly static, while microservice applications on the other hand have
required more dynamic networks that are subject to greater variance of change.

The needs of the modern network have evolved and networks need to be updated
rapidly to deal with the requirements of microservice architectures, without having
to wait on a network engineer to process a ticket. With Continuous Delivery forming
feedback loops, it is imperative that the process is quick and lean, and issues can be
fixed quickly otherwise the whole process will break down and grind to a stand-still.

Orchestrating SDN Controllers Using Ansible

[160]

Software-defined networking adds agility and
precision
Software-defined networking or in particular overlay networking, still focuses on
performance, scalability, and redundancy; they should never be compromised, but also
introduces the following benefits:

•	 Agility
•	 Mean time to recover
•	 Precision and repeatability

Software-defined networking puts the network into a software overlay network
with associated object model, which allows the network to be programmable by
exposing a rich set of APIs. This means that workflows can be used to set up
network functions, the same way infrastructure can be controlled in a cloud
or virtualization environment.

As the network is programmable, requesting a new subnet or making an ACL
change can be done as quickly as spinning up a virtual machine on a hypervisor.
Software-defined networking removes the traditional blockers or operational
inhibitors. These have often included being required to raise a ticket to a network
operation team to mutate the network, which was subject to a lengthy change control
process. Instead, when utilizing software-defined networking, a developer can
control a subnet of network operations via an API call so changes can be carried
out at pace.

Mean time to recover has also improved when utilizing software-defined networking
because network changes are programmable, so network inventory can be stored
in source control management systems. This versions the network so any change
is delivered via source control management and allows network changes to be
modular, auditable, and easy to track.

If a breaking change has occurred to the overlay network, a version tree in the source
control management system can be used to see what has changed since the network's
last working release. The same programmable script can then be used to quickly roll
back the network change back to the previous version and remove the issue. This
is, of course, the beauty of implementing an immutable network rather than static
networks, where the state is always as clean as the day one network and can be
rolled forward or back on demand.

Repeatability in software-defined networking is catered for using programmatic
operational workflows, so that all network changes are carried out in an identical
way by all users. These operations can be executed using the API workflows
approved by the network team against the overlay network.

Chapter 6

[161]

The use of programmatic workflows means that network changes can be integrated
into application deployment processes such as Continuous Delivery. This means
network changes, like code, will be checked into source control management
systems, pushed to a test environment using programmatic workflow actions
(to manage the desired state of the network), tested and verified, and only then
promoted onto the next test environment or production.

This repeatability of using an overlay network ensures all the constructs of a quality
assurance test environment can be the same as a production environment, as all
networking constructs are described in software and are easy to reproduce.

A good understanding of Continuous Delivery
is key
Organizations looking to utilize software-defined networking should ideally already
have a well-established Continuous Delivery model for code and infrastructure
before tackling network operations. Companies committed to investing in a DevOps
transformation would also benefit greatly from designing their new operational
model around a software-defined network.

Companies which have mandated their business functions to automate all IT
operations, inclusive of networking functions, would receive immeasurable
quantifiable benefits from using an SDN controller to help their teams automate
the network. Companies with an inherit understanding of DevOps, continuous
integration, and Continuous Delivery are more likely to utilize SDN controllers to
their full capabilities and drive innovation.

To emphasize the point, if overlay networks are modified by network engineers by
hand rather than programmatically, it will bring no business value and the company
will have missed the point.

Operational models need to change when implementing software-defined
networking and if an issue occurs it needs to be built back into the automation to
fix the issue so it doesn't re-occur. Any complex process, when initially automated,
will probably hit some unexpected edge cases and fail under unexpected conditions.
As a result, it is important that automated processes are continually iterated and
improved on. Having teams adopt a continuous improvement methodology will
ensure that automated processes are iterated and improved so they become more
and more robust over time.

Orchestrating SDN Controllers Using Ansible

[162]

It is important to appreciate that edge cases will occur and to not panic when they
do; fixing a problem with the automation fixes it for all users, but by the same token
a problem with the automation can cause multiple users to be impacted, so it is a
double-edged sword. Creating sufficient testing when creating automated processes
to try and catch these edge cases in test environments becomes vitally important.

One of the benefits automation brings is that that all changes can be carried out
with the precision of a highly skilled network engineer who can supply all their
knowledge to automation. This means that every automated network change is
done with the same care and precision as the best network engineer in the company.

The pre-approved and well-defined changes to automated workflows can be carried
out by anyone in the company, not just the best engineer, if they are automated, so
the bottleneck is removed from the network team freeing them up to work on more
interesting tasks than the mundane repeatable Business as Usual (BAU) tasks that
are more accurately done using automation.

Simplifying complex networks
Organizations that have very complex legacy networks would also be a prime
candidate for benefiting from software-defined networking instead of fixing the
existing network, which may not be possible due to having to adhere to 99 percent
uptime targets. Instead, a new green-field network could be created in parallel with
the existing network.

This will allow application workloads to be migrated to the new network over time
and simplify the complexity of the existing network in the process. During the period
of migration where both the new green-field network and old legacy network
co-exist, the SDN overlay network can be used to route back to the legacy
network for application dependencies that have yet to be migrated.

Another benefit of software-defined networking is that it allows private cloud
solutions to run at increased scale. If private clouds are running more than 100
hypervisors, this is a scale at which an SDN solution would be of benefit, such as
extending OpenStack Neutron capabilities to allow companies to run OpenStack
at scale, as opposed to deploying multiple smaller OpenStack clouds to cope
with bottlenecks.

Splitting up network operations
With the introduction of software-defined networking in a company or business
there has to be a shift in operational responsibilities. If an organization runs multiple
microservice applications, a fairly typical situation is that a company has 100
developers that develop those 200 microservices.

Chapter 6

[163]

Each of those 200 microservices are combined together to deploy the company's
customer facing website.

The company may use agile software development so each of the 100 developers are
split into a set of delivery teams that contain 10 or so developers, each forming scrum
teams, and each delivery team looks after a set amount of microservices relative to
their complexity.

The company has 10 network engineers that are required to serve the networking
needs of the 100 developers, as well as maintaining uptime of the network.

However, in this model, if all network operations are done manually, then the
network engineers will not be able to keep up with the necessary change requests,
so they will either have to work late nights and subsequently become burned out,
so their productivity will drop. In this model, they are in reactive firefighting mode.

In this model, the productivity of the developers will probably be impacted too
as the network engineers will become the bottleneck for throughput. The model
described will simply not scale, so operational change is required.

In the scenario described, one network engineer will be required for every ten
developers, and in future as the company expands it will want to invest in
development staff to create more products. It is undoubtedly a harder sell for
organizations to scale up their network teams to support those network operations,
so network automation becomes a must in this scenario and the network team needs
to work smarter.

Introducing new products and developers without changing the way a networking
team operates can lead to burnout, so a network engineer will be able to support
ten developers but not 20 when doing all network operations manually. Therefore,
considering the developer to network engineer ratio is important when making the
case for automation, as shown:

Orchestrating SDN Controllers Using Ansible

[164]

The business may then look at software-defined networking as the solution to solve
their scaling problems, with the mindset of simplifying the network. This means
that network engineers can carry out network changes more quickly to support
developer demand.

But simply putting in a software defined networking solution such as CISCO ACI,
Juniper Contrail, VMware NSX, or Nuage Networks will not help the situation
unless processes are automated and the inefficient business processes are addressed.

New responsibilities in API-driven networking
The role of a network engineer in a software-defined network therefore has to
evolve; they have to devolve some power to the developers like operations staff were
required to for the creation of the infrastructure. But software-defined networking
shouldn't mean giving complete, open access of the API to developer. This is also a
recipe for disaster. Efficient controls need to be put in place that act as a quality gate,
not as an inhibitor of productivity.

Some operational workflows in an overlay network should still be controlled by a
qualified network engineer and governed by security, but not to the detriment of
developer's productivity and requirements.

It wouldn't be fair to expect a developer to be well versed enough in networking to
log onto a router and set up their routing requirements for their application unaided,
so there has to be some middleground.

Allowing a developer access to network devices in an uncontrolled manner
poses the risk of a network outage, which goes against one of the three main
networking principles and compromises redundancy, and network engineers
have a responsibility for uptime of the system.

Overlay architecture setup
When setting up an overlay network, it will normally be built in a green-field
environment as part of an application migration program and target environment
for a legacy network. The application migration could either be done in a piecemeal
format or done in one step, where everything is migrated, then switched on as part
of a migration big bang, go live activity.

Regardless of the application migration approach, it is very important that the
overlay network is set up to achieve the following goals:

•	 Agility
•	 Minimize mean time to recover

Chapter 6

[165]

•	 Repeatability
•	 Scalability

The performance of the network will be determined by the underlay components
and silicon used, but the definition of the overlay network in terms of constructs
and workflow of the SDN object model need to be correct to make sure that any
operation can easily be carried out quickly, is repeatable, and that the design scales
and can support roll-back. The SDN before implementation should be performance
tested to make sure the virtualization overhead does not impact performance.

So, let's quickly recap on the Nuage VSP object model that was covered in Chapter 2,
The Emergence of Software-defined Networking:

•	 Organization: Governs all layer 3 domains

•	 Layer 3 domain template: A Company L3 Domain Template is required
before child layer 3 domains are created. The Company L3 Domain
Template is used to govern overarching default policies that will be
propagated to all child layer 3 domains. If a Company L3 Domain Template
is updated at template level, then the update will be implemented on all
layer 3 domains that have been created underneath it, immediately.

•	 Layer 3 domain: Can be used to segment different environments so users
cannot hop from subnets deployed in a layer 3 Test domain to a layer 3
Production domain.

Orchestrating SDN Controllers Using Ansible

[166]

•	 Zones: A zone segment's firewall policies are at application level, so each
micro-service application can have its own zone and associated Ingress and
Egress policy per layer 3 domain.

•	 Layer 3 Subnet: This is where VMs or bare-metal servers are deployed. In
this example, we see Subnet Application1 and Subnet Application2:

•	 Application Specific Egress Policy: Unique application policies for
Egress rules that can be used to view each individual application's
connectivity rules:

Chapter 6

[167]

•	 Application Specific Ingress Policy: Unique application policies for ingress
rules that can be used to view each individual application's connectivity
rules:

•	 Leaking Domain: This is used to leak routes into the overlay network via a
layer 3 subnet to bridge connectivity between the green-field network and a
legacy network:

Orchestrating SDN Controllers Using Ansible

[168]

So, utilizing Nuage VSP as an example, we had an organization with
two layer 3 domains dictating Test and Production, with a zone for each
micro-service application encapsulating its unique micro-subnets and
virtual machines:

In terms of network setup, automation could be used by the network
team and they would be in control of the following constructs in the
overlay network:

•	 Organization: Governs all layer 3 domains:

•	 Layer 3 domain template: Used to govern default policies:

•	 Layer 3 domain: Used to separate responsibilities between environments
such as development and production:

Chapter 6

[169]

•	 Leaking Domain: Used to make the legacy network accessible from the
overlay network:

The organization is most likely a day-one setup activity, while the domain template
policies can be defined and dictated by the network and security team. Any
security policies applied across all networks, regardless of the domain they are
deployed in, are governed by the domain template. So test environments will have
identical template policies to production and meet all security, governance, and
regularity requirements.

Development teams then have the ability to create unique test environments under
the Test layer 3 domain with the same subsequent policies, without the need for
the network team to audit each and every one. The application security rules that
developers use can then be agreed between security and development teams without
network teams having to become involved directly unless they are asked to advise
on particular best practice ways of setting up ACL rules.

The other day-one setup activity will probably be setting up access to a legacy
network that teams will be migrating applications from for a time, so they will
still have dependent applications residing in that network.

Nuage VSG, which is a hardware gateway device that connects external networks to
the Nuage VSP platform and its associated leaking domain, can be used to do this.
The Nuage VSG leaks routes from external networks into the overlay network and
into specific layer 3 domains.

Orchestrating SDN Controllers Using Ansible

[170]

The Nuage VSP Platform allows network teams to define the GRThubDomain
leaking domain in software that utilizes VSG. In this example, a leaking domain is set
as IP host interfaces are connected into the Front End, Business Logic and Back End
routers in the legacy network:

The Nuage VSP platform then allows the newly-created GRThubDomain to be
associated with the Production or Test layer 3 domains by associating a leaking
domain against them.

In the following example, the GRThubDomain leaking domain is associated with
the Production layer 3 domain to allow legacy network routes to be accessible from
zones and subnets residing under the Production layer 3 domain:

The network team will also be responsible for monitoring the network underlay and
making sure that it is scaled out appropriately as more compute is introduced, so
Leaf switches will be introduced and ordered as and when new racks are scaled out,
while new Spine switches are introduced to avoid the saturation of links.

Chapter 6

[171]

Self-service networking
It is important to focus on the network operations that developers typically require
network tickets for as a start point. These are the common pain points for developers
that prove to be blockers to productivity. Network operations can be effectively
separated by looking at the common themes on network ticketing systems that have
been raised by development teams.

These are the more mundane BAU operations that network operators should make
self-service:

•	 Opening firewall ports
•	 Creation of new development environments
•	 Connectivity to other applications

These operations should be set up as self-service operations in a software-defined
network.

In terms of the Nuage VSP object model, network operators should allow developers
the ability to control the following object model entities:

•	 Zones: They encapsulate a microservice application:

Orchestrating SDN Controllers Using Ansible

[172]

•	 Layer 3 Subnet: These define the IP range available to a microservice
application

•	 Application Specific Egress Policy: This defines the Egress ACL policies for
the microservice application:

•	 Application Specific Ingress Policy: This defines the Ingress ACL policies
for the microservice application:

Chapter 6

[173]

This will allow the network operations team to provide development teams with the
organization, layer 3 domains, and the layer 3 domain template.

Underneath either the Test or Production layer 3 domains, development teams have
the flexibility to create new zones unique to each microservice application, then any
associated subnets and virtual machines that they need to provision.

The subnets will be micro subnets, so something akin to a /26, /27, or /28 may
be acceptable. The network team will provide the subnet schema and a booking
system where teams can reserve the address space in an IPAM solution if they are
on-boarding an application or creating a new application, to prevent clashes with
other teams.

As long as each delivery team follows those constructs, the networking team does
not need to be involved in the provisioning of new applications or onboarding, it will
become self-service, like AWS, Microsoft Azure, or Google Cloud.

However, in order to properly facilitate development teams, the network team
should ideally create the self-service automation that the development teams can
use to carry out the following in Nuage VSP along with the operations team:

•	 Creation of zones
•	 Deletion of zones
•	 Creation of subnets
•	 Deletion of subnets
•	 Creation of Ingress rules
•	 Deletion of Ingress rules
•	 Creation of Egress rules
•	 Deletion of Egress rules
•	 Creation of network macros (external subnets)
•	 Deletion of network macros (external subnets)

No matter the SDN solution implemented, the self-service constructs required will
be similar, in order to scale network operations, a lot of the operations have to be
automated and made self-service.

Ideally, these self-service workflow actions could be added to Ansible playbooks or
roles and included in the deployment pipelines to provision the networking along
with the infrastructure.

Orchestrating SDN Controllers Using Ansible

[174]

Immutable networking
To fully take advantage of the benefits of software-defined networking, utilizing
immutable networking brings multiple benefits over static networking. Like
infrastructure as code before it, networking as code and the utilization of immutable
networking means that every time an application is deployed, its networking is
freshly deployed from a source control management system that describes the
desired state of the network. This means that network configurations don't drift
over time.

Using a networking as code model to drive immutable networking allows
application connectivity to be tested prior to production. Test environments
mirroring production should be used to check application connectivity prior to
releasing any network changes to production.

Implementing network changes as part of a Continuous Delivery model means
that if application connectivity is proven to be wrong when it is tested in a test
environment, then the application connectivity will be wrong in production
environments. As a result, wrong connectivity changes should never reach
production and should be caught prior to production by creating feedback loops that
alert teams that the network change is not fit for purpose. Catching such issues will
prevent outages and application downtime.

A/B immutable networking
Networking, as a result, should ideally be integrated and become part of the
application release cycle, with networks being built from scratch every single release
and loaded from the source control management system. Networks can be deployed
using immutable A/B networking.

Using the Nuage VSP integrated with OpenStack as an example:

•	 A network will reside under a layer 3 domain
•	 Each zone will be unique to a particular microservice application
•	 Underneath the zone, a subnet will be created in both Nuage and OpenStack
•	 Virtual machines for each release will be created in OpenStack and associated

with the Nuage subnet

Chapter 6

[175]

The first release of Application1 version 1.1 is deployed to the Test layer 3 domain,
deploying two virtual machines on Subnet A Application1, sitting under the
Application1 zone:

The second release of application version 1.2 is deployed to the Test layer 3
domain, scaling down the release and deploying one virtual machine on Subnet B
Application1, sitting under the Application1 zone:

Once release 1.2 has been put into service on the load balancer, doing a rolling
deployment, the new virtual machine on Subnet B Application1 will be in service,
Subnet A Application1 can then be destroyed along with its virtual machines as part
of the deployment clean-up phase:

The next release of Application1, release 1.3, will then be deployed into Subnet
A Application1, and scaled up again to two virtual machines:

Orchestrating SDN Controllers Using Ansible

[176]

Once release 1.2 has been put into service on the load balancer, doing a rolling
deployment, the new virtual machines on Subnet A Application1 will be in service,
Subnet B Application1 can then be destroyed along with its associated virtual
machine as part of the deployment clean-up phase:

Releases will alternate between Subnet A Application1 and Subnet B Application1
for every release, building the network from source control each time and cleaning
up the previous release each time.

The clean-up of redundant firewall rules
One of the major tech debt issues with firewalls is that over time they accumulate
lots of out of date ACL rules as applications are retired or network connectivity
changes. It is often a risk to do clean-up as network engineers are scared that they
will potentially cause an outage. As a result, manual clean-up of firewall rules is
required by the network team.

When utilizing A/B immutable network deployments, egress and ingress policies
are associated with subnets, meaning that in Nuage VSP when a subnet is deleted, all
ACL policies associated with that subnet will be automatically cleaned up too as part
of the release process.

In the following example, Subnet A Application1 has the following connectivity,
so when the subnet is deleted as part of the release process, all these subnet-specific
ACL rules will be cleaned up:

Chapter 6

[177]

It is important to note that as ACL rules exist subnet to zone for application
dependencies, if the A subnet deployment is in service, then the B subnet
deployment will be brought up in parallel with its associated ACL Ingress
and Egress rules to replace the A deployment.

All applications dependent on Application1 will be required to have an ACL
rule pointing at the zone rather than the subnet, this means they will not lose
connectivity to the application as their rules will be zone-dependent rather than
subnet-dependent. Having subnet to subnet rules would not work in an immutable
subnet model.

To illustrate this, in the following example, currently deployed subnet Application1
has a subnet to zone ACL rule to connect to Application2. So, despite Application2
Egress and Ingress policies alternating between A and B deployments each time it is
released as shown in the following diagram:

The required ACL rules are always available for Application1 as a dependency as it
subscribes to connectivity at the zone level as opposed to the subnet level:

Application decommissioning
The use of immutable subnets makes the decommissioning of applications easy
when they are no longer required. The clean-up logic already exists for subnets and
associated ACL rules so that already-created automation can be re-used to do a full
clean-up of the microservice application when it needs to be retired.

Orchestrating SDN Controllers Using Ansible

[178]

A clean-up pipeline can easily be provided by the operations and networking team
for development teams to clean up applications that are no longer required. Their
allocated subnet ranges can then be released by the IPAM solution so they are
available to new microservice applications that need to be on-boarded onto
the platform.

Using Ansible to orchestrate SDN controllers
Ansible, as discussed in Chapter 5, Orchestrating Load Balancers Using Ansible, can be
used to issue and configure servers as well as issue commands directly to an SDK or
REST API:

This is very useful when orchestrating SDN controllers that provide Restful API
endpoints and an array of SDKs to control software-defined object models that allow
network operators to automate all network operations.

In terms of the Nuage VSP platform, the VSD component, which builds the overlay
network, is all REST API calls behind the scenes, so all operations can be orchestrated
using the Nuage Java or Python SDK, which wrap REST API calls.

The Nuage VSPK SDK would simply need to be installed on the Ansible control
host, and then it can be used to orchestrate Nuage. As Ansible is written in Python,
modules can be easily created to orchestrate each object model in the Nuage
entity tree.

Using the Nuage VSPK modules could alternately be written in any programming
language that is available, such as Java, but Ansible's boilerplate for Python is
probably the simplest way of creating modules.

Chapter 6

[179]

The Nuage VSPK object model has parent and child relationships between entities,
so lookups need to be done on parent objects to return the child entities using the
unique identifier associated with the entity.

The following example highlights the list of operations required to build the Nuage
VSPK object tree:

1.	 A new Nuage session is started.
2.	 A user is used to create a child enterprises.
3.	 A domain_templates is created as a child of the enterprise.
4.	 A domains is an instantiated as child of the domain template.
5.	 A child zone is created against the domain.
6.	 A child subnet is created against the zone.

Using SDN for disaster recovery
One of the main benefits of using Ansible for orchestration is that it can be used to
create a set of day one playbooks to build out the initial network prior to it being
used for self-service by developers. So the initial setup of the Nuage organization,
Company L3 Domain Template, and layer 3 domains can be created among any
other necessary operations as a day one playbook or role.

Orchestrating SDN Controllers Using Ansible

[180]

The Nuage Python VSPK can be utilized to easily create the organization called
Company, layer 3 domain template called L3 Domain Template, and two layer 3
domains called Test and Prod as per the Nuage VSPK object model, as shown in the
following screenshot:

Each of these Python commands can easily be wrapped in Ansible to create a set
of modules to create a day one playbook utilizing delegate_to localhost. which
will execute each module on the Ansible control host and then connect to the
Nuage APIs.

Each module, by default, should be written so that it is idempotent and detects if
the entity exists, before issuing a Create command. If the entity already exists,
then it shouldn't issue a Create command if the overlay network is already in
the desired state.

The day one playbook can be used to build the whole network from scratch in the
event of a disaster if the whole network needs to be restored. The day one playbook
should be stored in source control. While each deployment pipeline will build
the application zones, subnets, and virtual machines under the initially
defined structure.

A leaking domain governing legacy network connectivity and leaking domain
association can also be added to the day one playbook if required.

Chapter 6

[181]

Storing A/B subnets and ACL rules in YAML files
Ansible can also be utilized to store self-service subnet and ACL rule information
in var files that will be called from a set of self-service playbooks as part of each
development team's deployment pipelines. Each application environment can be
stored in a set of var files defining each of the A/B subnets.

A playbook to create A or B subnets would be used to run delegate_to localhost to
carry out the creation actions against the Nuage VSD API.

The playbook would be set up to do the following things:

1.	 Create the zone, if one has not already been created.
2.	 Create the subnet in Nuage mapped to OpenStack using a subnet YAML file.
3.	 Apply ACL policies for Ingress and Egress rules to the policies applying

them directly to the subnet.

As with the day one playbook, unique modules can be written for each of the VSPK
commands; in this example, the Python VSPK creates a zone called Application1 and
a subnet called Subnet A Application1:

So these commands can also be wrapped in Ansible modules, should be completely
idempotent, and the desired state of the network is determined by the var files that
are stored in source control.

The logic in the playbook would load the var files by pulling them from source
control at deployment time. The playbook would then use the Jinja2 filter conditions
to detect if either the A or B subnet or neither was present using the when conditions.

If neither subnet was present, subnet A would be created, or if subnet A was present,
then subnet B would be created.

Orchestrating SDN Controllers Using Ansible

[182]

The playbook could read this information from the environment specific var file that
is specified in the following screenshot. As it is idempotent, it will run over the zone,
creating it if it doesn't already exist, and use the jinja2 playbook when conditions to
either create subnet A or B:

A unique set of A and B subnets would be checked into source control as a
prerequisite for every required environment, with one or more environments
per layer 3 domain.

ACL rules should ideally be consistent across all environments encapsulated in a
layer 3 domain, so an explicit set of ACL rules would be created and assigned to
the application's unique policy for Ingress and Egress rules that would span
all environments.

Each environment could have its own unique policy for Egress and Ingress per
layer 3 subnet. The Ansible playbook could then append a unique identifier for the
environment to the policy name if multiple environments existed under the Test
layer 3 domain to server integration, UAT, or other test environments.

The unique ACL rules for an application can be filled in by development teams as
part of the on-boarding to the new platform based on the minimum connectivity
required to make the application function, with a deny all applied to the layer 3
domain template.

The ACL rules should always be subnet to zone for inter-dependencies and each
ACL rule will be created with the subnet as the source, so that when subnets are
destroyed, the ACL rules will automatically be cleaned up.

An example of how the self-service ACL rules file would look is displayed as
follows It would create two ingress rules and one Egress rule against the
Application1 policy:

Chapter 6

[183]

The self-service playbook could be provided to development teams so that they
always have a standard way to create zones and subnets. The YAML structure
of the var files will also provide templates of what the desired state of the network
should be. This means that pointing the automated pipelines at another Nuage
endpoint would mean the whole network could be built out programmatically
from source control.

Summary
In this chapter, we have looked at different networking operations that SDN
controllers can help automate, and sought to debunk some of the common
misconceptions associated with software-defined networking.

We then looked at ways in which companies can benefit from using software-defined
networking and looked at ways in which SDN solutions can help solve some of the
challenges associated with network operations.

The chapter then focused on ways that network operations need to adapt and
embrace automation so development teams can self-serve a subset of different
networking tasks, and ways in which networking can be divided and responsibilities
shared. We then focused on the benefits of immutable A/B networking and how
it can help simplify the network and build consistent programmatically controlled
networks while keeping firewall rules clean.

Orchestrating SDN Controllers Using Ansible

[184]

In this chapter, you should have learned why software-defined networking
is important to organizations looking to scale network operations. We have
also covered ways in which overlay network object models can be utilized by
microservice applications and the benefits of immutable networking and
A/B subnets.

Key takeaways from this chapter also include different ways that SDN controllers
can help network operators to build out day one networks, which pieces of network
operations can be made self-service, and the ways in which Ansible can be used to
programmatically control network operations using Rest API calls or an SDK.

In the next chapter, we will look at continuous integration and how network
operations can take some of the best practices from development teams and apply
them to networking operations, so that networking is versioned properly and can be
used to roll forward and roll back changes.

Once we have established a basis for continuous integration, we will move onto
chapters that cover network testing and Continuous Delivery, which will outline
a set of best practices that should allow network teams to integrate network
automation into deployment pipelines.

[185]

Using Continuous Integration
Builds for Network

Configuration
This chapter will focus on continuous integration, what the process entails, and why
it is applicable to network operations. We will look at why continuous integration
processes are vitally important when automating network operations.

This chapter will discuss the benefits of configuration management tooling and we
will look at practical configuration management processes that can be used to set up
continuous integration processes and tooling that is available to support continuous
integration processes.

In this chapter, the following topics will be covered:

•	 Continuous integration overview
•	 Continuous integration tooling available
•	 Network continuous integration

Using Continuous Integration Builds for Network Configuration

[186]

Continuous integration overview
Continuous integration is a process used to improve the quality of development
changes. A continuous integration process, when applied to developers, takes new
code changes and integrates it with the rest of the code base. This is done early in
the development lifecycle, creating an instant feedback loop and associated pass or
failure against the change.

Within the remits of DevOps, continuous integration is a key component as it uses
centralized tooling to make changes visible to other users and promotes collaboration
and integration of changes earlier in the software development lifecycle. Continuous
integration is often coupled with Continuous Delivery processes, where continuous
integration is used as the first part of the software delivery lifecycle.

Prior to continuous integration being implemented, developers would sometimes
only find out that code changes did not work when a release needed to be packaged.
At this point, all developer changes were combined by a release management or
operations team. By the time the release was ready to be packaged, a developer
would have moved on to new tasks and not have been currently working on that
piece of work anymore, meaning fixing the issue incurred more time delaying the
release schedule.

A good continuous integration process should be triggered every time a developer
commits a change, meaning that they have a prompt feedback cycle to tell them if
their change is good, rather than finding out weeks or months later that their commit
had an issue that will slow down the release process.

Continuous integration works on the premise of fixing as far left as possible,
meaning at development time, with the furthest right being production. What this
phrase really means is that if an issue is found earlier in the development cycle then
it will cost less to fix and have less of an impact to the business as it will ideally never
reach production.

A continuous integration process follows the following steps, Commit Change to
Source Control Management (SCM), the repository change is validated, and a pass
or failure is issued back to the user:

Chapter 7

[187]

The output of the continuous integration process should be what is shipped to test
environments and production servers. It is important to make sure that the same
binary artifacts that have been through continuous integration and relative testing
are the same ones that will eventually be deployed onto the production servers.

Processes such as continuous integration are used to create feedback loops that show
issues as soon as they occur, which saves cost. This means the change is fresh in the
implementers mind and they will be able to fix it or revert the change quickly, with
developers currently iterating the code collaboratively and fixing issues as soon as
they occur.

Although all IT staff may not follow identical deployment strategies, feedback loops
and validation should not be unique to just developers. Sure, a compilation process
may not be required when making network changes, but other validations can be
done against a network device or a change on an SDN controller or load balancer to
validate the changes are correct.

Using Continuous Integration Builds for Network Configuration

[188]

Developer continuous integration
A continuous integration process in its purest form takes a developer code change,
integrates it with other developers' latest changes and makes sure it compiles
correctly. The continuous integration process can then optionally run a set of unit or
integration tests on the code base, package the compiled binaries, and then upload
the build package to an artifact repository, tagging the code repository and package
with a unique version number.

So, a simple continuous integration process can be summarized as the following
feedback loop:

1.	 The developer commits code change to the SCM System and integrates it
with the code base.

2.	 The code base is pulled down to a CI Build Server.
3.	 The code is compiled to check that the new commit is valid and non-breaking

and the repository is tagged with the build version number.
4.	 Return Pass or Fail exit conditions and Feedback result to users.
5.	 Repeat steps 1-5 for the next code change.

Chapter 7

[189]

Steps 1 (developer commit) and step 2 (creating a copy of the repository on the CI
Build Server) are processes taken care of by SCM Systems.

Some of the popular SCM systems over the past 10 years have been Subversion,
IBM Rational ClearCase, Microsoft Team Foundation Server, Perforce, and Telelogic
CM Synergy. While distributed source control management systems have moved
from centralized to distributed source control management systems such as Git
and Mercurial in recent years.

Steps 3 (code compilation), 4 (code compilation feedback to users), and 5 (repetition
of the process) in the process are carried out by a continuous integration building
servers, which act as a scheduling agent for the continuous build process.

Tools such as Cruise Control, Hudson, or more recently Jenkins, Travis, and
Thoughtworks Go are used to schedule continuous integration.

Step 4 (code compilation feedback to users) can be carried out using compilation
tools such as:

•	 Maven https://maven.apache.org/
•	 Ant http://ant.apache.org/
•	 MsBuild https://msdn.microsoft.com/en-us/library/

ms171452(v=vs.90).aspx

•	 Rake http://rake.rubyforge.org/
•	 Make http://www.cs.colby.edu/maxwell/courses/tutorials/

maketutor/

All these tools, and many more, can be used as the main validation step in the
process depending on the type of code compilation that is required.

The continuous integration process is carried out, polling for every new developer
commit, and carrying out the code compilation and repeating the same process over
and over to provide a continuous feedback loop. If a developer breaks the CI build
they need to immediately fix it so that it doesn't block other development changes
from being compiled and validated. So developers use continuous integration to
collaborate and make sure their changes successfully integrate.

Additional steps such as unit or integration tests can be subsequently bolted on
to the process after the compilation is successful for increased validation of the
change. Just because code compiles, it doesn't mean it is always functional. When all
compilation and tests are packaged a sixth step may be introduced to package the
software and deploy it to an artifact repository.

https://maven.apache.org/
http://ant.apache.org/
https://msdn.microsoft.com/en-us/library/ms171452(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ms171452(v=vs.90).aspx
http://rake.rubyforge.org/
http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/
http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/

Using Continuous Integration Builds for Network Configuration

[190]

All good continuous integration processes should work on the premise of compile,
test, and package. So a code release should be packaged once and the same package
should be distributed to all servers at deployment time.

Database continuous integration
After continuous integration was set up to help improve the quality of code releases,
developers that controlled database changes generally thought about doing similar
processes for database changes. As database changes are always a big part of any
enterprise release process having broken database releases can prevent software
being deployed and released to customers.

As a result, database schema changes or database programmatic stored procedures
would equally benefit from being integrated earlier on in the continuous integration
process and tested in a similar way using quick validation and feedback loops.

In a way, developers have it easy when considering continuous integration as
the compilation process is a binary pass or fail metric that is easy to understand.
Scripting languages are of course the exception to this rule, but these can be
supplemented using unit tests to provide the code validation on various code
operations and both codes are improved by good test coverage.

When doing database schema changes, a number of test criteria need to be met
prior to pushing the code to production. Good database developers will provide roll
forward and roll-back scripts when making SQL changes, which will be applied to
production databases and they normally test these on their development machines
prior to checking them into a source control management system.

Database developers implement database changes using a roll-forward and roll-back
release script and store them in SCM systems. The roll-back is only performed in the
case of an emergency when it is being applied to production if the roll-forward for
any reason fails.

So a typical database release process will have the two following steps:

•	 Apply SQL table or column creation, update, deletion, or stored procedure
using release script.

•	 If this fails, roll-back SQL table or column creation, update, deletion or stored
procedure using the roll-back release script.

Chapter 7

[191]

So prior to any production release, a database developer's roll-forward and roll-
back scripts should be tested. As multiple database developers are part of the same
release, these database release scripts should be applied in the same sequenced
order as they would be applied to production as one developers change could break
another developers changes.

Before setting up a database continuous integration, a few prerequisites are required:

•	 A database schema matching production with a relative dataset and all the
same characteristics such as indexing so we are testing against a similar
live version

•	 The continuous integration process should also utilize the same deployment
runner script that is used to sequence the database release scripts and
provide roll-back in case of failure

Testing roll-back scripts is as integral to testing roll-forward scripts so the database
continuous integration process will need valid tests to encompass roll-back.

A common database deployment workflow applied by a database developer on their
local workstation would look like this:

1.	 Apply roll-forward database script using deployment runner script to
CI test database.

2.	 Apply roll-back database script using deployment runner script to
CI test database.

3.	 Apply roll-forward database script using deployment runner script to
CI test database.

4.	 Apply roll-back database script using deployment runner script to
CI test database.

If the preceding set of steps is successful then the roll-forward and roll-back
database scripts are sound in terms of syntax and won't fail when applied to
the production database.

The preceding steps also check the validity of the sequencing using the deployment
runner and check that the integrated database deployment scripts work together and
do not conflict on roll-back either.

Using Continuous Integration Builds for Network Configuration

[192]

Using continuous integration, we have already ruled out multiple possible scenarios
that could cause a failure in production. However, the preceding continuous
integration process alone is not enough, as with a code compilation, just because
SQL is not returning an error doesn't mean the database roll-forward and roll-back
scripts are technically valid, so database changes still need to be supplemented with
functional tests too.

Continuous integration is about putting quality checks earlier in the delivery
lifecycle and creating feedback loops. Continuous integration is not about proving
that a release is 100% valid, it should instead be looked at as a way of proving that a
checking process has been followed, which proves that a release is not broken.

A simple continuous integration database process would provide the following
feedback loop for database developers:

1.	 Developer commits roll-forward and roll-back change to SCM System and it
is integrated with the code base.

2.	 The code base is pulled down to a CI Build Server.
3.	 Apply roll-forward database script using deployment runner script to

CI test database.
4.	 Apply roll-back database script using deployment runner script to

CI test database.
5.	 Apply roll-forward database script using deployment runner script to

CI test database.
6.	 Apply roll-back database script using deployment runner script to

CI test database.
7.	 Return Pass or Fail exit condition and feedback to users.
8.	 Repeat steps 1-7 for the next database change.

Chapter 7

[193]

Once the release is ready to go live the database CI will have the final changes
applied, preparing it for the next release, the next iteration of database changes and
the next batch of database scripts that will be applied by the next release. Alternately,
the CI database schema can be refreshed from production.

A good concept is to always create a baseline of the database so that if a database
developer unwittingly commits a bad roll-forward and roll-back on a database then
the CI database can be easily restored to the desired state and not prove a bottleneck
for development.

Of course this is one way of dealing with validation of database changes and
others are possible. Microsoft offers database projects for this very purpose, but the
validation engine is not important, having validation of any changes early in the
release lifecycle is the important takeaway.

It is important to make sure that nothing goes to production unless it goes through
the CI process, there is no point setting up a great process and then skipping it as it
makes the CI database schema invalid and could have massive consequences.

Using Continuous Integration Builds for Network Configuration

[194]

Tooling available for continuous
integration
Many different flavors of configuration management tooling are available to help
build continuous integration processes, so there is a rich variety of different options
to choose from, which can seem daunting at first.

Tools should be picked to facilitate processes and will be selected by teams or users.
As described in Chapter 3, Bringing DevOps to Network Operations, it is important to
first map out requirements that need to be solved and the desired process before
selecting any tooling.

By the same token, it is important to avoid tools sprawl, which is all too common
in large companies and have only one best fit tool for every operation rather than
multiple tools doing the same thing as there is an operational overhead for
the business.

If configuration management tooling already exists in a company for continuous
integration then it will more than likely be able to meet the needs. When considering
the tooling for carrying out continuous integration processes the following tools
are required:

•	 SCM system
•	 Validation engine

The SCM system is primarily used for storing code or configuration management
configuration in a source control repository.

The validation engine is used to schedule the compilation of code or validate
configuration. So continuous integration build servers are used for the scheduling
and numerous compilation or test tools can be used to provide the validation.

Source control management systems
SCM systems provide the center of a continuous integration process, but no
matter the SCM system that is chosen; at a base level it should have the
following essential features:

•	 Be accessible to all users that need to push changes
•	 Store the latest version of files
•	 Have a centralized URL that can be browsed by users to see

available repositories

Chapter 7

[195]

•	 Have a role-based access permission model
•	 Support roll-back of versions and version trees on files
•	 Show which user committed a change along with the date and time

of the change
•	 Support tagging of repositories, this can be used to check out a tag to show

all the files that contributed to a release
•	 Support multiple repository branches for parallel development
•	 Have the ability to merge files and deal with merge conflicts
•	 Have a command line
•	 Plug into Continuous Integration Build servers

Most SCM systems will also support additional features such as:

•	 A programmable API or SDK
•	 Easily integrated with developer IDEs
•	 Integrate with Active Directory or Lightweight Directory Access Protocol

(LDAP) for role-based access
•	 Support integration with change management tools, where a SCM commit

can be associated with a change ticket
•	 Support integration with peer review tools

SCM systems can either be centralized or distributed, in recent years, distributed
source control management systems have increased in popularity.

Centralized SCM systems
When SCM systems were originally created to facilitate development teams, a
centralized architecture was used to build these systems. A centralized SCM
system would be used to store code and developers would access the repository
they were required to make code changes against and make edits against a live
centralized system.

For developers to remain productive, the centralized SCM system would always
need to be available and online:

•	 Developers would access the repository where they wish to make
code changes

•	 They'd then check out the file they wished to edit
•	 Make changes
•	 Then check the file back into the code central branch

Using Continuous Integration Builds for Network Configuration

[196]

The SCM system would have a locking mechanism to avoid collisions where only
one file can be edited by one user at a time. If two developers accessed the file at the
same time, the online SCM system would say it was locked by another developer
and they would have to wait until the other developer made their change prior to
being allowed to check out the code and make the subsequent change.

Developers when making changes would make a direct connection to repositories
hosted in the centralized SCM system to make code updates. When a developer
made a change, this in turn would write the changes in state to a centralized
database, updating the state of the overall repository.

The state change would then be synchronized to other developer's views
automatically. One of the criticisms of centralized SCM systems was the fact that
developers sometimes wanted to work offline, so some centralized source control
management systems introduced the concept of snapshot views, which was an
alternative to the permanently live and updated repository view and also introduced
offline update features.

A snapshot view in a centralized SCM system was a snapped copy of the live
repository at a given point in time. Best practice would dictate that before
committing any development changes to the centralized server, the snapshot view
should be updated; any merge conflicts would be dealt with locally before checking
in any changes that were made in the snapshot view.

Developers would integrate with the centralized SCM system using the
command-line interface or GUI that was integrated with a developers IDE for
ease of use so they didn't need to jump between the command line and the IDE.

Examples of good centralized source control management systems are as follows:

•	 IBM Rational ClearCase
•	 Telelogic CM Synergy
•	 IBM Rational Team Concert
•	 Microsoft Team Foundation Server
•	 Subversion
•	 Perforce

Distributed SCM systems
Distributed SCM systems do not have a central master and instead replicate changes
to multiple places. Users will create replicas of a repository and then can pull or push
using their own local copy sitting on their local development machine.

Chapter 7

[197]

Each repository in a distributed system will have an owner or maintainer and
users will submit changes in the form of pull requests. Developers will create a pull
request, which is like a merge request, but instead the repository maintainer can then
approve if they accept the pull request or not. Once accepted, the commit will be
pulled into the branch.

One of the main benefits of a distributed SCM system is the ability to work on the
repository offline. Changes can be committed to the local repository and then once
it's back online, pushed to the master branch when developers are ready.

Distributed SCM systems are more merge-friendly and efficient, so they work better
with agile development, which often means multiple small repositories for each
microservice rather than large centralized code bases for monolith applications.

Examples of distributed SCM systems are as follows:

•	 Git
•	 Mercurial
•	 Veracity

Branching strategies
Branching strategies are used to meet the needs of modern software development,
with multiple branches serving different use cases and supporting multiple versions
of the code.

SCM systems traditionally relied on a Mainline branch, often referred to as the
Trunk or Master branch. A mainline branching strategy meant that the mainline/
trunk branch is always the clean and working version of the code, and the files on
this branch are representative of the code in production.

Development branches were then created for active development on the latest
releases, while release branches were used for maintenance releases if bugs were
identified on the production system.

There are many different branching strategies that can be implemented; in the
following example, the mainline branching strategy is illustrated.

The mainline/trunk/master branch is kept clean and all releases are done by
merging changes to it, and this branch is tagged every time a release is done. This
allows a diff to be done between tags to see what has changed.

The development branch is used for active development and creates version 1.0,
then merges to the Release Branch 1.0, which in turn immediately merges back to
Mainline/Trunk/Master.

Using Continuous Integration Builds for Network Configuration

[198]

The development branch then starts active development on version 2.0, while
Release Branch 1.0 is used for 1.x maintenance releases if a bug fix is required:

The mainline branching strategy meant a lot of merging and coordination and
release managers were required to coordinate merges and releases of versions on
release days.

Centralized configuration management systems were set up to favor a mainline
approach to software development and this was good when supporting
waterfall development.

Waterfall software development has rigid phases of the project, incorporating
analysis, design, implementation, and testing phases, so the mainline branching
strategy was sufficient when teams were producing only one release every few
months as opposed to daily releases, so the laborious merge process was not
such a bottleneck.

However, the transition to agile software development meant that implementing the
mainline strategy became more difficult as teams release more frequently now that
they have moved towards continuous deployment and delivery models.

An alternate branching strategy better suited to agile development is using feature
branches. In agile software development work is split into sprints that last two
weeks. So the master or mainline branch is still used but very short-lived feature
branches are created by developers during a sprint. Distributed SCM systems put
the developer in charge of the merging as opposed to using a centralized release
management team for these operations.

Chapter 7

[199]

In the following example, we can see an example of feature branching, where three
different feature branches, Feature A, Feature B, and Feature C are created during a
two week sprint. When developers have finished development their features merged
back into the Trunk/Master branch.

Every time a commit is done from a feature branch then the change is merged
directly to Trunk/Master and a continuous integration process will be started which
will validate the changes, every successful check-in then becomes a potential release
candidate. After a release is packaged by the continuous integration process it is
ready for deployment, as shown in the following diagram:

Some purists will argue against utilizing feature branches at all, preferring to always
work against Trunk/Master. However, this decision it down to the individual teams
to govern which approach works best for them and it is subjective. Some will also
argue that it adds an additional level of control until adequate testing is created
on the Trunk/Master branch so that changes can be suitably peer-reviewed prior
to merging.

When a commit is done against a branch it should trigger a CI build and associated
validation of whatever change has been committed. This creates feedback loops at
every stage of the process. Any change that goes into any branch should be governed
by a CI build to gate-keep good changes and highlight breaking changes as soon as
they happen so they can be fixed immediately.

Continuous integration build servers
Various continuous integration build servers are available to help schedule
validation steps or tests. One of the first continuous integration build servers was
Cruise Control from Thoughtworks, which has since evolved into Thoughtworks Go.

Using Continuous Integration Builds for Network Configuration

[200]

Cruise Control allowed users to configure an XML file that set up different
continuous integration build jobs. Each build job ran a set of command-line options;
normally, a compilation process against a code repository and it returned a green
build if it was successful and a red build if the build was broken. Cruise Control
would highlight the errors in the form of build logs providing feedback to users via
the Cruise Control dashboard or by e-mail.

The market leading build server at the moment is Cloudbees Jenkins, which is
an open source project and a fork of the original Hudson project. Jenkins really
took away the need to configure XML files and moved all setup operations into
the GUI or API. It comes with a plethora of plugins that can pretty much carry
out any continuous integration operation possible. It also has recently delved into
Continuous Delivery as of Jenkins 2.x release.

The next evolution of CI systems has moved towards cloud-based solutions with
Travis being a popular choice for open source projects. This allows users to check in
a Travis YAML file, which creates the build configuration from source control and
can be versioned along with the code. This is something Jenkins 2.x is doing now
using the Jenkinsfile and that the Jenkins job builder project had been doing for the
OpenStack project.

There are many different options when looking for continuous integration build
servers, consider the following; no matter the continuous integration build system
that is chosen, at a base level it should have the following essential features:

•	 Dashboard for feedback
•	 Notion of green and red builds
•	 Scheduling capability for generic command lines
•	 Pass or fail builds based on exit conditions, 0 being a pass
•	 Plug-ins to well-known compilation tools
•	 Ability to poll SCM systems
•	 Ability to integrate with unit testing framework solutions such as Junit,

Nunit, and more
•	 Role-based access control
•	 Ability to display change lists of the latest commits to a repository that has

been built

Most continuous integration build servers will also support additional features
such as:

•	 Have a programmable API or SDK
•	 Provide e-mail or messaging integration

Chapter 7

[201]

•	 Integrate with Active Directory or LDAP for role-based access
•	 Support integration with change management tools, where a SCM commit

can be associated with a change ticket
•	 Support integration with peer review tools

Network continuous integration
So why should network engineers be interested in continuous integration?
A network team should be interested in continuous integration if they want to
improve the following points, which were focused on in Chapter 3, Bringing
DevOps to Network Operations:

•	 Velocity of change
•	 Mean time to resolve
•	 Improved uptime
•	 Increased number of deployments
•	 Cross skilling between teams
•	 Removal of the bus factor of one

The ability to easily trace what has changed on the network and see which engineer
made a change is something that continuous integration brings to the table. This
information will be available by looking at the latest commit on a continuous
integration build system.

Roll-back will be as simple as deploying the last tagged release configuration as
opposed to trawling through device logs to see what changes were applied to a
network device if an error occurs.

Every network engineer can look at the job configuration on the continuous
integration build system and see how it operates so every network engineer
knows how the process works so it helps with cross skilling.

Having continual feedback loops will allow network teams to continuously improve
processes, if a network process is sub-optimal then the network team can easily
highlight the pain points in the process and fix them as the change process is evident
to all engineers and done in a consistent manner.

When network teams use continuous integration processes it moves network teams
out of firefighting mode and into tactical continuous improvement and optimization
mode. Continuous integration means that the quality of network changes will
improve as every network change has associated validation steps that are no
longer manual and error prone.

Using Continuous Integration Builds for Network Configuration

[202]

Instead, these checks and validations are built in and carried out every time a
network operator commits a network change to the SCM System. These changes can
be built up over time to make network changes less error prone and give network
engineers the same capabilities as developers and infrastructure teams.

Utilizing network continuous integration also takes the fear out of making
production changes, as they are already validated and verified as part of the
continuous integration process, so production changes can be viewed as just a
business-as-usual activity, rather than something that needs to be planned weeks in
advance or worried about. The view is: if an activity is problematic then do it more
often, continually iterate it, improve it, and make people less afraid of doing it.

Having covered topics such as different SCM branching strategies, continuous
integration build servers, and shown how continuous integration can be used for
code and database changes, it should now be clear what continuous integration is
and that it is not just about compilation of code. Instead, continuous integration is
about validating parallel changes, making sure they all work together and providing
feedback loops to users.

The DevOps movement is about interacting with others and removing bottlenecks,
delivering products to market faster, and increasing accuracy so continuous
integration is equally applicable to networking. The automation of processes
and the collaboration between teams using similar concepts is very important
so continuous integration really is the glue that holds infrastructure and networking
as code together.

To a network engineer, concepts such as continuous integration may seem alien
at first, but instead of talking about deep dive compilation processes, it should be
focusing on processes. If any network engineer was asked if they could have a quick
and easy-to-use process that validated all their network changes before production,
providing quick feedback loops, then the answer would be yes. Continuous
integration can therefore be a useful tool that would mean less broken
production changes.

In this book, in Chapter 4, Configuring Network Devices Using Ansible, Chapter
5, Orchestrating Load Balancers Using Ansible, and Chapter 6, Orchestrating SDN
Controllers Using Ansible, we looked at ways that network changes could be treated as
code, using configuration management tooling such as Ansible to configure network
devices, load balancers, and SDN controllers.

So when considering the following diagram, the question regarding continuous
integration of network changes is not asking if continuous integration is possible
for network changes. It should instead be questioning which validation engines can
be used for network changes after a SCM commit has taken place to give a quick
feedback loop of Pass or Fail to network operators:

Chapter 7

[203]

Network validation engines
The challenge when creating continuous integration builds for network changes is
what to use for the validation engine. Network changes when using Ansible rely
heavily on YAML configuration files, so the first validation that can be done is
checking the YAML var files.

The var files are used to describe the desired state of the network, so checking that
these YAML files are valid in terms of syntax is one valid check. So to do this, a tool
such as yamllint can be used to check if the syntax of the files that are committed
into source control management are valid.

Once the YAML var files are checked into source control, the continuous integration
build should create a tag to state a new release has happened. All SCM systems
should have a tagging or base-lining feature.

Tagging versions means that the current network release version can be diffed
against the previous version to see what file changes have occurred on the
YAML var files. If an issue is detected at any stage, all networks changes
are made transparent.

Using Continuous Integration Builds for Network Configuration

[204]

So what other validation is possible? When focusing on configuration of network
devices, we are pushing configuration changes to a networking operating system
such as Juniper Junos or Arista Eos. So being able to run the newly committed
changes and make sure the syntax is programmatically correct against those
operating systems as part of the continuous integration process is highly desirable.
Most network device operating systems as discussed in Chapter 4, Configuring
Network Devices Using Ansible, are Linux-based, so having a network operating
system to issue commands to as part of the CI process doesn't seem too absurd.

The same can be said when checking the configuration used to orchestrate load
balancers or SDN controllers, having a test environment attached to the continuous
integration process is also highly desirable in theory. By utilizing a software version
of the load balancer or emulated version of the SDN controller would be highly
beneficial, so network engineers can pre-flight their network changes to make sure
the API calls and syntax is correct.

However, there are challenges with simulating an SDN controller or creating or
simulating a production environment depending on the vendor, they may have
a huge overhead in terms of setting up a continuous integration environment
due to cost. Network devices, load balancers, and SDN vendors are evolving to
support automation and DevOps friendly processes such as continuous integration.
Therefore, networking vendors are starting to appreciate the validity of giving
small test environments; this is where virtualized or containerized versions of load
balancers or SDN controllers would be useful as an API endpoint to validate the
desired state that has been set up in YAML files.

Alternately, the vendors could provide a vagrant box to test if the desired
configuration specified in YAML var files that is checked into SCM Systems is valid
before it is propagated to the first test environment. Any enhancements that can
be done to processes to make it fail as fast as possible and shift issues as far left as
possible in the development lifecycle should be implemented where possible.

So with all of these validators, let's look at how these processes can be applied to
network devices, or alternately orchestration. The number of validators used may
depend on the network vendors that are being used, so we will look at the start point
for a continuous integration build for network devices regardless of vendor and then
look at more advanced options that could be used if the vendor provides a software
load balancer or SDN emulation.

Chapter 7

[205]

Simple continuous integration builds for
network devices
As network changes are always required daily by large organizations that are
implementing microservice applications. To meet those demands networking should
be as self-service as possible. To keep up with demand, network teams will probably
need to use a feature branch SCM strategy or allow self-service YAML files to be
committed directly to the master branch, as shown in the following diagram:

Each commit should be peer reviewed before it is merged. Ideally, the self-service
process should allow development teams to package network changes alongside
their code changes and follow a self-service approach.

The first continuous integration build that should be set up for network devices
or orchestration should focus on version controlling the Ansible YAML files and
running a simple YAML validation on the desired state.

Each continuous integration build that runs will also tag the repository. Tagging the
SCM repository means that release versions can be compared or easily rolled back. It
will also act as an audit log to show which user made changes and what exactly has
changed in the environment. No changes should be made to a production system
that has not gone through the continuous integration process.

So a simple network continuous integration build will follow these simple
validation steps:

1.	 YAML files are checked for syntax.
2.	 The repository is tagged in the SCM System if successful.

Using Continuous Integration Builds for Network Configuration

[206]

Therefore, a simple network continuous integration build would follow these steps.
The network operator would commit the YAML files to the SCM system to change
the desired state of the network; the continuous integration build server would tag
the build if the YAML Lint operation finds that all the YAML files in the repository
have valid syntax and return a positive result:

Configuring a simple Jenkins network CI build
This simple continuous integration build for network devices can be set up in the
Jenkins CI build server. Rake and the yamllint gem should be configured on the
Jenkins slave that the build will be executed on.

Once this has been completed, a new Jenkins CI build can be created in a matter
of minutes.

Chapter 7

[207]

First, select a new Jenkins freestyle job:

Then configure the SCM system to use, in this instance Git, specifying git@
gitlab:devops/sdn.git as the repository and the */master branch of the project
along with the SSH key required to provide access to the repository:

Using Continuous Integration Builds for Network Configuration

[208]

Now for the validation step, a shell command build step is selected, which will
run rake yamllint on the repository after configuring a Rakefile in the git@
gitlab:devops/sdn.git repository so the YAML files can be parsed:

Finally, configure the build job to tag the Jenkins build version against the devops/
sdn.git gitlab repository and Save the build:

Chapter 7

[209]

This has configured a very simple Jenkins CI build process that will poll the Git
repository for new changes, run yamllint against the repository, and then tag the
Git repository if the build is successful.

The build health will be shown in Jenkins; the green ball means the build is in a
healthy state so the YAML files are currently in a good state, and the duration
of the check shows it took 6.2 seconds to execute the build, as shown in the
following screenshot:

Adding validations to network continuous
integration builds
After highlighting the need for more robust validation to pre-flight configuration of
network devices shifting failure as far left in the development lifecycle as possible
to reduce the cost to fix. Having the ability to push mission-critical configuration
changes to a networking operating system such as Cisco Nxos, Juniper Junos, or
Arista Eos would be a good continuous integration validation.

So, like databases verifying that SQL syntax is correct, being able to run the newly
committed changes and make sure the networking commands or orchestration
commands applied to network devices syntax is programmatically correct should be
part of the continuous integration build.

Continuous integration can then help the quality of network changes as an incorrect
change would never be pushed to a network device, load balancer, or SDN
controller. Of course, the functionality of the configuration pushed may not be what
is required, but there should at least never be a situation where the configuration has
a syntax error at deployment time.

As network devices, load balancer, and SDN controller changes are mission-critical,
this brings an added layer of validation checks to any network changes and checks
in a quick and automated way, providing quick feedback if a network change is not
what is required.

Using Continuous Integration Builds for Network Configuration

[210]

Continuous integration for network devices
Before setting up a network device, continuous integration of a few prerequisites is
required:

•	 A network operating system will be required with production configuration
pushed to it and all live settings, which can be hosted on a virtual appliance

•	 The continuous integration build tools such as Jenkins will need to have an
Ansible Control Host set up on the agent so it can execute Ansible playbooks

•	 All playbooks should be written with a block rescue so subsequent cleanup is
built-in if the execution of the playbook fails

A typical network device release process will have the two following steps:

1.	 Apply the network change self-service playbook.
2.	 As the playbook is idempotent, changes will only be shown if a change

has occurred.

The Ansible playbook should provide resilience for roll-forward and roll-back in
terms of state change. The previous steps also check the validity of the sequencing
using the Ansible playbook and also check that the calls being made to the network
device are valid.

A simple continuous integration network build process would provide the following
feedback loop for network operators:

1.	 The network operator commits Ansible playbook or YAML var file's change
to SCM System, and it is integrated with the code base.

2.	 The code base is pulled down to a CI Build Server.
3.	 YAML files are checked using yamllint.
4.	 The Ansible playbook is applied to push network changes to the device.
5.	 Return Pass or Fail exit conditions and feedback to users.

Chapter 7

[211]

6.	 Repeat steps 1-5 for the next network device change:

Continuous integration builds for network
orchestration
Before setting up a network orchestration for load balancers or SDN controllers, a
few prerequisites are required:

•	 A software load balancer or an emulated SDN controller will be required
with production configuration pushed to it and all live settings

•	 The continuous integration build tools such as Jenkins will need to have an
Ansible controller set up on the agent so it can execute Ansible playbooks
as well as the SDK that will allow the network orchestration modules to
be executed

•	 All playbooks should be written with a block rescue so subsequent cleanup is
built in if the execution of the playbook fails

A typical network device release process will have the following steps:

•	 Apply network changes to the self-service playbook.
•	 As the playbook is idempotent, changes will be only shown if a change

has occurred.

Using Continuous Integration Builds for Network Configuration

[212]

The Ansible playbook, like with the network device changes should provide
resilience for roll-forward and roll-back in terms of state change. Some test servers
may be needed on a virtualization platform to simulate the load balancing so health
checks can be tested too.

A simple continuous integration network orchestration continuous integration
process would provide the following feedback loop for network operators:

1.	 The network operator commits Ansible playbook or YAML var file change to
SCM System and it is integrated with the code base.

2.	 The code base is pulled down to a CI Build Server.
3.	 YAML files are checked using yamllint.
4.	 An Ansible playbook is applied to orchestrate the API and create the

necessary load balancer or SDN changes.
5.	 Return Pass or Fail exit condition and feedback to users.
6.	 Repeat steps 1-5 for next network orchestration change:

Chapter 7

[213]

Summary
In this chapter, we have looked at what continuous integration is and how
continuous integration processes can be applied to code and databases. The chapter
then looked at ways that continuous integration can be applied to assist with
network operations to provide feedback loops.

We also explored different SCM methodologies, the difference between centralized
and distributed SCM systems and how branching strategies are used with waterfall
and agile processes.

We then looked into the vast array of tools available for creating continuous
integration processes focusing on some examples using Jenkins to set up a simple
network continuous integration build.

In this chapter, you learned what continuous integration is, how it can be applied
to network operations, SCM tooling, and the difference between centralized and
distributed systems along with common SCM branching strategies.

Other key takeaways from this chapter include continuous integration build servers
and their use, ways to integrate network changes into continuous integration, and
potential continuous integration validation engines for network changes.

In the next chapter, we will look at various test tools and how they can be applied
to continuous integration processes for added validation. This will allow unit tests
to be created for network operations to make sure the desired state is actually
implemented on devices before we will look at deploying the network changes in
Continuous Delivery pipelines.

[215]

Testing Network Changes
This chapter will focus on an important part of the software development lifecycle
as well as DevOps, testing, and quality assurance. This chapter will describe why
it is essential to incorporate network changes as part of the continuous integration
process and test them thoroughly. It will then go on to look at open source test
tooling that is available to facilitate the creation of tests suites for network operations.

This chapter will focus on the overall quality assurance process, outlining some
of the best-practice approaches that can be adopted by network teams or teams
implementing network operations.

We will also look at the benefits of implementing feedback loops, quality reporting,
and what checks can be implemented to make sure that the network is functioning as
expected. These are all essential topics as network teams move toward code-driven
network operations.

In this chapter, the following topics will be covered:

•	 Testing overview
•	 Quality assurance best practices
•	 Available test tools

Testing Network Changes

[216]

Testing overview
There are many ways to ensure quality when making operational or
development changes.

When combining quality checks and ordering them, they can be used to form a set of
quality gates that development, infrastructure, or even network changes should flow
through before they reach production. We will briefly touch upon some of the more
popular testing strategies that are used to ensure that any changes to a system or
application are operating effectively, comprised of the following phases of testing:

Unit testing
One of the most popular types of quality assurance is the unit test. A unit test
will test each isolated code operation and make sure that each method or function
exhibits the desired behavior with different inputs.

One or more unit tests will be required to make sure that a method or function works
as desired. So multiple unit tests may need to be written to test any basic operation
asserting either a pass or failure based on one isolated operation.

Unit tests can normally be carried out against compiled binaries, as opposed to
requiring a fully-fledged test environment. Utilizing popular test frameworks,
unit tests can be used to assert a pass or failure based on input.

Chapter 8

[217]

For example, a unit test for an Apache Tomcat web server could involve making sure
that the code can serve traffic on HTTP port 8080:

Component testing
Component testing involves testing a single component in isolation and making sure
that it behaves the way it should as a self-contained entity.

Component testing normally involves deploying an application to a test environment
and executing a suite of tests against the component that tests all its features and
functionality. Microservice applications are small components which need to be
tested each time they are released.

This may involve making sure a banking application can process transactions
correctly based on a specific type of account.

Integration testing
Integration testing involves more than one microservice component, so if two
different components are integrated, a set of integration tests needs to be written to
make sure they both integrate and exhibit the desired behavior.

Integration testing normally requires a simulation of a database schema or multiple
components to be deployed in an environment and tested together. While a unit
test can assert the behavior of the build binaries, an integration test is slightly
more complex.

Mocking or stubbing can be carried out in order to simulate another application's
endpoint behavior and assert if it is operating as expected.

Testing Network Changes

[218]

Integration testing could test that two different microservice endpoints can be
connected and that a transaction such as a TCP handshake can be completed
correctly between the initiator service and the receiver service, with the reception
of ACK making sure that the two-way TCP handshake is working correctly
between the two microservice applications:

System testing
System testing is normally carried out on a full-blown environment with a set
of fully deployed components. System testing will test the whole system and is
normally utilized as a final step before production. Some of the tests that can be
carried out are user journey tests such as setting up a full transaction. This tests that
the fully integrated system can pass all the end-to-end testing as a customer would
use it in production.

This may result in integrating multiple microservice applications together such as
microservice A, B, C, and D and making sure they all integrate functionally and
work as a single entity:

Chapter 8

[219]

Performance testing
Performance testing is fairly self-explanatory, it will baseline the application's
performance on the first execution. It will then use that baseline to check for any
performance degradations in the application every time a new release takes place.

Performance tests will be used to check performance metrics, this is useful to see if
a code commit causes performance issues in the overall system. Performance testing
can be incorporated into the system test phase.

Alternatively, performance testing can also mean Stress Testing or Load Testing the
application, network, or infrastructure to its absolute limit and by writing tests to see
to find if the system can cope with the desired traffic patterns.

Endurance Testing means setting a time period for testing and see how long the
infrastructure, network, or application can cope with stress for a fixed period of time.

Spike Testing is making sure a system can cope with a sudden spike in traffic from
a dormant traffic pattern, which tests if the system can cope with a high degree
of variance.

Testing Network Changes

[220]

Scalability Testing on the other hand can mean horizontally scaling out
infrastructure or scaling up more applications to the point it makes no
performance benefit. This identifies the scaling limits a system has.

Volume Testing can be used to see the volume of transactions or data a system can
process over a given period of time.

The following diagram shows the different types of testing that fall under the
performance testing umbrella:

User acceptance testing
User acceptance testing involves having end users test new features or functionality.
User acceptance testing is normally utilized to make sure customers or product
managers are happy with the development changes that have been made. This type
of testing is normally exploratory and fairly manual. It is often used to test the look
and feel of a website or graphical user interface.

Chapter 8

[221]

Why is testing relevant to network teams?
Quality assurance is a huge part of network or infrastructure changes, it is not just
solely a software development concern. If the network or infrastructure, which
software is installed upon, is not operating as desired, then this will have the same
customer impact as a software bug.

The customer doesn't differentiate between software bugs, infrastructure, or
networking issues. All a customer knows is that they can't utilize products and as far
as they are concerned the business is not meeting their needs or providing a good
and reliable service.

Not having adequate testing can be very harmful to a business, as its very reputation
can be damaged, and the rise of social media means that if websites are down or not
operational, within a blink of the eye an outage can be all over social media channels.

If one user notices an issue they can send a tweet, which alerts other customers to
the issue, one tweet becomes many and before the company knows it, the outage
is trending on Twitter or other social media and now everyone across the world is
aware that the business is having problems.

This situation is the worst fear for many online businesses, if the site is not up,
operational, and providing a good user experience, then the business is no longer
making money and customers may go to a competitor.

One of the key objectives for any development, infrastructure, or networking team is
to provide a good service to end users and prevent downtime or outages. Typically,
a set of Key Performance Indicators (KPIs) are used to quantify performance and set
targets to decipher if a business is meeting customer needs.

So making the delivery of network changes less prone to error should be the aim
of any network team. In Chapters 4, Configuring Network Devices Using Ansible,
Chapter 5, Orchestrating Load Balancers Using Ansible, and Chapter 6, Orchestrating
SDN Controllers Using Ansible, we looked at ways to automate network devices,
load balancers, and SDN controllers using configuration management tooling. At
the same time, having a set of repeatable tests for any network change should also
be something that network teams are striving for. The ideal scenario being that a
network team knows that a change is going to fail, before it has a customer impact.
This means testing changes sufficiently before giving them a seal of approval and
failing as fast as possible in test environments so breaking changes are not pushed
directly to production environments.

Testing Network Changes

[222]

One of the common concerns from network engineers when initially moving to an
automated process is a lack of trust in the automation. Network engineers are used
to going through due diligence and a subset of checks prior to releasing network
changes. Just because automation is in place doesn't mean that the manual check-list
network engineers used to validate network changes goes away.

However, when considering software delivery, the overall process is only as fast
as the slowest component, so if those network validation checks remain manual,
then the whole process will be slowed down. This will result in manual stops being
placed in the automation process, which will inevitably slow down the delivery of a
new product to market.

The simple solution is to automate each of the networking check-lists, so any
validation that was carried out manually by a network engineer instead becomes
an automated check or test as part of an automated test suite which is run alongside
the automation.

These checks or tests are then written and built up over a period of time. So if
a situation occurs when an edge case is found and it doesn't have test coverage
that causes a failure. Rather than using the argument that the automation doesn't
work and making a case to revert to tried and tested manual approaches, network
engineers need to instead create a new test or check and add it to the automated
validation pack which will catch the issue and fail in a test environment before it
reaches the end user.

Network changes and testing today
Network teams still remain in the main work with a waterfall methodology, so
they need to align and adopt a more agile approach. This will allow network teams
to better integrate with the rest of the IT team and become a participant in the
Continuous Delivery processes rather an observer.

When the waterfall methodology was the de-facto way of delivering software
development projects to market, then a very rigid process lifecycle would
be followed.

Waterfall processes stipulated every new feature would traverse the
following phases:

•	 Analysis
•	 Design
•	 Implementation
•	 Test

Chapter 8

[223]

One of the main implementations of the waterfall method was known as the
V-Model, which was initially used to simplify projects into deliverable chunks. This
meant that all stakeholders could identify progress and look for potential delays.

This simplification made project managers and senior management happy as they
had an easy way of tracking projects and whether they were on time or going
over budget.

The structure of the V-Model is shown as follows:

In waterfall terms, the analysis and design phases took place on the left-hand side
of the V-Model and would happen at the start of the process. The left-hand side of
the V-Model in simplistic terms is used to interact with stakeholders, do necessary
research, and gather all necessary high-level and low-level requirements to work out
what is required to implement a new product or change. The left side of the V-Model
was also about documenting the overall process at an architectural level.

After the initial requirement gathering as part of the analysis phase, the analysis
phase was signed off, which meant that the architectural design phase could begin
and some meat could be put around the requirements. As part of the design phase,
high-level and low-level design documents would be created to document
the proposed changes which would have an associated review, sign off, and
approval process.

Testing Network Changes

[224]

Once the design was completed, then the left side of the V-Model was complete and
implementation of the change or product would take place. The implementation
phase could span numerous weeks, or even months, to deliver the desired result
and this lifecycle phase sits at the bottom of the V-Model.

Once all the requirements were implemented, the implementation phase would be
signed off and the project would move to the right-hand side of the V-Model where
the Test phase would commence.

A test team would then carry out unit, integration, and then finally system testing
on any change or new product feature. Any issues found with the implementation
phase would result in a change request. This would mean that the high- or low-level
design would need to be updated, re-work on the implementation would need to be
done, and then tests would need to be repeated or re-written in order for the product
to be refined.

With the move to agile development covered in Chapter 3, Bringing DevOps to
Network Operations, the V-Model has been seen to be a sub-optimal delivery
mechanism. For reporting purposes, the V-Model is ideal and transparent, but it
means that the implementation process suffers from the rigid restrictions enforced
on engineers.

The V-Model doesn't take into account that any engineer likes to iterate processes
and the actual implementation they write down at the start of a process may not be
the final design they implement. The V-Model doesn't align well to prototyping as
engineers typically like to spend time with the system and try, fail, iterate, and then
improve the implementation.

Not accounting for prototyping leads to multiple change requests which have cost
implications to businesses, so using two week sprints in an agile methodology to
plan in iterative development has proved much more realistic. Although it is still
something that senior managers struggle with as they are indoctrinated with having
the need to report due dates and milestones, the due date is, by all intents and
purposes, a made-up date.

An engineer in the waterfall process will still do the same amount of prototyping to
deliver implementations, and work takes x amount of time regardless of how a plan
is structured. Agile development is just structured to accept prototyping and time-
boxed spikes.

Chapter 8

[225]

So the age-old question from a project manager to an engineer is always; when will
this be done by? The engineer that replies; I don't know isn't an acceptable answer in a
waterfall methodology. What is expected is an estimate, or in engineering circles a
made-up date, which the project manager will likely change later when, inevitably,
said date isn't met.

So how does any of this have any relevance to network changes and testing overall?
Well, network teams today typically implement a mini V-Model when they think
about making network changes. Network managers will act as a project manager
that will plan out a design, implementation, and test phase cycle and report this back
to senior management teams as network changes are seen as long pieces of work that
need massive planning and testing before implementation.

Network managers may not split out testing into test, integration, and system testing
as traditionally, network testing is not as sophisticated as this, but it doesn't allow
network engineers the freedom to prototype.

Instead network engineers, like infrastructure engineers or any operational team
before them, will be pressured into making changes to a rigid plan. The plan will be
indicative of the following criteria being met:

•	 Does the implemented change work as desired?
•	 Did the change break anything?
•	 Is the documentation updated to reflect change?

If all these points are met, they would have deemed a successful change by a
network team.

However, this doesn't tell the complete and whole story as other points have to
be considered when making network changes within the remit of a Continuous
Delivery model:

•	 Will the change break anything that isn't immediately visible?
•	 Was the same change implemented to pre-production environments?
•	 Was the same change tested and validated on pre-production environments?

The initial three points are mandatory requirements when doing any change,
but the remaining three points should be considered mandatory too, in order to
maintain a successful Continuous Delivery model. This is something of a mind-set
change for network engineers, that they need to take this into consideration when
making changes.

Testing Network Changes

[226]

All network changes from a network engineer need to be committed to the source
control management system and propagated through all the necessary environments
before being pushed to production, as shown in the following figure:

If a change is made directly to production manually by network engineers and
not implemented first on test, pre-production and production environments via
an automated, then the network configuration will be forever misaligned on test
environments. This will have dire consequences as the configuration of test, pre-
production environments, and production will have drifted apart.

This means that any developer, infrastructure, or network engineer using test and
pre-production environments expecting a copy of production for mission-critical
changes will be sadly disappointed. This can, in turn, compromise any tests run on
those environments as they are no longer a proper reflection of the production estate.

So what does this mean in practice? The system test box on the V-Model may
pass in pre-production environments but fail in production. This does not build
confidence in the Continuous Delivery process which is now a mission critical
part of the business.

It cannot be highlighted how important it is to make sure all network, code,
or infrastructure changes are pushed to pre-production environments prior to
production to maintain the validity of all environments. Any team deviating from
this process can compromise the whole system and negate the testing.

This is not only used to test the changes, but also to keep the pre-production
environments as a scaled-down mirror image of production that avoids the scenario
of all tests pass in test environments but when they are deployed to production they
cause outages to customers. So it means it is important that all validation tests are
completed in associated test environments before a change is released to production.

Chapter 8

[227]

If manual changes are pushed directly into production, even in the event of
emergencies, then the changes need to be immediately put back into the Source
Control Management (SCM) system, the SCM system should be the single source of
truth for all configuration at all times.

If any manual changes are applied, snowflake environments will become common,
which are shown below. This is where an engineer has made a manual change
to production outside the process and not pushed the change to any of the other
environments using the deployment pipeline:

In order for network changes to be delivered at the desired rate, network changes
and testing cannot continue to be done in a mini V-Model strategy. If network teams
and managers are serious about being collaborators in Continuous Delivery models
and DevOps models, they need to keep pace with the rest of the agile changes being
made in development and infrastructure teams.

The solution though is not to stop validating changes and paying due diligence,
lessons can be learned from formulaic quality assurance processes that have been
successfully applied on development and infrastructure changes for years, these
processes can also help test network changes.

Quality assurance best practices
Quality assurance teams, when utilizing a waterfall V-Model structure of delivery,
worked in silos that retrospectively tested development changes once they were
completed by a development team.

Testing Network Changes

[228]

This led to quality assurance teams having to react to every development change,
as it was an impossible task having to write tests for a feature they had not yet seen,
or understand how it fully operated. Situations would often arise where developers
without warning would commit features into source control management systems
and then quality assurance teams would have to react to them:

This method of working provided lots of challenges such as:

•	 Developers changing user interfaces, so the quality assurance team's
automated tests broke as test engineers were not aware of the user
interface changes

•	 Test engineers not understanding new features meaning appropriate tests
weren't written to test functionality properly

•	 Developers having to spend lots of time explaining how features worked to
quality assurance testers so they could write tests post-commit

•	 Delays associated with fixing broken regression tests that were not down to
bugs but test issues

•	 Quality assurance teams were acting in a completely reactive fashion as they
could not see what new developer changes were coming

•	 Quality assurance packs never passing, or being green, meant that actual
software issues slipped through the process

Chapter 8

[229]

So, when considering network testing, the solution to this problem is not to hire a
separate test team. Instead, it is about incorporating and integrating network testing
into a Continuous Delivery model.

Agile development has shown that as code changes were being written, embedding
quality assurance test engineers in the development team meant that tests could be
written pre-commit. It is a far more productive method of working.

Moving quality assurance engineers out of the siloed quality assurance team and
allowing them to work together in the same scrum team means that individuals that
work together can collaborate and make sure that the submitted commit will work at
every phase.

The associated regression, integration, or system tests then form a set of automated
quality gates that the change will propagate through:

The main benefits of the agile testing approach over using a siloed waterfall
approach is:

•	 Quality assurance testers were no longer working reactively and have
complete visibility of what developers are creating

•	 Each agile user story could have proper acceptance criteria written that
included automated testing, allowing quality assurance engineers to work
on test tasks as developers code new features

•	 When new features were coded, relevant tests are written for a new feature
•	 New feature tests can be added to the regression pack, so that every time a

code commit is made the feature is tested

Testing Network Changes

[230]

This process change removes the inhibitor, which is simply the team structure, and
joins two teams together so they become more productive, which is in essence the
DevOps way.

Creating testing feedback loops
If we think back to the continuous integration process in Chapter 7, Using Continuous
Integration Builds for Network Configuration, then we had the commit process. The
commit essentially starting the whole Continuous Delivery process. Once a commit
has taken place, the change is already on the road to production. Any commit to the
trunk/mainline/master branch is a final change, so if a network commit is made, it is
already on its way to production.

If no validation engine or tests exist post check-in, then changes will flow all the way
through test environments reaching production environments.

This means that utilizing feedback loops with proper test gates is essential, so once a
code commit has taken place, it will be adequately tested and provide an immediate
indicator that a change has failed. Once all the quality gates have completed
successfully only then should the change be promoted to production, this model
promotes continuous improvement and failing fast. The further to the left a change
fails, the less cost it incurs to a business.

Chapter 8

[231]

Continuous integration testing
In Chapter 7, Using Continuous Integration Builds for Network Configuration, we focused
on the process of continuous integration and how multiple different checks can be
applied as part of the validation engine for a user commit. This makes sure that the
user commit is always properly validated.

Continuous integration provides a set of feedback loops where a code commit is
submitted to the SCM and the validation engine will return either a pass or a failure.
All testing can form the validation engine for changes:

Testing Network Changes

[232]

The continuous integration process when applied to development, takes the
approach that all changes are committed to the Trunk/Mainline/Master branch:

The new development feature will be committed to the Trunk/Mainline/Master
branch. This new commit will be compiled and be immediately integrated with
the rest of the code base, and then subsequent unit tests will then be executed
to determine a pass or failure against the build binaries, as shown in the
following diagram:

Chapter 8

[233]

Using the commit to Trunk/Mainline/Master continuous integration approach
relies on a degree of discipline from teams. If a commit fails and the CI Build Server
returns a failed build, then the team member that made the failed commit has a duty
to fix the build immediately, by either reverting or fixing the broken commit.

Continuous integration builds should under no circumstances ever be left in a
failed state as it means the Trunk/Mainline/Master is not in a clean state and all
subsequent code commits will not have valid continuous integration performed until
the build is fixed. This slows down a team's productivity so continuous integration is
a collaborative process and failure should be seen as a learning opportunity.

Gated builds on branches
Another popular method is using feature branches and gated builds. Every time
a developer makes a change, they will raise a merge request which will be peer-
reviewed by other members of the team and then subsequently merged.

Each merge request, when accepted, will start the merge process, but as part of the
merge process something known as a gated build will execute.

A gated build will be invoked when a merge occurs prior to integration with the
Trunk/Mainline/Master. It will run the equivalent of a continuous integration
build as a pre-commit, but only if the build and unit testing associated with the
pre-commit build passes, will the contents of the merge request be merged to the
Trunk/Mainline/Master branch.

The gated build process means that the Trunk/Mainline/Master branch is always
kept completely clean and functional. Where pure continuous integration can have
developers break the continuous integration build, gated builds prevent this from
happening, as long as the tests are good.

Testing Network Changes

[234]

Applying quality assurance best practices to
networking
Network teams can greatly benefit from adopting some of the best practices and
tried and tested methodologies that have been implemented to test development
or infrastructure changes.

Quality assurance is all about principles and processes, so test methodologies are
fairly agnostic and the tools used to implement the process come secondary.

When teams are working within a Continuous Delivery model, any changes to
network devices, load balancers, or even SDN controllers should be defined in source
control using orchestration and configuration management tools such as Ansible.

In a Continuous Delivery model, network changes need to propagate through
environments and at all times be governed by source control management systems,
with the state of the SCM system being the state of the network:

Network changes can be treated much like code changes and adequate testing could
be created as a network team initiative or by collaborating with the quality assurance
team. The type of testing at each phase may vary slightly from the set of tests that a
development or infrastructure team would run as part of their deployment pipeline.

However, equivalent network-specific testing can be derived to create a set of
robust tests that network changes have to traverse before being deployed to
production by associating particular network tests with each quality gate on
the deployment pipeline.

Chapter 8

[235]

Network teams, such as development and infrastructure teams need to create a set
of feedback loops to govern network changes, so that different test categories can be
executed in the deployment pipeline.

All testing should ideally be automated as part of each network change, in a
proactive manner and written at the same time as the network change is being lined
up. This then allows network changes to be tested in an automated manner at the
point of inception:

When setting up continuous integration, selecting either continuous integration or a
gated build strategy is down to the preference of the network team or engineers that
commit changes.

Unit testing should be integrated with the network continuous integration process. A
network operator will first check in a code change or change the state of the network.

The CI Build Server will check the Ansible var YAML files using Lint, which will
make sure that the YAML files are valid syntax.

If valid, the same playbook that would be executed on any downstream environment
will be executed against a CI test environment to make sure the playbook is
successful in terms of syntax and execution.

Testing Network Changes

[236]

Finally, a set of unit tests will be executed against the environment to validate
its functional and desired state of the environment after the playbook has
been executed:

The important thing to note is that unit tests are executed as part of the continuous
integration process and that these tests can either be part of the merge request
validation or executed on commit to the Trunk/Mainline/Master branch.

Assigning network testing to quality gates
When looking at what type of testing network teams can carry out to validate
network changes, they can be broken into different test categories and assigned to
different quality gates.

Some of the main test environments covered in this chapter are:

•	 Unit test
•	 Integration test
•	 System test

Chapter 8

[237]

Before considering where to put tests, we should first look at the network team's
needs. With a blank canvas what would be a beneficial set of tests that could help
with network operations?

Some of the following tests spring to mind, but any check or validation that is valid
to a particular team is applicable and should be included:

•	 Network checklist that network engineers carry out manually when
making changes

•	 Unit testing against network automation to make sure the network device is
in the desired state

•	 Testing performance of the network to see what the desired throughput is
and test when parts of the network become oversubscribed and need to be
scaled out

•	 Testing failover of network devices
•	 Testing network code quality
•	 Testing different user journeys through the network
•	 Testing Quality of Services

All of these types of tests can then be assigned to particular test environments and
quality gates created:

Testing Network Changes

[238]

Available test tools
Test tools, like all tools, should be used to facilitate test processes and outcomes.
So. for every single test quality gate, tools are required to wrap processes, schedule,
and execute tests.

There are various test tools available on the market today that network engineers
could greatly benefit from using.

Unit testing tools
Network unit testing as said many times before will form part of the continuous
integration build process and scheduled by a continuous integration build server.

One open source tool that can help with unit testing network changes is Test Kitchen.
Test Kitchen is a unit testing tool which utilizes the Busser framework and can be
used to carry out infrastructure testing. Test Kitchen supports many test frameworks
such as Bats and RSpec.

The Test Kitchens Busser framework is comprised of the following architectural
components:

•	 Driver
•	 Provisioner
•	 Platform
•	 Suites

Test Kitchen defines all its plugins using a kitchen.yml file, which outlines the
Driver, Provisioner, Platform, and Suites to use for the testing.

A Driver can be any platform that can be used to provision a virtual machine or
container. Test Kitchen has support for Vagrant, Amazon, OpenStack, and Docker,
and so can be used to test infrastructure changes.

A Provisioner is a configuration management tool such as Ansible, Chef, Puppet,
or Salt and is used to configure the server into the state that needs to be tested.

The Platform is the operating system that the Provisioner will execute on. Multiple
Platforms can be specified for cross-operating system testing. This could be very
useful when testing new versions of network operating systems operate in the same
way as their predecessors when doing software upgrades.

Chapter 8

[239]

Suites are used to create a test suite in combination with the Platform definition, so
if two different Platforms are defined, then unit tests will be executed against each
different platform in a consistent manner.

Test Kitchen example using OpenStack
The test kitchen gem will need to be pre-installed on the Ansible controller host.
Then perform the following steps:

1.	 From an Ansible controller node, in the folder containing the top player file
structure, as shown in the following screenshot:

Here, execute the following command:
kitchen init –provisioner=ansible –driver=openstack

This creates a kitchen.yml file and a test subdirectory.

2.	 Next, the folder test folder needs to be created which will store the
unit tests:
mkdir ./tests/integration/default/bats

3.	 The test kitchen file will then need to be populated with the Driver,
Platform, Provisioner, and Suites.
In the following example:

°° The Driver is specified as OpenStack, with a cumulus-vx image and
Platform being created.

°° The size of the image is m1.large which specifies the CPU, RAM,
and disk for the server.

°° The instance will be created within the network_team tenant and qa
availability zone.

Testing Network Changes

[240]

°° Once spun up, the configure_device.yml playbook will be
executed to configure the network device before the default folder
under test/integration which was defined in step 2. This tells Test
Kitchen the location of the Bats tests that will be executed to test the
state of the device:

4.	 Each test can be given a unique name and the .bats file extension to define
each unit test under the bats directory that was created in step 2:
Test/integration/default/bats/unit_test.bats

Chapter 8

[241]

5.	 An example of a test that can be written using Bats is as follows:

This checks that the eth0 interface is in a good working state when executed.

6.	 Finally, to execute test kitchen, execute the command shown in the
following screenshot:

Test Kitchen will then carry out the following workflow:

1.	 Create instance in OpenStack.
2.	 Run playbook.
3.	 Install Busser plugin.
4.	 Run unit tests.
5.	 Destroy instance if all tests passed.

Network checklist
Network engineers, as discussed, often have a set of manual checklists that they use
to validate if a network change has been successful or not.

Sometimes, this could involve validating whether a user interface has the desired
configuration that checks if the automation has worked as desired.

Instead of doing these checks manually, Selenium can be used to carry out graphical
user interface checks.

Testing Network Changes

[242]

Selenium's workflow can be summarized as test scripts invoking the Selenium web
driver which then creates a browser session to test a website or web page:

Test scripts can be written in multiple languages such as Java, Python, or Ruby.

Selenium can be installed in Python form by doing a pip install when using Python
for authoring scripts.

As Selenium is browser-based, it works with multiple browsers such as Internet
Explorer, Firefox, Chrome, and Safari and tests cross-browser support.

A Selenium test sample is shown in the following screenshot; this script will launch
google.co.uk in Chrome, type DevOps For Networking and finally click the
Search button on Google:

So, any graphical interface can be screen scraped such as a load balancer or network
device interface to assert that the correct information has been entered and returned.
This can also be useful if older network devices don't have an API.

Network user journey
A good test methodology is to test user journeys throughout the network. This can
be done by doing point-to-point testing in the network.

google.co.uk

Chapter 8

[243]

A good example of network user journeys may be testing Equal Cost Multipath
(ECMP) on Leaf-Spine architecture to make sure it is performing as desired.

Another test may be setting up point-to-point tests across data centers to make sure
links are performing as desired and do not suddenly depreciate.

Setting up user journey testing means that if a baseline performance drops, then it
can be tracked back to specific network changes as part of the network deployment
pipeline. This is done in much the same way as baselining application performance
and making sure a new release doesn't cause a drop in performance that will impact
end users.

Network user journey testing mean that if an ill-performing path through the
network is found, then it can be localized and fixed quickly so it improves mean time
to resolution when issues occur. Network engineers can use a tool such as iPerf to
send large amounts of packets through points in the network. This can be useful to
see where the bottlenecks are in the network and make sure the performance is
as desired.

Quality of Service
A lot of network tools now offer Quality of Service (QoS), which allows network
operators to limit the amount of network bandwidth that particular tenants utilize
in a network.

This prevents noisy test environments from impacting a production environment.
This is possible as network devices can set guarantees on performance on particular
tenant networks. This means that certain application workloads are always
guaranteed a certain network throughput, while other less crucial tenant networks
can be capped at peak times.

Different thresholds and alerting can be set up on network devices and faults in
network hardware can be detected if the QoS drops at a random time. It also guards
network engineers against the age-old: I think we have a network problem. Instead they
can prove it is an application issue, as the network service is stable and performing
as desired and can be easily displayed.

It is good to simulate and test QoS away from production environments and
have network teams come up with different scenarios to design the best fit for
the network, based on the applications that they are hosting.

Testing Network Changes

[244]

Failover testing
Failover testing should ideally be tested regularly by network teams, as modern
networks should be disaster recovery-aware and designed for failure.

Network failover tests can be simulated by writing an Ansible playbook or role
that disables a service or reboots a switch to make sure that the system adequately
fails over.

Utilizing delegate_to: localhost, API commands can be issued to network
devices such as switches to disable them programmatically using the API.
Alternatively, Ansible can SSH onto a network device's operating system and issue
an impromptu hard reboot.

Supplementary monitoring should be set up while doing failover testing to make
sure the network does not drop packets and test the speed at which the network
device fails over after the initial primary device is disabled.

Network code quality tooling
When defining the desired state of the network as code, make sure the Python code
that is written to create Ansible modules, as well as any other code that is used is of a
high standard and good quality.

SonarQube is an open source code quality tool which allows teams to analyze their
codes quality. Its architecture is comprised of three main components:

•	 SonarQube Runner
•	 SonarQube database
•	 SonarQube web interface

Sonar has a range of plug-ins that can be configured to provide unit test reporting,
code coverage, or code quality rules and can be set-up for any language be it Python,
Java, or C#.

SonarQube will snapshot a code repository every time it is run and store the history
of a project in terms of code quality. This can be trended over time showing quality
improvements or drops in the code quality. Sonar can be used to define specific best
practice or rules, which show up as violations when broken by commits.

Chapter 8

[245]

The SonarQube Runner uses a sonar.properties file at runtime that can be
included as part of the source control management system. This can be pulled down
as part of the continuous integration process. This means that after a new code
commit on a custom Ansible module the SonarQube Runner can be executed
against the code to test the new commit and see the impact.

The SonarQube Runner will execute a code quality check using one of the
plug-ins stipulated in the sonar.properties file. In the case of a new or changed
Ansible module that will invoke the Python-specific group of code quality tests.
Information will subsequently be displayed on the Sonar web-interface once the
analysis is complete.

The workflow for this process is shown in the following screenshot with the
SonarQube Runner triggering the whole process:

Testing Network Changes

[246]

An example of the sonar Python SonarQube project dashboard is shown in the
following screenshot, outlining the bugs, vulnerabilities, and tech debt to fix all the
issues in the code:

Tracking code quality and metrics is very important when implementing a
continuous improvement model in any company. So adequately measuring and
analyzing where improvements can be made in the code that drives all processes
is important in order to have engineers engage and write tests.

Summary
In this chapter we have looked at why testing network changes are necessary. We
focused on the benefits of utilizing feedback loops to continuously improve network
operations. We then explored some of the challenges associated with the way
network teams approach network changes and testing and how they will need to
adapt and adopt quality assurance best practices to keep up when companies are
running a Continuous Delivery model supplemented by a DevOps methodology.

Chapter 8

[247]

We then looked at how network teams could set up quality gates for testing and
looked at some of the tests that could be mapped at each stage of testing. Finally
we looked at some available tools that could be used to carry out network testing to
implement unit testing, check-lists, and code quality checks.

In this chapter you have learned about different types of test strategies such as unit,
component, integration, performance, system, and user acceptance testing. Key
takeaways also include quality assurance best practices, and why they are applicable
to networking and different types of network validations that could help assert
automated network changes.

This chapter has also delved into test tools that can be used to help test networking
such as Test Kitchen (http://kitchen.ci/), SonarQube (http://www.sonarqube.
org/), and iPerf (https://iperf.fr/).

In the next chapter we will focus on deployment pipelines, look at the tooling that
can be used to automatically deploy network changes. We will also look at the
difference between Continuous Delivery and deployment and when each approach
should be implemented.

The following blogs and presentations may be useful for further understanding
microservice test strategies in more detail:

•	 http://martinfowler.com/articles/microservice-testing/

•	 https://www.youtube.com/watch?v=FotoHYyY8Bo

http://kitchen.ci/
http://www.sonarqube.org/
http://www.sonarqube.org/
https://iperf.fr/
http://martinfowler.com/articles/microservice-testing/
https://www.youtube.com/watch?v=FotoHYyY8Bo

[249]

Using Continuous Delivery
Pipelines to Deploy Network

Changes
This chapter will focus on some of the different methods that can be used to deploy
network changes using deployment pipelines.

It will first look at Continuous Delivery and continuous deployment processes and
what these methodologies entail in terms of workflow.

We will also look at the different deployment tools, artifacts repositories, and
packaging methods that can be used to set up deployment pipelines and ways in
which network changes can be integrated into those pipelines.

In this chapter, the following topics will be covered:

•	 Continuous integration package management
•	 Continuous Delivery and deployment overview
•	 Deployment methodologies
•	 Packaging deployment artifacts
•	 Deployment pipeline tooling
•	 Deploying network changes with deployment pipelines

Using Continuous Delivery Pipelines to Deploy Network Changes

[250]

Continuous integration package
management
In Chapter 7, Using Continuous Integration Builds For Network Configuration, we looked
at the process of continuous integration and in Chapter 8, Testing Network Changes, we
looked at adding testing to the continuous integration process to provide increased
validation and feedback loops in case of failure.

When carrying out continuous integration, using a fail fast / fix fast philosophy is
desirable. This involves putting in necessary validation checks to decipher whether
a build is valid and provide feedback loops to users.

This promotes the correct behavior within the teams that do frequent, small,
incremental changes, which de-risks the changes. While each change is validated
using the Continuous Integration (CI) engine with instant feedback on changes, a
process of continuous improvement is adhered to as teams strive to make more
robust solutions that will pass all quality checks.

As important as providing feedback loops is, producing successful builds is equally
important to the process as this is how products are shipped to market. When a
continuous integration build completes, it often needs to package build artifacts that
are in a fit state so they can be deployed to target servers. This is often referred to as
creating a shippable product or artifact.

Any continuous integration process should carry out the following steps:

•	 Commit
•	 Build (Compile/Version/Tag)
•	 Validate
•	 Package
•	 Push

Every time a new commit takes place, a new continuous integration build will be
triggered. This will result in a code being pulled down from the SCM system, which
will trigger a build step, which can either be a compilation process, or if the build
process is not using a compiled language, then versioning or tagging of the binaries.
Finally, a set of validation steps will be carried out inclusive of any required testing.

If all validations prove successful, then a set of post-continuous integration process
steps need to be carried out. Post-build steps will include the package and push
process, this means packaging build binaries and pushing the newly versioned
package to an Artifact Repository of choice.

Chapter 9

[251]

An example process that includes Commit Change, Build (Compile Code), Validate
(Unit Tests), Package (Artifact), and Push to an Artifact Repository is shown in the
following diagram:

An important principle to remember when setting up continuous integration builds
and packaging continuous integration artifacts, is that artifacts should be packaged
once only, not every single time they need to be deployed.

This is important from a repeatability perspective and also reduces the time taken
to deploy as a build process can be lengthy and take many minutes. When a build
has been packaged, all tests and necessary validation have been carried out on the
artifact as part of the continuous integration process, so there is no need to repeat
this process again if no changes have occurred.

It is imperative that we ensure the exact same artifact is deployed to test
environments before being promoted onto production; this means there will be no
drift between environments. The same source code being packaged on a different
build server may result in the version of Java being slightly different, or even
something as simple as a different environment variable could mean the build
binaries are compiled differently.

Using Continuous Delivery Pipelines to Deploy Network Changes

[252]

Maintain consistent deployment artifacts, always swearing by the principle of
package once and deploy multiple times.

The standard of package once, deploy multiple times is illustrated following,
where a single artifact is used to seed test and production environments:

Creating different build artifacts for each environment is a non-starter; release
management best practices dictate that a build package and artifacts should include
tokens so different snapshots of the same package are not required.

Build package tokens can then be transformed at deployment time. All environment
specific information is held in a configuration file of some sort, normally called an
environment file, which is used to populate the tokens at deployment time.

The following best practices should be adhered to when packaging continuous
integration build artifacts:

•	 Artifacts should be packaged once and distributed many times
•	 Artifact packages should be packaged with tokenized configuration files
•	 Artifact package configuration files should be transformed at deployment

time using an environment file
•	 Common files can be used to supplement environment files if

deployment configuration is common to all environments to
avoid repetition

Chapter 9

[253]

The following popular configuration management tools have the ability to transform
tokenized templates by utilizing configuration files. Each of these configuration files
take on the role of the environment file:

•	 Puppet https://puppet.com/
•	 Chef https://www.chef.io/chef/
•	 Ansible https://www.ansible.com/
•	 Salt https://saltstack.com/

Taking Ansible as an example, in Chapter 4, Configuring Network Devices Using Ansible,
we covered the concept of jinja2 templates. Jinja2 templates allow template files to
be populated with tokens and these tokens are substituted with particular key value
pairs at deployment time.

Ansible allows users to populate jinja2 templates to be populated with variables
(tokens). Each var file can be configured so that it is unique to each environment.
Environment files can be imported into playbooks and roles by inputting it as
a command line argument. This will in turn transform the jinja2 templates at
deployment time with the environment-specific information.

In the following example, we see an Ansible playbook configure_env.yml being
executed, and a unique environment variable called environment needing to be set:

This will be imported into the playbook configure_env.yml so that a unique set of
environment information is loaded for each environment.

Therefore, taking the component, integration, system test, and production
environments as an example the following files would be loaded:

•	 ../roles/networking/vars/comp.yml

•	 ../roles/networking/vars/int.yml

•	 ../roles/networking/vars/sys.yml

•	 ../roles/networking/vars/prod.yml

https://puppet.com/
https://www.chef.io/chef/
https://www.ansible.com/
https://saltstack.com/

Using Continuous Delivery Pipelines to Deploy Network Changes

[254]

For each unique environment, the deployment command differs only in
the environment file that is loaded which will make the deployment
environment specific:

Continuous Delivery and deployment
overview
Continuous Delivery and deployment are a natural extension of the continuous
integration process. Continuous Delivery and deployment create a consistent
mechanism to deploy changes to production and create a conveyer belt delivering
new features to customers or end users. So conceptually a conveyer belt is what
continuous Delivery is all about, but in terms of actual process how is this achieved?

A continuous integration process will carry out the following high level steps:

•	 Commit
•	 Build (Compile/Version/Tag)

Chapter 9

[255]

•	 Validate
•	 Package
•	 Push

Continuous Delivery and deployment take over once the artifact has been pushed
to the artifact repository. Each and every build artifact created by a continuous
integration process should be considered a release candidate, meaning that it can
potentially be deployed to production if it passes all validations in the Continuous
Delivery pipeline.

Like continuous integration, Continuous Delivery and deployment create a series of
feedback loops to indicate if validation tests have failed on an environment.

A Continuous Delivery pipeline process will encapsulate the following high level
steps at each stage of a deployment pipeline:

•	 Deploy (pull/tokenize/setup)
•	 Validate (test)
•	 Promote

A stage in a deployment pipeline will contain a series of tests which will be used
to help validate whether the application is functioning as required prior to it being
released to production.

Each stage in the deployment pipeline will have a deployment step which will pull
down the artifact from the Artifact Repository to the target server and execute the
deployment steps. The deployment process will normally involve installing software
or configuring a change to the state of the server. Configuration changes are typically
governed by a configuration management tool such as Puppet, Chef, Ansible, or Salt.

Once deployment is completed, a series of tests will be carried out in the
environment to validate the deployment and also test the functionality of the
application or change.

Continuous Delivery means that if validation tests pass on a test environment
then the build artifact is automatically promoted to the next environment. The
deployment, validation, and promotion steps are carried out again on the next
environment in the same way as the previous environment. In the event of a failure,
the release candidate will break and it will not be promoted to the next stage of
the process.

Using Continuous Delivery Pipelines to Deploy Network Changes

[256]

When using Continuous Delivery this automatic promotion happens all the way to
the environment prior to production as shown in the following diagram:

Continuous deployment on the other hand has no paused state before
production and differs from Continuous Delivery in that it will automatically
deploy to production:

Chapter 9

[257]

So the only difference between Continuous Delivery and continuous deployment is
the manual pause from promoting the build artifact to production.

The reason for implementing Continuous Delivery over continuous deployment is
normally down to either governance or the maturity of testing.

When starting out, continuously deploying to production throughout the day can
seem very daunting as it mandates that the deployment process is completely
automated and that the validation and testing on each environment is mature
enough to catch all known errors.

With continuous deployment, the trigger of a production deployment is a SCM
commit, so it puts a lot of trust in the deployment system. This means it is desirable
that the branching strategy is set up to pull all changes from the trunk/mainline/
master branch and trigger the deployment pipeline. Having multiple different
branches will complicate the deployment process so it is important to implement
a branching strategy that minimizes repetition, and an explosion of the number of
deployment pipelines that are required.

If implemented badly, continuous deployment can result in continuous downtime, so
normally after setting up continuous integration businesses, teams should start with
Continuous Delivery and aim to eventually move to a continuous deployment once
processes have matured sufficiently.

As covered in Chapter 3, Bringing DevOps to Network Operations, cultural change is
needed within the business to implement a Continuous Delivery model and it really
is an all or nothing approach for it to work successfully.

As stated in Chapter 8, Testing Network Changes, manually updating environments can
compromise the validity of tests so they should be avoided at all costs, every change
should flow through SCM to downstream environments.

Continuous Delivery promotes automation and creation of test packs at every stage
in the deployment pipeline, but it also allows a business to cherry-pick the release
candidate that is finally deployed to production.

This means additional validation could be carried out manually during the imposed
stop before production, in the absence of the desired level or test coverage for a build
artifact. It also plays well with companies that are subject to regulatory requirements
that may mean they only have a specified deployment window and they cannot
deploy to production continuously.

Continuous Delivery means that regulated companies can still benefit from
automated environments and tests, but the production deployment is just a button
click to select the artifact, which has passed all aforementioned promotions and is
deployed to production.

Using Continuous Delivery Pipelines to Deploy Network Changes

[258]

Deployment methodologies
When carrying out Continuous Delivery and deployment, there is no one size
fits all deployment strategy. Configuration management tools such as Puppet,
Chef, Ansible, and Salt have different approaches to deployment and use different
approaches when keeping servers up to date.

The tool that is selected is not important, only the ideal workflow and processes to
support delivering changes that are consistent, quick, and accurate.

Pull model
Tools such as Puppet and Chef adopt a centralized approach to configuration
management, where they have a centralized server that acts as the brain for the
deployment process.

In Puppet's case the centralized server are the Puppet Master and in Chef's case the
centralized server is the Chef Server. This centralized server is a set of infrastructure
provisioned to store server configuration according to the configuration management
tool's reference architecture.

All updates to server configuration is pushed to the centralized server first and then
subsequently pushed out to the corresponding servers using agents. These agents
can either poll the centralized server for updates and apply them straight away or
alternately wait for the Puppet Agent, or in Chef's case, the Chef Client to be invoked
to start the convergence of configuration from the centralized server to the server
containing the agent.

The overriding principle in a pull model is that the centralized server governs the
state of the system and every change goes via the Puppet Master or Chef Server.

If any user logs onto a server and changes the state, then the next time that the state
converges from the centralized server it could overwrite those manual changes
when the agent runs (Puppet Agent or Chef Client) if that particular configuration
is managed by the centralized server.

In this model, the centralized server will control all application versioning
information and environment configuration.

An example of a pull model is shown in the following diagram. This shows
Chef being used in a Continuous Delivery process:

Chapter 9

[259]

•	 The continuous integration process creates a new build artifact which is
pushed to the Artifact Repository

•	 Chef's command line client knife is invoked as a post-build action which
updates the Chef Server with the new version of the application which is
being deployed

•	 The deployment process is then triggered on Component Test
Environment by running Chef Client which will trigger the
Chef Client to check the state against the Chef Server

•	 The Chef Client in this case, sees a new application version is available
based on the last knife update and as a result updates the environment to
the new version of the application

•	 Finally, all validation and test steps are run prior to promoting it to the
next stage of the deployment pipeline

•	 Convergence on the subsequent Integration Test Environment is only
triggered if the Component Test Environment promotion is successful

Using Continuous Delivery Pipelines to Deploy Network Changes

[260]

Push model
Tools such as Ansible and Salt adopt a push model to configuration management,
where they have a control host that is used to connect to servers using SSH and
configure them.

Instead of using a centralized server, Ansible and Salt use a control host, which
has a command-line client installed on the server. The control host is then used to
push changes to servers via logging on to them using SSH either via password or
alternatively, SSH keys.

As Ansible and Salt are Python-based, they are agentless and can run on any Linux
distribution, as Python is a pre-requisite for these servers. Windows machines are
connected to and configured using WinRM.

All configuration management information is stored in SCM systems and pulled
down to the control host, this configuration is then used to push updates out to
servers.

The overriding principle in a push model is that changes are committed into SCM.
The SCM server, rather than a centralized server, is the source of truth for state,
configuration, and versioning.

An example of a push model follows. This shows Ansible being used in a
Continuous Delivery process:

•	 The continuous integration process creates a new build artifact which is
pushed to the Artifact Repository

•	 A new artifact being present in the Artifact Repository triggers the
deployment process and the Ansible playbook/role is downloaded
from the SCM System to the Ansible Control Host

•	 The deployment process is then triggered on Component Test
Environment and Ansible is executed against all servers that are present
in the targeted inventory

•	 Finally, all validation and test steps are run prior to promoting it to the
next stage of the deployment pipeline

•	 Ansible is only executed on the subsequent Integration Test Environment
if the Component Test Environment promotion is successful

Chapter 9

[261]

When to choose pull or push
When selecting a pull or push method of configuration management, it is down to
preference and should be selected based on the approach to infrastructure.

Pull models are popular when dealing with server estates that have long-lived
infrastructure. It lends itself well to patching a whole estate of servers to keep on top
of compliance. Pull models, as they have a centralized server with the current state,
means that if configuration is removed from a server, then the centralized server
will register that a delete is required. Push models only understand the new desired
state and don't take into account the previous state due to the lack of convergence.
So if some configuration is removed from a playbook for example, it won't be
automatically cleaned up when the next deployment occurs.

The drawbacks of a pull approach are the requirement to maintain the infrastructure
for the centralized server which can be somewhat large, and as it is agent-based,
agent versions also need to be maintained.

Push models align themselves well to orchestration and updating large amounts of
servers. They are popular when using immutable infrastructure as the old state of
the server is not important. This means that only the current desired state is relevant,
so it is not necessary to clean-up deleted configuration as servers will be deployed at
every deployment.

Using Continuous Delivery Pipelines to Deploy Network Changes

[262]

A pull model with immutable infrastructure wouldn't really make sense as the boxes
would only converge once and then be destroyed, so the overhead of running large
centralized servers to take care of convergence is wasteful.

Packaging deployment artifacts
Using configuration management tooling just to deploy applications is not enough;
Continuous Delivery and deployment are only as quick as its slowest component.
So having to wait for manual network or infrastructure changes is not an option;
all components need to be built, versioned, and have their deployment automated.

When looking at building new environments from scratch, multiple deployment
artifacts need to be used to build an environment; application code is just one piece
of the jigsaw.

The following dependencies are required to build a redundant environment:

•	 Application
•	 Infrastructure (base operating systems and virtual or physical servers)
•	 Networking
•	 Load balancing
•	 Deployment scripts (configuration management)

Not versioning all these components together means that true rollback is not
available as components may break if an application is rolled back and the network
has moved forward in terms of state.

Ideally application code, infrastructure, networking, load balancing, and deployment
scripts should all be versioned and tested together as one entity. So if rollback is
required then operators can simply roll-back to the last known package which has
tried and tested versions of the application code, infrastructure, networking, load
balancing, and deployment scripts that were known to work together.

One option is to have a single repository that versions all dependencies in that one
repository. This can be inflexible when dealing with large numbers of applications
and can result in repetition of configuration.

Chapter 9

[263]

Another way to version all components is via continuous integration builds, each
of the components can have their own continuous integration build to version the
individual components and a unique repository.

Applications will be a packaged entity which may be an RPM file on Red Hat Linux,
APT file on Ubuntu, or a NuGet package on Windows.

Infrastructure will be provisioned using cloud provider APIs such as OpenStack,
Microsoft Azure, Google Cloud, or AWS, so the desired number of servers will need
to be specified using a version controlled inventory file.

The base operating system images can be created using tooling such as Packer or
OpenStack Disk Image Builder and uploaded to a cloud provider's image registry.

As covered in Chapter 4, Configuring Network Devices Using Ansible, Chapter 5,
Configuring Load Balancers Using Ansible, and Chapter 6, Configuring SDN Controllers
Using Ansible, network configuration, when utilizing Ansible, normally takes the
form of var files which describe the desired state of the system.

When using an SDN controller, the subnet ranges and ACL firewall rules can be
described in these var files and utilize modules scheduled in specific orders to apply
them at deployment time. In a similar vein, the load balancing configuration object
model can be stored in Ansible var files to set up load balancing.

Each of these repositories should be tagged as part of the continuous integration
build and a supplementary package build can then be created for each application.
This package build is used to roll-up all the dependencies and version them together
using a manifest file.

Using Continuous Delivery Pipelines to Deploy Network Changes

[264]

The continuous integration builds that contribute to the manifest file are shown in
the following diagram:

A manifest file can take the form of a simple key value pair file or a JSON file.
The format of the file is not important, recording the latest tagged version of each
continuous integration build is integral to the process.

At deployment time, a new packaged manifest should be used as the trigger for
the deployment pipeline. The first step of the deployment pipeline will pull down
the manifest file from the artifact repository and it can then be read for version
information.

All versions of the repositories present in the manifest file can then be pulled down
to the Ansible control server and used to deploy the desired application version
along with the desired state to the infrastructure, network, and load balancer
required for each environment.

Roll-back would involve passing the previous version of the manifest file to the
deployment process which would then revert to the last tried and tested versions of
the application code, infrastructure, networking, load balancing, and deployment
scripts that were known to work together.

Chapter 9

[265]

Deployment pipeline tooling
Deployment pipelines involve chaining different tools together to create Continuous
Delivery processes.

Being able to track the process flow through the Continuous Delivery tooling is
integral, as it is important to be able to visualize the pipeline process, so it is easy for
operators to follow.

Having visibility of a process makes debugging the process easy if errors occur,
which may happen as errors will occur in any process and are inevitable. The whole
point of the Continuous Delivery pipeline, aside from automating delivery of
changes to environments, is to provide feedback loops. So if a pipeline is not easy to
follow and debug, it has failed one of its main objectives.

Building automatic clean-up into pipelines should be implemented if possible, so if a
failure occurs mid-deployment then changes can be reverted back to the last known
good state without the need for manual intervention.

At a high level, the following tooling is required when creating a deployment
pipeline for Continuous Delivery which includes a SCM System, CI Build Server,
Artifact Repository, and CD Pipeline Scheduler:

Using Continuous Delivery Pipelines to Deploy Network Changes

[266]

In Chapter 7, Using Continuous Integration Builds for Network Configuration, and Chapter
8, Unit Testing Network Changes, we covered the importance of the SCM System and
CI Build Server in continuous integration and testing. In this chapter we will focus
on the tooling required for the deployment process which includes the Artifact
Repository and CD Pipeline Scheduler that is used to schedule configuration
management tooling.

Artifact repositories
Artifact repositories are a key component in any deployment pipeline; they can be
used to host a multitude of different repositories or even just hold generic artifacts.

Platform golden images in ISO, AMI, VMDK, and QCOW format can be stored and
versioned in artifact repositories and used as the source for image registries for cloud
providers such as AWS, Google Cloud, Microsoft Azure, and OpenStack.

Manifest files can also be held in a release repository to govern the roll-forward
and roll-back of application, infrastructure, networking, and load balancing
requirements.

Artifactory
Artifactory from JFrog is one of the most popular artifact repositories on the market
today and provides access to repositories via an NFS-based shared storage solution.
Artifactory is bundled with the Apache Tomcat web server as part of the installer
bundle and can be hosted on Linux or Windows.

In terms of load balancing, Artifactory can be set up in a highly available, three tier
cluster for redundancy. Artifactory can use a wide variety of load balancers such as
Nginx or HAProxy as well as proprietary load balancers such as Citrix NetScaler, F5
Big-IP, or Avi Networks.

Artifactory is backed by a MySQL or Postgres database and requires an NFS file-
system or Amazon S3 storage to store artifacts that are made available to each of
Artifactories three HA nodes.

The architectural overview of Artifactory is shown in the following diagram:

Chapter 9

[267]

Artifactory supports numerous different repository types, some of which are shown
here, so it can host multiple different repositories for delivery teams depending on
the applications that they are developing:

•	 Maven https://www.jfrog.com/confluence/display/RTF/
Maven+Repository

•	 Ivy https://www.jfrog.com/confluence/display/RTF/
Working+with+Ivy

•	 Gradle https://www.jfrog.com/confluence/display/RTF/
Gradle+Artifactory+Plugin

•	 Git LFS https://www.jfrog.com/confluence/display/RTF/
Git+LFS+Repositories

•	 NPM https://www.jfrog.com/confluence/display/RTF/
Npm+Registry

•	 NuGet https://www.jfrog.com/confluence/display/RTF/
NuGet+Repositories

•	 PyPi https://www.jfrog.com/confluence/display/RTF/
PyPI+Repositories

•	 Bower https://www.jfrog.com/confluence/display/RTF/
Bower+Repositories

•	 YUM https://www.jfrog.com/confluence/display/RTF/
YUM+Repositories

https://www.jfrog.com/confluence/display/RTF/Maven+Repository
https://www.jfrog.com/confluence/display/RTF/Maven+Repository
https://www.jfrog.com/confluence/display/RTF/Working+with+Ivy
https://www.jfrog.com/confluence/display/RTF/Working+with+Ivy
https://www.jfrog.com/confluence/display/RTF/Gradle+Artifactory+Plugin
https://www.jfrog.com/confluence/display/RTF/Gradle+Artifactory+Plugin
https://www.jfrog.com/confluence/display/RTF/Git+LFS+Repositories
https://www.jfrog.com/confluence/display/RTF/Git+LFS+Repositories
https://www.jfrog.com/confluence/display/RTF/Npm+Registry
https://www.jfrog.com/confluence/display/RTF/Npm+Registry
https://www.jfrog.com/confluence/display/RTF/NuGet+Repositories
https://www.jfrog.com/confluence/display/RTF/NuGet+Repositories
https://www.jfrog.com/confluence/display/RTF/PyPI+Repositories
https://www.jfrog.com/confluence/display/RTF/PyPI+Repositories
https://www.jfrog.com/confluence/display/RTF/Bower+Repositories
https://www.jfrog.com/confluence/display/RTF/Bower+Repositories
https://www.jfrog.com/confluence/display/RTF/YUM+Repositories
https://www.jfrog.com/confluence/display/RTF/YUM+Repositories

Using Continuous Delivery Pipelines to Deploy Network Changes

[268]

•	 Vagrant https://www.jfrog.com/confluence/display/RTF/
Vagrant+Repositories

•	 Docker https://www.jfrog.com/confluence/display/RTF/
Docker+Registry

•	 Debian https://www.jfrog.com/confluence/display/RTF/
Debian+Repositories

•	 SBT https://www.jfrog.com/confluence/display/RTF/
SBT+Repositories

•	 Generic https://www.jfrog.com/confluence/display/RTF/
Configuring+Repositories

This means Artifactory can be used as the single repository end-point for Continuous
Delivery pipelines. Artifactory has recently introduced support for Vagrant boxes
and Docker registry so it can be used to store Vagrant test environments, which
could be used to store network operating systems or containers. This illustrates
some of the features available from market-leading artifact repositories.

CD pipeline scheduler
While the job of the artifact repository is relatively straightforward, but no less
important, choosing the correct Continuous Delivery pipeline tool is much more
difficult.

There is a wide array of options available such as:

•	 IBM Urban Code Deploy https://developer.ibm.com/urbancode/
products/urbancode-deploy/

•	 Electric Flow Deploy http://electric-cloud.com/products/
electricflow/deploy-automation/

•	 Jenkins https://jenkins.io/
•	 Thoughtworks Go https://www.go.cd/
•	 XL Deploy https://xebialabs.com/products/xl-deploy

But before picking a tool, the process being implemented needs to be considered.
So what are the main aims of a Continuous Delivery pipeline?

https://www.jfrog.com/confluence/display/RTF/Vagrant+Repositories
https://www.jfrog.com/confluence/display/RTF/Vagrant+Repositories
https://www.jfrog.com/confluence/display/RTF/Docker+Registry
https://www.jfrog.com/confluence/display/RTF/Docker+Registry
https://www.jfrog.com/confluence/display/RTF/Debian+Repositories
https://www.jfrog.com/confluence/display/RTF/Debian+Repositories
https://www.jfrog.com/confluence/display/RTF/SBT+Repositories
https://www.jfrog.com/confluence/display/RTF/SBT+Repositories
https://www.jfrog.com/confluence/display/RTF/Configuring+Repositories
https://www.jfrog.com/confluence/display/RTF/Configuring+Repositories
https://developer.ibm.com/urbancode/products/urbancode-deploy/
https://developer.ibm.com/urbancode/products/urbancode-deploy/
http://electric-cloud.com/products/electricflow/deploy-automation/
http://electric-cloud.com/products/electricflow/deploy-automation/
https://jenkins.io/
https://www.go.cd/
https://xebialabs.com/products/xl-deploy

Chapter 9

[269]

A good Continuous Delivery pipeline should meet the following goals:

•	 Trigger deployments based on new artifacts being available in artifact
repository

•	 Schedule command lines
•	 Render a pipeline view
•	 Break tasks into stages
•	 Provide good log output
•	 Feedback pass or failures
•	 Integration with testing

All of these points need to be considered when selecting tooling so we will
cherry-pick one of the most popular Continuous Delivery pipeline scheduling
tools Jenkins, and look at ways in which it schedules pipelines.

Jenkins
Jenkins was primarily a continuous integration build server when it was conceived.
Jenkins has a pluggable framework that means that it is often customized to carry
out deployments, with plugins such as the multi-job plugin built to allow it to
schedule pipelines.

However, as of the Jenkins 2.x release, Jenkins now makes pipelines a core feature
component of its distribution rather than depending on plugins to cater for its
deployment capabilities.

In the following example, the Jenkins Pipeline job type can be seen:

Using Continuous Delivery Pipelines to Deploy Network Changes

[270]

Using the Jenkins Pipeline job type, users can specify pipelines using a Pipeline
Script, declaring each stage of the pipeline. In this instance, the echo command has
been used to spoof each pipeline stage to show how a Pipeline script may look:

The visual display of the pipeline from the pipeline script is shown in the Stage View.
The Stage View shows the eight stages the pipeline went through in order to deploy
the networking, virtual machines, application, and load balancer configuration:

Logging for each stage is shown clearly in the Jenkins console logs which allow users
of the tool to see feedback on successful and unsuccessful console logs:

Chapter 9

[271]

When putting valid commands into Pipeline script, as opposed to simulating
echoes as we have in the above example, Jenkins allows users to use a groovy
snippet generator to translate any steps to Pipeline Script format.

Using Continuous Delivery Pipelines to Deploy Network Changes

[272]

In this instance, a shell command is required to execute the Ansible playbook to
create_vip.yml on the component test environment, so the snipped generator is
used to create it:

This snippet command can then be pasted into the create_vip.yml stage that was
created on the Pipeline script:

The output of the job configuration is a Jenkins file that can be stored in SCM to
version control the deployment pipeline changes.

Chapter 9

[273]

Deploying network changes with
deployment pipelines
When carrying out Continuous Delivery or deployment, it is essential to
incorporate network changes. Network teams need to contribute major pieces
of the deployment pipeline.

As the CD Pipeline scheduler allows different stages to be specified in the
deployment pipeline, it gives great flexibility and allows all teams to contribute
pieces, forming a true collaborative DevOps model.

Sometimes a concern from network teams is that developers should not have
the necessary access to all network devices as they are not experts. Truth be told,
developers don't want access to network devices, they instead want a quick way of
pushing out their changes where they are not impeded by having to wait on network
changes being applied.

Network self-service
Allowing developers the ability to self-service their own network changes is very
important, otherwise the network team becomes the bottleneck for the Continuous
Delivery process.

So providing development teams with, say, a hardened Ansible playbook to create
everyday network functions will undoubtedly help alleviate developer pain and
make deployment of new network changes a self-service function.

Developers can use a playbook that incorporates all the best practices of the network
team to apply any network changes. This is following the model where developers
can utilize a playbook provided by the infrastructure team to spin up new virtual
machines and register their DNS entries with the IPAM solution.

Steps in a deployment pipeline
When creating deployment pipelines, it is important to break up each function
into a granular set of steps. This means if any step fails it can be easily rolled back.
Understanding the deployment pipeline visually is also important as breaking down
complex operations into small steps makes debugging failures less daunting too.

Using Continuous Delivery Pipelines to Deploy Network Changes

[274]

A modern application deployment pipeline will provision new environments by
carrying out the following high level steps every single deployment:

1.	 Download manifest
2.	 Create network
3.	 Create VMs in network
4.	 Install application
5.	 Create VIP
6.	 Rolling update
7.	 Run test pack
8.	 Promote to next phase

The first stage of the pipeline is the trigger for a new deployment to the first test
environment. In this case, the detection of a new manifest file artifact.

The manifest artifact will be downloaded to the CD Pipeline scheduler and
parsed. The Ansible var file structure will be assembled from SCM using the
manifest versions.

Once assembled, the network needs to be provisioned. An A or B network will be
created depending on the release and the necessary Ingress and Egress ACL rules
will be applied to the network.

Virtual machines will then be booted into the newly-provisioned network and
tagged with their metadata profile stating the software that needs to be installed
on them.

Ansible dynamic inventory is run to pull back the new virtual machines that were
just created, Ansible reads the profile metadata from the virtual machines. metadata
tags and Ansible installs the required role on the new cluster of virtual machines
depending on what profile is specified.

A VIP is created on the load balancer if it doesn't already exist and its load balancing
policies are applied. Boxes are then rolled into service on the new VIP and old boxes
are rolled out of service. The new boxes are smoke tested to make sure they are
operating as expected before the previous release is destroyed.

A full quality assurance test pack is then executed and the manifest artifact is then
promoted to the next stage if successful.

Each of these steps will be repeated all the way up to production. In a Continuous
Delivery model, the production deployment will be a manual button press to trigger
the pipeline, where in Continuous Delivery pipeline will automatically trigger if all
quality gates pass.

Chapter 9

[275]

Incorporating configuration management
tooling
When utilizing a CD scheduler such as Jenkins, its agents, known as slaves, can
be used to install Ansible on them and they become the Ansible Control Host for
the deployment.

Each stage in the deployment pipeline can be a small modular Ansible playbook that
allows developers to self-serve their network needs. These playbooks can be created
by the network team and continuously improved over time.

So the Jenkins Pipeline script would resemble the following, with a unique
playbook for each stage:

The steps applied on each test environment should be consistent with production
and all steps should be carried out by a service account for the pipeline.

Each and every environment should be built from source control by implementing
immutable infrastructure and networking. This is so that the desired state is always
what is specified in the manifest file's associated repositories.

The Ansible var files that feed each playbook can be filled in by the development
teams in order to set firewall policies or load balancing policies.

These var files are versioned by the associated continuous integration builds for
the SDN or load balancing configuration. Each network-related CI build then
rolls up into a new manifest file when an application continuous integration build
is triggered. The generation of a new manifest file triggers the first step in the
deployment pipeline.

Using Continuous Delivery Pipelines to Deploy Network Changes

[276]

Network teams' role in Continuous Delivery
pipelines
When analyzing the steps that are executed by a deployment pipeline, if we look at
which teams would have the necessary permissions to carry out each pipeline stage
manually, it becomes very apparent the importance of integrating networking into
the Continuous Delivery processes.

Out of the eight high level stages to deploy an application, three of them are
integrating with the network when executing create network, create vip, and rolling
update as shown here:

This shows that if network operations were not part of the deployment pipeline then
true Continuous Delivery would not be achievable.

Failing fast and feedback loops
One of the key objectives of creating Continuous Delivery pipelines is creating
feedback loops which fail fast and create a radiator view for developers. However,
with Continuous Delivery moving into continuous operations space, as it now
incorporates infrastructure, networking, and quality assurance, all teams need
to be mindful of failures and react accordingly.

When pipeline stages fail, it is important to incorporate automated clean-up every
time there is a failure, this leaves the pipeline in a good state so the next pipeline is
not impeded. Any break in the process means that changes cannot reach production.

So although it may be a test environment that is breaking, it is now blocking
potential fixes being deployed to production. If a failure occurs, the pipeline should
also halt the whole process and not proceed to the next stage as shown below:

Chapter 9

[277]

Ansible block rescue functionality is very useful when dealing with failed pipeline
stages and clean-up, providing a try and catch-like feature for playbooks and roles.

Testing should also be incorporated into the deployment pipeline so if the run test
stage of the pipeline fails, then there is a history of why the tests failed that can
be audited. Pipelines also help provide a full history of changes that have been
applied to the environment. Although triggered by a service account, the user that
committed the change in source control should take ownership for each change.

Summary
In this chapter, we looked at integrating network changes into deployment pipelines
so that network teams can contribute to the Continuous Delivery process. We then
discussed the difference between Continuous Delivery and deployment.

We then looked at how package management is crucial for wrapping development,
infrastructure, quality assurance, and network changes together as part of
deployment pipelines. We also illustrated some of the market-leading artifact
repositories and CD pipeline schedulers using Artifactory and Jenkins as examples.

Finally, we looked at best practices that should be adopted when setting up
deployment pipelines within the remits of Continuous Delivery and deployment.
We then focused on ways network teams could contribute to deployment pipelines
by providing self-service deployment scripts to developers, so they keep the overall
process quick, lean, and automated.

After reading this chapter, you should now understand why that applications
should be compiled only once and stored in an artifact repository, and the same
binaries should be deployed to multiple environments so the deployment process
is consistent.

Using Continuous Delivery Pipelines to Deploy Network Changes

[278]

The chapter also focused on the differences between pull-based tools, such as
Chef and Puppet, and tools such as Ansible and Salt that utilize a push model for
configuration management.

Key takeaways should also include how to utilize Artifactory as an artifact repository
to store numerous types of build artifacts, and ways in which manifest files can be
generated using continuous integration to version code, infrastructure, networking,
and load balancing.

Readers should learn all the necessary steps in a Continuous Delivery pipeline, how
to set up a deployment pipeline using Jenkins 2.x, and the importance of integrating
networking in the Continuous Delivery model.

In the next chapter, we will focus on containers and look at the impact they have
had on networking and network operations. We will look at some of the different
orchestration options that can be used such as Docker and Kubernetes.

[279]

The Impact of Containers on
Networking

No modern IT book would be complete without a chapter on containers. In this
chapter, we will look at the history of containers and the options currently available
to deploy them. This chapter will look at the changes required to support running
containers from a networking perspective. We will then focus on some of the
technologies used to package containers, and how they can be incorporated into a
Continuous Delivery process. Finally, we will focus on some of the orchestration
tools that are being used to deploy containers.

In this chapter, the following topics will be covered:

•	 Overview of containers
•	 Packaging containers
•	 Container orchestration tools
•	 How containers fit into continuous integration and delivery

Overview of containers
There has been a lot of hype about containers in the IT industry of late; you could be
forgiven for thinking that containers alone will solve every application deployment
problem possible. There have been a lot of marketing campaigns from vendors
stating that implementing containers will make a business more agile or that they
mean a business is implementing DevOps simply by deploying their applications in
containers. This is undoubtedly the case if you listen to software vendors promoting
their container technology or container orchestration software.

The Impact of Containers on Networking

[280]

Containers are not a new concept, though. Far from it: Solaris 10 introduced the
concept of Solaris Zones as far back as 2005, which allowed users to segregate the
operating system into different components and run isolated processes. Modern
technologies such as Docker or Rocket provide a container workflow that allows
users to package and deploy containers.

However, like all infrastructure concepts, containers are simply facilitators of
process, and implementing containers as a standalone initiative for the wrong
reasons will likely bring no business value to a company. It seems it has become
almost mandatory for large software vendors to have a container-based solution as
part of their portfolio, given their recent popularity.

Containers, like all tools, can be very beneficial for certain use cases. It is important
when considering containers to consider the benefits that they bring to microservice
architectures. It is fair to say that containers have been seen by some Platform as a
Service (PaaS) companies as being the bridge between development and operations.

Container technologies have allowed developers to package their applications in
containers in a consistent way, while at the same time describing the way in which
they wish to run their microservice application in production using PaaS technology.
This construct can be understood by development and operations staff, as they are
both familiar with the same container technology and constructs they use to deploy
applications. This means that the container that is deployed on a development
workstation will behave in the same way as it would on a production system.

This has allowed developers to define their application topology and load balancing
requirements more consistently, so that they are deployed identically to test and
production environments using a common suite of tooling.

Famous success stories such as Netflix have shown that containerizing their whole
microservice architecture is possible and can be a success. With the rise in popularity
of microservice applications, a common requirement is to package and deploy a
microservice application across multiple hybrid clouds. This gives organizations real
choice over which private or public cloud provider they use.

In microservice architectures, cloud-native microservice applications can be scaled
up or down quickly to deal with busy or quiet periods for a business. When using
a public cloud, it is desirable to only utilize what is required, which can often mean
that microservices can be scaled up and scaled down throughout the day to save
running costs.

Chapter 10

[281]

Elastic scaling based on utilization is a common use case when deploying
cloud-native microservices so that microservices can scale up and down based
on reading data from their monitoring systems or from the cloud provider.

Microservices have followed the lead of service-oriented architectures and can be
seen as the modern implementation of this concept of service-oriented architectures
(SOA). Microservices such as SOA allow multiple different components to
communicate via a network of services and common set of protocols. Microservices
aim to decouple services from one another into specific functions, so they can be
tested in isolation and joined together to create the overall system and, as illustrated,
scaled up or down as required.

When using microservice architectures, instead of having to deploy the whole
system each time, different component versions can be deployed independently
of each other without causing system downtime.

Containers in some ways can be seen as the perfect solution for microservice
applications as they can be used to carry out specific functions in isolation. Each
microservice application can be deployed within the constructs of an individual
container and networked together to provide an overall service to the end user.

Containers already natively run on any Linux operating system and are lightweight
by nature, meaning they can be deployed, maintained, and updated easily when
utilizing popular container technology such as:

•	 Docker (https://www.docker.com/)
•	 Google Kubernetes (http://kubernetes.io/)
•	 Apache Mesos (http://mesos.apache.org/)
•	 IBM Bluemix (http://www.ibm.com/cloud-computing/bluemix/

containers/)
•	 Rackspace Catrina (http://thenewstack.io/rackspace-carina-bare-

metal-caas-based-openstack/)
•	 CoreOS Rocket (https://coreos.com/blog/rocket/)
•	 Oracle Solaris Zones (https://docs.oracle.com/cd/E18440_01/doc.111/

e18415/chapter_zones.htm#OPCUG426)

https://www.docker.com/
http://kubernetes.io/
http://mesos.apache.org/
http://www.ibm.com/cloud-computing/bluemix/containers/
http://www.ibm.com/cloud-computing/bluemix/containers/
http://thenewstack.io/rackspace-carina-bare-metal-caas-based-openstack/
http://thenewstack.io/rackspace-carina-bare-metal-caas-based-openstack/
https://coreos.com/blog/rocket/
https://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm#OPCUG426
https://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm#OPCUG426

The Impact of Containers on Networking

[282]

•	 Microsoft Azure Nano Server (https://technet.microsoft.com/en-us/
windows-server-docs/get-started/getting-started-with-nano-
server)

•	 VMware Photon (http://blogs.vmware.com/cloudnative/introducing-
photon/)

Containerization in essence is virtualizing processes on the operating system
and isolating them from one another into manageable components. Container
orchestration technologies then create network interfaces to allow multiple
containers to be connected to each other across the operating systems, or in more
complex scenarios, create full overlay networks to connect containers running on
multiple physical or virtual servers using programmatic APIs and key-value stores
for service discovery.

Solaris Zones
In 2005, Solaris introduced the notion of Solaris Zones, and from it came the concept
of containment. After a user logged in to a fresh Solaris operating system, they
would find themselves in a global Solaris Zone.

Solaris then gave users the option to create new zones, configure them, install the
packages to run them, and finally, boot them so they could be used. This allowed
each isolated zone to be used as a contained segment within the confines of a single
Solaris operating system.

Solaris allowed zones to run as a completely isolated set of processes, all from
the default global zone in terms of permissions, disk, and network configuration.
Different persistent storage or raw devices could be exported to the zones and
mounted to make external file systems accessible to a zone. This meant that multiple
different applications could run within their own unique zone and communicate
with external shared storage.

In terms of networking, the global Solaris Zone would have an IP address and be
connected to the default router. All new zones would have their own unique IP
address on the same subnet using the same default router. Each zone could even
have their own unique DNS entry if required. The networking setup for Solaris
Zones is shown in the following figure, with two zones connected to the router by
accessing the network configuration on the /zones file system:

https://technet.microsoft.com/en-us/windows-server-docs/get-started/getting-started-with-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/getting-started-with-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/getting-started-with-nano-server
http://blogs.vmware.com/cloudnative/introducing-photon/
http://blogs.vmware.com/cloudnative/introducing-photon/

Chapter 10

[283]

.

Linux namespaces
A Linux namespace creates an abstraction layer for a system process and changes
to that system process only affect other processes in the same namespace. Linux
namespaces can be used to isolate processes on the Linux operating system; by
default, when a Linux operating system is booted, all resources run under the
default namespace so have the ability to view all the processes that are running.

The namespace API has the following system calls:

•	 clone

•	 setns

•	 unshare

The clone system call creates a new process and links all specified processes to it; the
setns system call, on the other hand, is used to join namespaces together, and the
unshare system call moves a process out of a namespace to a new namespace.

The Impact of Containers on Networking

[284]

The following namespaces are available on Linux:

•	 Mounts
•	 Process ID
•	 Interprocess communication
•	 UTS
•	 Network
•	 User

The mounts namespace is used to isolate the Linux operating system's file system so
specific mount points are only seen by a certain group of processes belonging to the
same namespace. This allows different processes to have access to different mount
points, depending on what namespace they are part of, which can be used to secure
specific files.

The Process ID (PID) namespace allows the reuse of PID processes on a Linux
machine as each set of PIDs is unique to a namespace. This allows containers to be
migrated between hosts while keeping the same PIDs, so the operation does not
interrupt the container. This also allows each container to have its own unique
init process and makes containers extremely portable.

The interprocess communication (IPC) namespace is used to isolate certain specific
resources, such as system objects and message queues between processes.

The UTS namespace allows containers to have their own domain and host name; this
is very useful when using containers, as orchestration scripts can target specific host
names as opposed to IPs.

The network namespace creates a layer of isolation around network resources such
as the IP space, IP tables, and routing tables. This means that each container can have
its own unique networking rules.

The user namespace is used to manage user permissions to namespaces.

So, from a networking perspective, namespaces allow multiple different routing
tables to coexist on the same Linux operating system, as they have complete process
isolation. This means each container can have its own unique networking rules
applied if desired.

Chapter 10

[285]

Linux control groups
The use of control groups (cgroups) allows users to control Linux operating system
resources that are part of a namespace. The following cgroups can be used to control
Linux resources:

•	 CPU
•	 Memory
•	 Freezer
•	 Block I/O
•	 Devices

The CPU cgroup can use two different types of scheduler: either the Completely Fair
Scheduler (CFS), which is based on distributing CPU based on a weighting system.
The Real-Time Scheduler (RTS) is the other alternative, and is a task scheduler that
caps tasks based on their real-time utilization.

The memory cgroup is used to generate reports on memory utilization used by the
tasks in a cgroup. It sets limits on the memory use of processes associated with the
cgroup can use.

The freezer cgroup is used to control the process status of all processes associated
with the freezer cgroup. The freezer cgroup can be used to control batches of jobs
and issue the FREEZE command, which will stop all processes in the user space; the
THAW command can be used to restart them again.

The Block I/O (blkio) cgroup monitors access to I/O on block devices and
introduces limits on I/O bandwidth or access to resources. Blkio uses an I/O
scheduler and can assign weights to distribute I/O or provide I/O throttling by
setting maximum limits to throttle the amount of read or writes that a process
can do on a device.

The devices' cgroup allows or denies access to devices by defining tasks under
devices.allow and devices.deny, and can list device access using devices.list.

Benefits of containers
Containers have many benefits, with a focus on portability, agility, security, and as
touched upon earlier in this chapter, have helped many organizations such as Netflix
deploy their microservice architectures.

The Impact of Containers on Networking

[286]

Containers also allow users to allocate different resources on an operating system
using namespaces and limit CPU, memory, network block I/O, and network
bandwidth using cgroups.

Containers are very quick to provision so can be scaled up and scaled down rapidly
to allow elastic scaling in cloud environments. They can be scaled up rapidly to
meet demand and containers can be migrated from one server to another using
numerous techniques.

Cgroups can be configured quickly based on system changes, which gives users
complete control over the low-level scheduling features of an operating system,
which are normally delegated to the base operating system when using virtual
machines or bare-metal servers. Containers can be tweaked to give greater fine-
grained control over performance.

In some scenarios, not all resources on a bare-metal server will be utilized, which can
be wasteful, so containers can be utilized to use all of the CPU and RAM available
on a guest operating system by running multiple instances of the same application
isolated by namespaces at a kernel level. This means that to each process, they
appear to be functioning on their own unique operating system.

One of the main drawbacks with containers up until now has been that they have
been notoriously low-level and hard to manage at scale. So, tooling such as for
large implementation, and orchestration engines such as Docker Swarm, Google
Kubernetes, and Apache Mesos alleviate that pain by creating abstraction layers to
manage containers at scale.

Another benefit of containers is that they are very secure as they limit the attack
surface area with additional layers of security added to the operating system
through the use of different namespaces. If an operating system was compromised,
an attacker would still need to compromise the system at the namespace level as
opposed to having access to all processes.

Containers can be very useful when running multiple flavors of the same process;
an example is a business that wants to run multiple versions of the same application
for different customers. They want to prevent a spike in logins and transactions from
one customer affecting another at the application level. Containers in this scenario
would be a feasible solution.

Deploying containers
With the growing popularity of containers, traditional Linux distributions have been
found to be sub-optimal and clunky when running a pure container platform.

Chapter 10

[287]

As a result, very minimal operating systems have been created to host containers,
such as CoreOS and Red Hat Atomic, which have been developed specifically to
run containers.

Sharing information across operating systems is also a challenge for containers, as by
design they are isolated by namespaces and cgroups to a particular host operating
system. Key-value stores such as etcd, Consul, and Zookeeper can be used to cluster
and cluster and share information across hosts.

CoreOS
CoreOS is a Linux-based operating system specifically created to provide a minimal
operating system to run clusters of containers. It is the widest-used container
operating system today and designed to run at massive scale without the need to
frequently patch and update the software on the operating system manually.

Any application that runs on CoreOS will run in container format; CoreOS can
run on bare-metal or virtual machines, on public and private clouds such as AWS
and OpenStack.

CoreOS works by automatically pulling frequent security updates without affecting
the containers running on the operating system. This means CoreOS doesn't need
Linux admins to intervene and patch servers, as CoreOS automatically takes care of
this by patching using its zero downtime security updates.

CoreOS focuses on moving application dependencies out of the application and
into the container layer, so containers are dependent on other containers for their
dependency management.

etcd
CoreOS uses etcd, which is a distributed key-value store that allows multiple
containers across multiple machines to connect to it for data and state.

Etcd uses the Raft algorithm to elect a leader and uses followers to maintain
consistency. When multiple etcd hosts are running, the state is pulled from the
instance with the majority and propagated to the followers, so it is used to keep
clusters consistent and up to date.

Applications can read and write data into etcd and it is designed to deal with fault
and failure conditions. Etcd can be used to store connection strings to endpoints or
other environment-specific data stores.

The Impact of Containers on Networking

[288]

Docker
It would be impossible to talk about containers without mentioning Docker. In 2013,
Docker was released as an open-source initiative that could be used to package and
distribute containers. Docker was originally based on Linux LXC containers, but
the Docker project has since drifted away from that standard as it has become more
opinionated and mature.

Docker works on the principle of isolating a single process per container in the Linux
kernel. Docker uses a union-capable file system, cgroups, and kernel namespaces
to run containers and isolate processes. It has a command-line interface and a well
thought out workflow.

Docker registry
When container images are packaged, they need to be pushed to Docker's container
registry server, which is an image repository for containers.

The Docker registry is used to store containers, which can be tagged and versioned
much like a package repository. This allows different container versions to be stored
for roll-forward and roll-back purposes.

By default, the Docker registry is a file-system volume and persists data on a local
file system. Artifact repositories such as Artifactory and Nexus now support Docker
registry as a repository type. The Docker registry can be set up with authentication
and SSL certificates to secure container images.

Docker daemon
During installation, Docker deploys a daemon on the target operating system that
has been chosen to run containers. The Docker daemon is used to communicate with
the Docker image registry and issue pull commands to pull down the latest container
images or a specific tagged version. The Docker command line can then be used
to schedule the start-up of the containers using the container image that has been
pulled from the registry. Docker daemons, by default, run as a constant process on
target operating systems, but can be started or stopped using a process manager
such as systemd.

Chapter 10

[289]

Packaging containers
Containers can be packaged in various different ways; two of the most popular ways
of packaging containers is using Dockerfiles, and one of the lesser known ways is
using a tool from HashiCorp called Packer. Both have slightly different approaches
to packaging container images.

Dockerfile
Docker allows users to package containers using its very own
configuration-management tool called Dockerfile. Dockerfile will state the
intent of the container by outlining the packages that should be installed on
it using package managers at build time.

The following Dockerfile shows NGINX being installed on CentOS by issuing yum
install commands and exposing port 80 to the guest operating system from the
packaged container. Port 80 is exposed so NGINX can be accessed externally:

Once the Dockerfile has been created, Docker's command-line interface allows users
to issue the following command to build a container:

docker build nginx

The one downside is that applications are typically installed using configuration
management tools such as Puppet, Chef, Ansible, and Salt. The Dockerfile is very
brittle, which means that packaging scripts need to be completely re-written.

Packer-Docker integration
Packer from HashiCorp is a command-line tool which uses multiple drivers
to package virtual machine images and also supports creating Docker image
files. Packer can be used to package Amazon Machine Image (AMI) images
for AWS or QEMU Copy On Write (QCOW) images, which can be uploaded
to OpenStack Glance.

The Impact of Containers on Networking

[290]

When utilizing Packer, it skips the need for using Dockerfiles to create Docker
images; instead, existing configuration-management tools such as Puppet, Chef,
Ansible, and Salt can be used to provision and package Docker container images.

Packer has the following high-level architecture and uses a JSON file to describe the
Packer workflow, with three main parts:

•	 Builders
•	 Provisioners
•	 Post-processors

Builders are used to boot an ISO, virtual machine on a Cloud platform, or in this
case, start a Docker container from an image file on a build server.

Once booted, the configuration management provisioner will run a set of installation
steps. This will create the desired state for the image, emulating what the Dockerfile
would carry out. Once complete, the image will be stopped and packaged.

A set of post-processors will then be executed to push the image to an artifact
repository or Docker registry, where it is tagged and versioned.

Using Packer means existing configuration management tools can be used to package
virtual machines and containers in the same way rather than using a completely
different configuration-management mechanism for containers. The Docker daemon
will need to be installed as a prerequisite on the build server that is being used to
package the container.

In the following example, an nginx.json Packer file is created; the builders section
has the type docker defined, which lets Packer know to use the Docker builder.

The export_path is where the final Docker image will be exported to and image
is the name of the Docker image file that will be pulled from the Docker registry
and started.

One provisioner of the ansible-local type will then execute the install_nginx.
yml playbook to install NGINX on the Docker image, using an Ansible playbook as
opposed to the Dockerfile.

Finally, the post-processors will then import the packed image, complete with
NGINX installed, into the Docker registry with the tag 1.1:

Chapter 10

[291]

To execute the Packer build, simply execute the following command passing the
nginx.json file:

packer build nginx.json

Docker workflow
The Docker workflow fits nicely into the continuous integration process that
we covered as part of Chapter 7, Using Continuous Integration Builds for Network
Configuration and the Continuous Delivery workflow we covered in Chapter 9, Using
Continuous Delivery Pipelines to Deploy Network Changes. After a developer pushes a
new code commit, compiling and potentially packaging new code, the continuous
integration process can be extended to execute a Dockerfile to package a new Docker
image as a post-deployment step.

A Docker daemon is configured on each downstream test environment and
production as part of the base operating system. At deployment time, the Docker
daemon is scheduled to pull down the newly packaged Docker image and create a
new set of containers doing a rolling update.

The Impact of Containers on Networking

[292]

This process flow can be seen as follows:

Default Docker networking
In terms of networking, when Docker is installed, it creates three default networks;
the networks created are the bridge, none, and host networks, as shown in the
following screenshot:

The Docker daemon creates containers against the bridge (docker0) network by
default; this occurs when a docker create and docker start are issued on the
target operating system, or alternatively, just a docker run command can be issued.
These commands will create and start new containers on the host operating system
from the defined Docker image.

Chapter 10

[293]

The none network is used to create a container-specific network, which allows
containers to be launched and left to run; it doesn't have a network interface,
though. The host network adds containers to the same network as the guest
operating system.

When containers are launched on it, Docker's bridge network assigns each container
a unique IP address on the bridge network's subnet range. The containers can be
viewed by issuing the following docker network inspect command:

docker network inspect bridge

Docker allows users to inspect container configuration by using the docker attach
command; in this instance, the nginx container can be inspected:

docker attach nginx

Once attached, the /etc/hosts file can be inspected to show the network
configuration. Docker bridge uses a NAT network and can use port forwarding
using the following –p command-line argument. For example, -p 8080:8080
forwards port 8080 from the host to the container. This allows all containers that are
running on an operating system to be accessed directly by the localhost by their IPs,
using port forwarding.

In its default networking mode, Docker allows containers to be interconnected using
a --links command-line argument, which is used to connect containers, which
writes entries into the /etc/hosts file of containers.

The default network setup is now not recommended for use, and more sophisticated
networking is present, but the concepts it covers are still important.

Docker allows user-defined networks to be defined to host containers, using network
drivers to create custom networks such as custom bridge, overlay, or layer 2
MACVlLAN network.

Docker user-defined bridge network
A user-defined bridge network is much like the default Docker network, but it
means that each container can talk to each of the other containers on the same bridge
network; there is no need for linking as with the default Docker networking.

To place containers on a user-defined network, containers can be launched on the
devops_for_networking_bridge user-defined bridge network using the following
command, with the –net option set:

docker run –d –name load_balancer –net devops_for_networking_bridge nginx

The Impact of Containers on Networking

[294]

Each container that is launched will reside on the same operating system guest.
Publish is used to expose specific using of the -p 8080-8081:8080/tcp command.
Therefore, ranges can be published so that portions of the network can be exposed.

Docker Swarm
Overlay networks, can also be used with Docker and have already been covered
at length in this book, are a virtualized abstraction layer for the network. Docker
can create an overlay network for containers, which is used to create a network of
containers that belong to multiple different operating system hosts.

Instead of isolating each container to a unique network existing on one host, Docker
instead allows its overlay network to join multiple different clusters of containers
that are deployed on separate hosts together.

This means that each container that shares an overlay network will have a unique IP
address and name. To create an overlay network, Docker uses its own orchestration
engine, called Docker Swarm.

To run Docker in swarm mode, an external key-value store such as etcd, Consul,
or Zookeeper needs to be used with Docker. This key-value store allows Docker to
share information between different hosts, including the shared overlay network.

Docker machine
It is worth mentioning that docker-machine is a useful command-line utility that
allows virtual machines to be provisioned in VirtualBox, OpenStack, AWS, and
many more platforms that have drivers.

In the following example, we can see how a machine could be booted using
docker-machine in OpenStack:

docker-machine create –driver openstack (boot arguments and credentials)
docker-dev

One of the more useful functions of docker-machine is its ability to boot virtual
machines in cloud environments while issuing Docker Swarm commands. This
allows machines to be set up on boot to the specific profile that is required.

Chapter 10

[295]

Docker Compose
Another helpful tool for orchestrating containers is Docker Compose, as running
a command line for every container that needs to be deployed is not a feasible
solution at scale. Therefore, Docker Compose allows users to specify their
microservice-architecture topology in YAML format, so container dependencies
are chained together to form a fully-fledged application.

Microservices will be comprised of different container types, which together make
up a full application. Docker Compose allows each of those microservices to be
defined as YAML in the docker-compose file so they can be deployed together
in a manageable way.

In the following docker-compose.yml file, web, nginx, and db applications are
configured and linked together, with the load balancer being exposed on port
8080 for public access, and load balancing app1, which is connected to the redis
database backend:

The Impact of Containers on Networking

[296]

Docker Compose can be executed in the same directory as the Docker Compose
YAML file to invoke a new deployment the following command should be issued:

docker-compose up

Swarm architecture
The Swarm architecture works on the principle that each host runs a Swarm agent
and one host runs a Swarm master. The master is responsible for the orchestration of
containers on each of the hosts where agents are running and that are a member of
the same discovery (key-value store).

An important principle for swarm is discovery, which is catered for using a
key-value store such as etcd, Consul, or Zookeeper.

To set up a Docker swarm, a set up Docker machine can be used to provision
the following:

•	 Discovery server (key-value store such as etcd, Consul, or Zookeeper)
•	 Swarm master with swarm agent installed, pointing at a key-value store
•	 Two Swarm nodes with Swarm agent installed, pointing at a key-value store

The Docker Swarm architecture shows a master node scheduling containers on two
Docker agents while they are all advertising to the key-value store, which is used for
service discovery:

Chapter 10

[297]

When setting up a Swarm agent, in this case the Swarm master, they will be booted
with the following options: --swarm-discovery defines the address of the discovery
service, while --cluster-advertise advertises the host machine on the network
and --cluster-store points at a key-value store of choice:

Once the architecture has been set up, an overlay network needs to be created to
run containers across the two different hosts (in this instance the overlay network is
called devops_for_networking_overlay) by issuing the following command:

docker network create –d overlay devops_for_networking_overlay

Containers can then be created on the network from an image using the Docker
Swarm master to schedule the commands:

docker run -d –name loadbalancer –net devops_for_netwotking_overlay nginx

As each host is running in Swarm mode and attached to the key-value store, upon
creation, the network information meta-data will be shared by the key-value store.
This means that the network is visible to all hosts that use the same key-value store.

Containers can then be launched from any of the Swarm masters onto the same
overlay network, which will join the two hosts together. This will allow each host
to communicate with other containers, via the overlay network, across hosts.

Multiple overlay networks can be created; though containers can only communicate
across the same overlay network they cannot communicate between different overlay
networks. To mitigate this, containers can be attached to multiple different networks.

Docker Swarm allows many specific containers to be assigned and exposed using
port forwarding to load balance containers. Rolling updates can also be carried
out to allow upgrades of the containers' application version.

Due to its completely decentralized design, Docker Swarm is very flexible in the
number of networking use cases it can solve.

The Impact of Containers on Networking

[298]

Kubernetes
Kubernetes is a popular container orchestration tool from Google which was created
in 2014 and is an open-source tool. Rather than Google coming up with their own
container packaging tool and packaging repository, Kubernetes instead can plug
seamlessly to use Docker registry as its container image repository.

Kubernetes can orchestrate containers that are created using Docker via a Dockerfile,
or alternatively, using Packer aided by configuration management tools such as
Puppet, Chef, Ansible, and Salt.

Kubernetes can be seen as an alternative to Docker Swarm, but takes a slightly
different approach in terms of its architectural design and has a lot of rich
scheduling features to help with container management.

Kubernetes architecture
A Kubernetes cluster needs to be set up before a user can use Kubernetes to schedule
containers. There is a wide variety of configuration management tools that can
be used to create a production-grade Kubernetes cluster with notable solutions
available from Ansible, Chef, and Puppet.

Kubernetes clustering consists of the following high-level components, which in turn
have their own subset of services. At a high level, a Kubernetes cluster consists of the
following components:

•	 Kubectl
•	 Master node
•	 Worker node

Chapter 10

[299]

Kubernetes master node
The master node is responsible for managing the whole Kubernetes cluster
and is used to take care of orchestrating worker nodes, which is where containers
are scheduled.

The master node, when deployed, consists of the following high-level components:

•	 API server
•	 Etcd key-value store
•	 Scheduler
•	 Controller manager

The API server has a RESTful API, which allows administrators to issue commands
to Kubernetes.

Etcd, as covered earlier in this chapter, is a key-value store that allows Kubernetes to
store state and push changes to the rest of the cluster after changes have been made.
Etcd is used by Kubernetes to hold scheduling information about pods, services,
state, or even namespace information.

The Kubernetes scheduler, as the name suggests, is used to schedule containers on
Services or Pods. The Scheduler will check the availability of the Kubernetes cluster
and make scheduling decisions based on availability of resources so it can schedule
containers appropriately.

The controller-manager is a daemon that allows a Kubernetes master to run different
controller types. Controllers are used by Kubernetes to analyze the state of a cluster
and make sure it is in the desired state, so if a pod fails it will be recreated or re-
started. It adheres to the thresholds that are specified and is controlled by the
Kubernetes' administrator.

Kubernetes worker node
Worker nodes are where pods run; each pod has an IP address and runs containers.
It is the pod that determines all the networking for the containers and governs how
they communicate across different pods.

The worker node will contain all the necessary services to manage the networking
between the containers, communicate with the master node, and are also used to
assign resources to the scheduled containers.

Docker also runs on each of the worker nodes and is used to pull down containers
from the Docker registry and schedule containers.

The Impact of Containers on Networking

[300]

Kubelet is the worker service and is installed on worker nodes. It communicates
with the API server on the Kubernetes master and retrieves information on the
desired state of pods. Kubelet also reads information updates from etcd and writes
updates about cluster events.

The kube-proxy takes care of load balancing and networking functions such as
routing packets.

Kubernetes kubectl
Kubectl is the Kubernetes command line, which issues commands to the master
node to administer Kubernetes clusters. It can also be used to call YAML or JSON,
as it is talking to the RESTful API server on the master node.

A Kubernetes service is created as an abstraction layer above pods, which can be
targeted using a label selector.

In the following example, kubectl can be used to create a loadbalancing_
service service deployment with a selector, app: nginx, which is defined by the
loadbalancing_service.yml file:

Chapter 10

[301]

Kubectl executes the YAML file by specifying:

Kubectl create –f loadbalancing_service.yml

Kubectl can then create four replica pods using the ReplicationController, these
four pods will be managed by the service, as the labels app: nginx match the
service's selector and launch an NGINX container in each pod using the nginx_pod.
yml file:

The Impact of Containers on Networking

[302]

Kubectl creates the service using the following:

kubectl create –f nginx_pod.yml

Kubernetes SDN integration
Kubernetes supports multiple networking techniques that could fill a whole book's
worth of material on its own. With the Kubernetes, the pod is the major insertion
point for networking.

Kubernetes supports the following networking options:

•	 Google Compute Engine
•	 Open vSwitch
•	 Layer 2 Linux Bridge
•	 Project Calico
•	 Romana
•	 Contiv

Kubernetes looks to provide a pluggable framework to control a pod's networking
configuration and aims to give users a choice; if a flat layer 2 is required, Kubernetes
caters for it, if a more complex layer-3 overlay network is required, then it can cater
for this, too.

With Open vSwitch being widely used with enterprise SDN controllers such as
Nuage Networks VSP platform, which was covered in Chapter 2, The Emergence of
Software-defined Networking and Chapter 6, Orchestrating SDN Controllers Using Ansible.
This focused upon how flow information could be pushed down to Open vSwitch on
each hypervisor to create a stateful firewall and govern the ACL policies.

A similar implementation is carried out when integrating Kubernetes, with Open
vSwitch, being deployed onto each worker node and pod traffic being deferred to
Open vSwitch.

In Nuage's case, a version of their customized version of Open vSwitch, known as
the VRS, is deployed on each Kubernetes worker to govern policy controlled by the
VSD Nuage VSPs policy engine..

The workflow for the Nuage SDN integration with Kubernetes is shown in the
following figure, which shows that enterprise SDN controllers can integrate with
orchestration engines such as Kubernetes and Docker to provide enterprise-grade
networking:

Chapter 10

[303]

Impact of containers on networking
Containers have undoubtedly meant that a lot of networking has shifted into the
application tier, so really, containers can be seen as a PaaS offering in its truest form.

Infrastructure is, of course, still required to run containers, be it on bare-metal servers
or virtual machines. The merits of virtual machines being used to run containers long
term are debatable, as in a way it means a double set of virtualization, and anyone
using nested virtualization will know it isn't always optimal for performance. So
with more organizations using containers to deploy their microservice architectures,
it will undoubtedly mean that users having a choice to run containers on either
virtual or physical machines will be in demand.

Cloud has notoriously meant virtual machines, so running containers on virtual
machines is probably born out of necessity rather than choice. Being able to
orchestrate containers on bare-metal servers with an overlay network on top of them
is definitely more appealing as it pushes the container closer to the physical machine
resources without the visualization overhead.

This allows containers to maximize the physical machine resources, and users then
only care about anti-infinity in terms of whether the service can run across multiple
clouds and data centers, giving true disaster recovery.

With hybrid cloud solutions, the industry is moving beyond thinking about rack
redundancy. Instead it is moving toward a model which will focus on splitting
applications across multiple cloud providers. So having the ability to orchestrate the
networking and applications in an identical way using orchestration engines such as
Docker Swarm or Kubernetes can be used to make that goal a reality.

The Impact of Containers on Networking

[304]

What does this mean for the network operator? It means that the role is evolving, it
means that the network engineer's role becomes advisory, helping the developers
architect the network in the best possible way to run their applications. Rather than
building a network as a side project in a private cloud, network operators can instead
focus on providing an overlay network as a service to developers while making
the underlay network fabric fast and performant so that it can scale out to meet the
developer's needs.

Summary
Containers have been said to be a major disruptor of the virtualization market.
Gartner have predicted the following:

"By 2018, more than 50-60% of new workloads will be deployed into containers in
at least one stage of the application life cycle".

This is based on Gartner's analysis of the IT market, so this is a bold statement,
but if it comes to fruition, it will prove to be a huge cultural shift in the way
applications are deployed, in the same way virtualization was before it.

In this chapter, we showed that containers can help organizations deploy their
microservice architectures and analyzed the internal mechanics and benefits that
containers bring. The key benefits are portability, speed of deployment, elastic
scalability, isolation and maximization of different resources, performance control,
limited attack vector, and support for multiple networking types.

Aside from the benefits containers bring, this chapter looked at the Docker tool and
illustrated how the Docker workflow can be fitted into a Continuous Delivery model,
which is at the heart of most DevOps initiatives.

The focus of the chapter then shifted to Docker networking and the layer-2
networking options available to network containers. We illustrated how to use
overlay networks to join multiple hosts together to form a cluster and we showed
how container technology can integrate with SDN controllers such as Nuage VSP
Platform using Open vSwitch.

The chapter also covered container orchestration solutions such as Docker Swarm
and Kubernetes, their unique architectures, and ways in which they can be used to
network containers over multiple hosts and act as a Platform as a Service layer.

Chapter 10

[305]

The importance of containerization and its impact on Platform as a Service (PaaS)
solutions cannot be underestimated, with Forrester stating the following:

"Containers as a Service (CaaS) is becoming the new Platform as a Service (PaaS).
With the interest in containers and micro-services skyrocketing among developers,
cloud providers are capitalizing on the opportunity through hosted container
management services."

In summary, it is fair to conclude that containerization can have many benefits
and help aid developers in the implementation of Continuous Delivery workflows
and PaaS solutions. Containerization also gives the added flexibility of deploying
workloads across multiple cloud providers, be they private or public, using a
common orchestration layer such as Kubernetes, Apache Mesos, or Docker Swarm.

In the following chapter, the focus will shift from containers toward securing the
network when using software-defined overlay networks and a Continuous Delivery
model. It will explore techniques that can be used to help secure a modern private
cloud in an API-driven environment, so that software-defined networking solutions
can be implemented without compromising security requirements.

[307]

Securing the Network
With many businesses transitioning to software-defined networks and using APIs
to make network changes, the importance of securing the network is a prominent
concern. Security implementations need to evolve too, as the network is virtualized
and modern protocols are used to build Leaf-Spine architectures to scale out multi-
tenant cloud environments.

In this chapter, the following topics will be covered:

•	 The evolution of network security and debunking myths
•	 Securing a software-defined network
•	 Network security and Continuous Delivery

The evolution of network security and
debunking myths
As network engineers become accustomed to a flat layer 2 network and Spanning
Tree protocol as discussed in Chapter 1, The Impact of Cloud on Networking, network
security and approaches towards securing an enterprise network have become very
mature and well understood by security teams over the years.

Most security engineers are well versed in the best practices that should be
implemented when dealing with physical networks. A security team will normally
look to implement a rigid set of security best practices on the network, which
network teams must comply with, to pass necessary accreditations. But how
applicable are these best practices when implementing software-defined networking?

It is fair to say that there is still a knowledge gap that exists regarding software-
defined networking at the moment and there is a degree of fear and uncertainty
of the unknown from security engineers and even some network engineers.

Securing the Network

[308]

This chapter will hopefully help demystify some of those concerns. This is coming
from someone that helps run a software-defined network in production, so this isn't
talking about theories or aspirations, it is based on hard facts.

So first let's review some of the requests from security teams around network
security and look at how these requests should be adapted when dealing with
software-defined networking.

Account management
In terms of account management, security teams will normally stipulate that the
following best practices are adhered to when setting up user access:

•	 Two-factor authentication should be used when accessing production servers
•	 User accounts should respect the least privileges necessary for users
•	 Unique user accounts should be used between test and production

environments
•	 DenyAll should be default on Access Control Lists
•	 Use Terminal Access Controller Access Control System (TACACS) or

equivalent authentication to access network devices

When reviewing account management, all points outlined by security practitioners
remain valid. Any Software-defined Networking (SDN) controller or modern
switch vendor should meet the account management requirements when they are
being evaluated. If they don't meet these requirements, they simply should not be
implemented in production.

When using software-defined networking always aligned with a Continuous
Delivery model, service accounts will be used by orchestration and configuration
management tools such as Ansible to setup subnets, networks, and ACL policies to
carry out any network changes.

The user committed to the source control management system will inevitably be
the person that invoked the network changes even though it will be invoked by a
service account. This in itself is a cultural shift, so privileges on the source control
management repository should be reviewed to set up Active Directory Domain
Services (ADDS) or Lightweight Directory Access Protocol (LDAP) access so
commits are tracked and can be traced back to the user that made the change.
Continuous Delivery tooling such as Jenkins, ThoughtWorks, Go, or a Plethora
of other continuous integration build servers can cater for this requirement.

Chapter 11

[309]

Separate service accounts can be used to orchestrate test and production
environments to meet security best practices. All other user accounts in a Continuous
Delivery model should be read-only, so users can view the outcome of a Continuous
Delivery deployment, which is driven by automation, with a break glass account
being the exception to the rule and available for use in a state of emergency.

It is important for security teams to understand that if users are manually
intervening in immutable software-defined networks, then the overall Continuous
Delivery model could break, so there is no appetite to do manual configuration .
All desired state should be controlled via source control management systems and
pushed out to systems accordingly. This, again, is a mindset change and security
practitioners generally find this hard to believe, as they have spent years seeing
network engineers push manual changes to devices to make any changes, but this is
a new approach and a huge change for some.

This was illustrated in Chapter 9, Using Continuous Delivery Pipelines to Deploy Network
Changes, when utilizing configuration management tools such as Ansible to push out
network changes to test and production environments:

This concept is initially difficult for security practitioners to grasp, but the
DevSecOps movement is helping security practitioners see the window of
opportunity that an automated Continuous Delivery process brings.

Securing the Network

[310]

Automation should mean users have fewer individual privileges and approved
workflow actions are hardened and signed off, which govern what kind of
interaction is allowed. All of this is controlled via the Continuous Delivery pipeline.

Network device configuration
Security best practices with regards to the configuration of network devices focus on
keeping an up-to-date auditable inventory of the network, with security patching
being applied on a regular basis to each network device at an operating system level,
and secure protocols and Public Key Infrastructure (PKI) certificates being applied
from relevant trust stores.

As such, a common set of requirements from a security team for configuration of
network devices may include:

•	 A network hardware list should be available in an IP Address Management
(IPAM) solution

•	 All network devices should be patched regularly
•	 Configure SNMP version 3 or above
•	 Disable ports not in use
•	 Use Transport Layer Security (TLS) to encrypt network traffic

The security approaches to network device configuration should also not change in
terms of setup, as SDN controllers and modern switch vendors should look to use
TLS, be patched regularly, and be accessible via DNS.

An underlay network when utilizing a Leaf-Spine architecture and overlay network
is still comprised of physical network devices, so the configuration and best practices
associated with securing these devices are still completely valid and integral.

SDN controllers, like network switches, are deployed on the layer 2 underlay
network, so should follow the same conventions as network switches, have secure
protocols, and adhere to patching schedules.

Firewalling
One of the major sources of confusion from security teams in industry when looking
at software-defined networking seems to be around firewalling and some fear and
uncertainty exists as they are used to using physical stateful firewalls in production
networks.

However, as long as a virtual firewall meets security requirements, there should be
no issue implementing SDN controllers and allowing them to control firewalling and
segmentation of the network using virtualized micro-segmentation policies.

Chapter 11

[311]

Security teams will traditionally mandate the following requirements from firewalls:

•	 Use a stateful firewall
•	 Use explicit permits and implicit denies on ACL rules
•	 Have the ability to audit teams' ACL access
•	 Log all denied attempts on the firewall

Firewall best practices should always be adhered to when implementing software-
defined networking; traditionally though, security teams have always pushed for
stateful physical firewalls to separate three-tier models, which are segregated into
frontend, business logic, and backend tiers.

With the move towards microservices and the adoption of software-defined
networking, applications have tended not to fit into this structure and Open vSwitch
has allowed OpenFlow to be used to implement Ingress and Egress policies at the
hypervisor level or operating system host level.

We have also seen that this same process can be applied to containers in
Chapter 11, The Impact of Containers on Networking, and Open VSwitch can be
installed on container hosts such as Core OS, or even on bare metal servers to
control firewall polices.

As long as the same best practice principles of using explicit permits and implicit
denies on ACL rules are adhered to, and a process is set up to log all denied attempts
on the firewall, then there should be no reasons to argue against the merits of using
virtualized firewalling.

Open vSwitch now offers stateful firewalling, which is now as secure as iptables
on a Linux operating system or a physical firewall, so there is now no reason why
firewalling cannot be virtualized for enterprise networks. This mirrors the debate
about the use of hypervisors initially for infrastructure services, but the gains
it brings a business in terms of scalability, programmability, auditability, and
manageability make it hard to argue against firewall virtualization.

Vulnerability detection
Overlay networks, in terms of the detection of vulnerabilities and attacks, should
also not change in terms of security requirements, although the method for acquiring
the data may need to change slightly, as protocols such as Border Gateway Protocol
(BGP) and Virtual Extensible LAN (VXLAN) need different tooling to track packets
in the network.

Securing the Network

[312]

When looking at vulnerability detection and data sampling, the following activities
should be scheduled on a regular basis:

•	 Regular vulnerability scanning
•	 Deep packet inspection

In terms of vulnerability scanning, scanning of the network and network devices
should be carried out frequently. Ideally security scanners themselves should have
separate responsibilities in a software-defined network. A security scanner should
have access to the underlay to do a full scan and another profile of the scanner
should be used for the overlay. If a scanner has access to the underlay and overlay, it
becomes an attack vector, which if compromised would allow an attacker complete
access to the network. So this is an important point often ignored; the overlay and
underlay network devices and compute should not be routable to one another
if possible.

It is often a requirement of a security team to be able to inspect network packets
using deep packet inspection to make sure that there is no malicious activity. This
has been done on flat layer 2 networks by inspecting packets that are transmitted
between VLANs.

However, with overlay transporting packets using VXLAN encapsulation, networks
can scale out network and alleviate the 4096 VLAN limit. This means that network
and security teams will require tools that can de-encapsulate VXLAN packets so
they can able to inspect packets, as they have with VLAN packets, otherwise
security tools will see data is being transmitted but it won't be able to be read it.

Setting up tooling that does VXLAN de-encapsulation is by no means an
insurmountable challenge. Tooling is available to do this, it will just require that
network and security teams alter the tools they are currently used to using.

Network segmentation
One of the biggest changes when implementing a software-defined overlay network
is a shift away from the principles of a flat layer 2 network and VLAN segregation
between networks.

Security teams are used to dealing with physical networks, so they will normally
stipulate that the following requirements need to be met:

•	 Use VLANs to segregate traffic types (frontend, business logic, and backend)
•	 Ability to segregate Test and Production
•	 Use firewalls between different network tiers

Chapter 11

[313]

However, SDN controllers create VXLAN tunnels between hardware Virtual Tunnel
End Points (VTEPs) on network switches and stretches them to each hardware
compute node to build a virtualized overlay underlay network over the network.

SDN controllers are used to translate the Open vSwitch Database (OVSDB)
information from switch vendors and push the flow data down to each compute
node (hypervisor, container, or bare metal server), which is dictated by the SDN
controller's policy engine to create firewalls and micro-segmentation.

It is a differing approach; firewalling per microservice application is dictated by
OpenFlow and used to control Ingress and Egress policies. Using overlay networks,
applications can communicate with another application's micro-segmented zone as
illustrated by the Nuage Networks Virtual Service Platform (VSP) in Chapter 2, The
Emergence Of Software, Defined Networking.

In the following example, we can see the Application 1 micro-subnet communicating
with Application 2 by communicating subnet to zone:

Using micro-segmentation of firewall rules per application moves away from having
physical, stateful firewalls segmenting zones for all applications. Instead, individual
firewalls are created per application to govern segmentation between the network,
with layer 3 domains segmenting Test and Production from each other at a
layer above.

Each application has their own policy in this micro-segmentation model, which
means security teams have the ability to audit firewall policies and understand
what each application is communicating with.

Securing the Network

[314]

Overlay networks for this reason should bring security gains, as it becomes
completely clear the connectivity requirements for an application and connectivity
topologies are not lost in a set of monolithic ACL rules on a physical stateful firewall,
which aren't clearly mapped to each application.

Software-defined networking should mean that each application has an initial deny
all and opens up only the minimum amount of explicit access so they can access
other applications or services in the network.

This is far more secure than opening up port ranges on a stateful firewall, so overlay
networks should, in theory, improve complex network security when implemented
correctly. If immutable networks are used as highlighted by A/B subnets in Chapter
6, Orchestrating SDN Controllers Using Ansible, then automatic cleanup of old ACL
rules is also implemented by default, which has been a challenge for network and
security teams as they are afraid to remove old policies in the fear of creating an
outage for a particular application.

Security teams can audit that policy with development teams and advise on any
changes that need to be made, safe in the knowledge that as far as a development
team is concerned, all of the ACL policies they are implementing are required to
deploy their application with the bare minimum amount of explicit Ingress and
Egress ACL rules being used.

Securing a software-defined network
So far in this chapter, we have focused on a set of minimal network security
requirements to make sure that a software-defined network is secure.

But to maximize the security of a software-defined network, we should look at
how overlay and underlay networks could potentially be exploited in new ways by
attackers and look at different mechanisms that can be put in place to prevent this
from happening.

Software-defined Networks are split into the overlay (which holds all the virtualized
networks that houses virtual, physical machines, and containers) and the underlay
(which holds all bare metal machines such as hypervisors, network devices, and
SDN controllers).

Chapter 11

[315]

Attacks at Overlay
Overlay networks are created to allow networks to be automated programmatically
via APIs and increase the speed of change by simplifying the network in software.

Within the remit of Continuous Delivery, self-service ACL rules can be set up by
developers to govern north to south and east to west ACL policies.

It is important to have implicit controls that make sure that common workflow
actions only allow teams to set ACL rules from their micro-subnet to different
locations in the network, and that they can't compromise the integrity of any other
network in the overlay except their own. So this should be demonstrable by testing
the self-service automation to security teams.

Micro-segmentation is powerful in the following example:

When using implicit allows, team A with application 1 can only communicate with
application 2, which is maintained by team B, if team B allows explicit Ingress rules
that allow application 1 to communicate with it. So teams will have to coordinate
between themselves, and their applications will only be able to communicate
with one another if there is both an Egress and Ingress rule on each microservice
application's firewall.

Aside from this, some applications may need northbound Internet access, so it is
important that network teams put in place a mechanism to proxy out to the Internet
and not give teams the ability to directly access it. A controlled proxy mechanism
should be implemented by the network team so that there is a fixed mechanism to
govern northbound Internet access.

Attackers may try and compromise a virtual machine or physical server that is part
of the overlay network. Once they gain access to a machine, they could attempt to
download software and compromise the network. An attacker could potentially
attempt a Denial of Service (DoS) on a particular micro-subnet, which could be
used to compromise a key service by compromising all virtual machines in the
micro-subnet.

A benefit of micro-segmentation over a layer 2 network is that if one box was
compromised in production, an attacker could have access to the whole frontend,
business logic, or backend zone, while with micro-segmentation they would be
isolated to the particular application.

Securing the Network

[316]

With regards to outbound Internet access and setting up a proxy, it is imperative
that upstream repositories used to download software packages to hosts go via a
controlled proxy server, using an artifact repository with Role Based Access Control
(RBAC) using Active Directory Domain Services or LDAP such as Artifactory
or Nexus.

This means that servers within the overlay network can only access a set of
approved third-party software repositories that have been given the blessing of the
infrastructure team. Repositories not on the approved list cannot be accessed via
the overlay network servers, as they are not proxied by the artifact repository, thus
preventing the installation of dubious packages onto servers in the overlay network.

Proxying via an artifact repository means network and security teams can take
measures to prevent packet sniffing software being downloaded onto a server to
discover adjacent services or open ports dictated by the Ingress and Egress flow data.

It may also be desirable to disable Internet Control Message Protocol (ICMP) in the
overlay network so that an attacker cannot work out the IP addresses of adjacent
servers in a micro-subnet or underlay network devices such as top-of-rack switches
and SDN controllers by doing a trace route.

If a server in the overlay network is logging drops, then appropriate alerting should
be set up to notify the network or security team that some illicit activity is occurring
within a micro-subnet.

Mechanisms can be put in place to tag compromised boxes with metadata in this case
and use tools such as Ansible dynamic inventory to target them altogether by issuing
a shut down or moving them to a quarantined network using live migration, which
will stop a potential network attacker from gaining access to other servers in
the network.

Attacks on the underlay network?
The underlay network could be targeted by potential attackers by gaining access to
a hypervisor and looking to compromise Open vSwitch. This would allow them to
directly instantiate new flows into the Open vSwitches flow-table, allowing access to
multiple different locations in the network.

Chapter 11

[317]

The attacker could sniff traffic and perform a Man in the Middle (MitM) attack
on different network components as a result, so hypervisors should ideally be on a
separate network, which will isolate access to compute servers and not allow them
to be directly routable from the overlay network.

In the underlay network, switches now utilize centralized management systems
to push updates to switches. For example, the Arista CloudVision platform
CloudVision eXchange (CVX) servers are used to push configuration to all
Arista switches, so it is imperative that access control to its API endpoints is
done over HTTPs and that the management of switches is done on a completely
dedicated network.

An attacker could potentially drop the whole configuration of every switch if the
CVX cluster was compromised to create a DoS attack on the network, which would
also mean that all routing would be dropped by the SDN controller.

An Out Of Band (OoB) network should ideally be implemented to govern access
to network appliances with access provided via TACCs accounts. Using an OOB
network for the northbound and southbound communications can help secure
network devices and provide an extra degree of security for network devices.

The underlay and overlay network should be on completely different networks
and not routable; this means that if a hypervisor is compromised in the underlay
network, then an attacker will not be able to directly jump from an underlay box to
the overlay. Underlay boxes should ideally be protected using bastion servers with
two-factor authentication so no servers are directly accessible.

SDN controllers are typically x86 compute, and talk via REST API calls, so it should
be mandatory to implement TLS on the SDN controllers and if possible issue a PKI
CA to manage trust, authenticity, and revocation of access.

Securing the Network

[318]

In the following example, we can see that the Arista CVX platform communicates
with the Nuage VSC SDN controller using OVSDB with TLS on the underlay:

If underlay devices communicate using HTTP sessions, it will make the network
susceptible to attacks in the Overlay network not just the underlay network.

Taking the OpenStack platform as an example, an SDN controller communicating
with the OpenStack Neutron plug in will exchange all Ingress and Egress
information for the entire overlay network. If this connection is using unencrypted
REST API calls, it would mean that an attacker could intercept or track all flow
information, and this can be used to compromise any number of tenant networks
within the overlay.

Attacks on the SDN controller
The northbound API on an SDN controller is a desirable attack vector that could be
used to compromise the whole overlay network.

To prevent this, RBAC should be put in place with sufficient password best practices
adhered to. If the SDN controller's northbound API is compromised, then attackers
could create new flow data programmatically against the overlay.

Chapter 11

[319]

This would allow an attacker to traverse the network and target multiple services,
allowing the attacker to bypass denying firewall policies and access multiple
tenant networks.

Default admin accounts should have their passwords changed from day one, to
avoid attackers guessing default accounts passwords. Complex passwords should
be used at all times.

Audit trails should be set up on the SDN controller and logged to a syslog server,
which will allow network and security engineers to check for unauthorized changes
by attackers. If any irregular behavior occurs, then subsequent alerts should be
triggered and the account should be disabled immediately.

On SDN controllers, SNMPv3 should be enabled as opposed to earlier versions and
LDAP accounts, or SSH keys set up to allow access to Linux-based operating systems
as opposed to using single service accounts or root access for underlay changes.

Network security and Continuous
Delivery
Network security should be improved when using automation to push network
changes out to network devices, or to change the desired state of overlay networks.
It should increase the visibility of changes, as all changes are done from a centralized
process, with no exceptions.

Continuous delivery processes, by design, should allow security teams to see
clearly which user committed a network change. When a change is pushed to
network devices or SDN controllers using the Continuous Delivery process, it will
allow easy roll back to a previous version if the security team don't approve of the
changes. However, this is still very reactive and continuous integration and delivery
processes should include compliance and security checks as part of the continuous
integration and delivery process.

Having compliance checks as part of Continuous Delivery provides a lot of flexibility
for network and security teams. This will enable security teams to utilize some of
the continuous integration and delivery best practices to help secure a network,
such as continual testing and validation of changes integrated as part of the
deployment pipeline.

Securing the Network

[320]

Application connectivity topology
In a software-defined network, each application is micro-segmented, so they have
individual application policies that can be audited by security or network teams.
This will help with security compliance, as it allows security practitioners to see all
the Ingress or Egress rules for a particular application in the overlay network.

This was highlighted in Chapter 2, The Emergence Of Software-defined Networking,
showing micro-segmented policies per application with egress policies for
Application1 defined as shown:

The applications Ingress and Egress ACL rules should be readable and auditable
in source control management systems using YAML files, or any other chosen
configuration file used to control the SDN controller's desired state.

The live state of the system will also be present on SDN controller GUIs, which
can be observed to make sure it matches what is defined in source control
management systems.

It is important for security practitioners to be able to read and understand the
configuration files that are being used to determine the current connectivity and
state of the network.

Network and security teams have unique goals such as passing security audits to
keep the business operational. It is important for Security teams to be able to see the
application connectivity matrix and be able to have full visibility over connectivity.

For instance, when processing credit card transactions, only specific users should
have access to that particular tenant network. Having the ability to enforce this
via the SDN and demonstrate this is the case with an easy to understand SDN
policy makes the network and security team's jobs easier as they have a real-time
connectivity matrix for each application.

Chapter 11

[321]

Wrapping security checks into continuous
integration
Security checks should ideally be built into continuous integration processes, a
concept covered in depth in Chapter 7, Using Continuous Integration Builds for Network
Configuration. Otherwise, security teams would not be able to keep up with the
daily changes being made to dynamic overlay networks and ever-changing
network policies.

Compliance can be integrated with continuous integration processes by disallowing
an allow-all policy when applied by a developer on their self-service ACL file for
an application.

When a user commits this change to a source control management system, the
CI Build Server starts a new continuous integration build. A validation on the
continuous integration build for the SDN configuration build could be set up by the
security team to reject this configuration and provide instant feedback to the user,
as this breaks compliance.

The user would instead have to alter the self-service ACL policy rules to be implicit,
so compliance then becomes just another validation of the continuous integration
process, as shown here:

Securing the Network

[322]

This is opposed to security teams auditing the ACL rules as a separate manual
check, which would of course let ACL rules that breach security policy, slip through
into production environments and allow attackers the potential to compromise a
particular application, as its ACL rules are too open. This validation could even be
done prior to a CI Build Server by running a simple Git hook, which would
reject the commit after detecting an allow-all on the ACL policies by parsing
the YAML file.

Using Cloud metadata
The use of cloud metadata is commonplace in public and private clouds such
as AWS, Microsoft Azure, Google Cloud, and OpenStack as well as other
cloud providers.

Tagging boxes with specific metadata has a variety of different use cases, and a
subset of those use cases could greatly benefit a network or security team when
dealing with particular network security challenges.

Cloud metadata, as covered already in this book, is a series of key-value pairs that
are applied to a cloud server. If we take the example of a security vulnerability
such as shell shock, which caused a series of DoS attacks when exploited in 2014,
it is important that security vulnerabilities such as these are fixed immediately,
to prevent attackers exploiting Linux boxes.

Within the remits of Continuous Delivery, it is important to make sure that if an
issue occurs, then the mean time to recover is quick.

Take the scenario of vulnerability scanning. Each week, the whole overlay and
underlay network will be scanned on a daily, or at worst, a weekly basis, using a
security scanner.

Every time that the weekly network security scan runs on all boxes, it generates a
report documenting a list of vulnerabilities for each server. This is subsequently
reviewed by the service owners, and the security team will recommend specific
patches or remediation over a number of days, so the mean time to resolve is
high if important vulnerabilities are highlighted.

If instead of generating a separate report, the network security scan tagged the
servers with a specific list of vulnerability IDs on their cloud metadata, then a
complete inventory of vulnerabilities for the whole network would be available
that could be acted upon to make real-time updates.

Chapter 11

[323]

Using OpenStack as an example, the following command line could be executed
to set metadata against a server when vulnerabilities are detected by using the
qualys_vul_ids key value pair:

nova meta-data (instance-uuid) set qualys_vul_ids (qualys_id_list)

The following example would be executed as part of a script that would be run
against all servers:

nova meta-data 061e8820-3abf-4151-83c8-13408923eb16 set qualys_vul_ids
23,122

This key value pair is then passed to the OpenStack metadata service, which will
tag the OpenStack instance with all the relevant vulnerabilities that have been
discovered as part of the Qualys vulnerability scan.

This will result in the OpenStack instance containing the following metadata:

If a vulnerability such as shell shock was exposed by the security scan, then the
network and security team could identify all servers with that vulnerability. In this
case, Qualys ID 122 relates to shell shock, and targets the servers affected with an
immediate patch.

Securing the Network

[324]

Ansible dynamic inventory could be used to target the vulnerable boxes using
a bespoke ad_hoc_patch.yml playbook with a when condition only, which
executes patch commands to Linux servers if Qualys ID 122 is tagged on the
qualys_vul_ids metadata tag on the server.

The ad_hoc_patch.yml playbook would have the following steps to set a fact from
the metadata and execute the commands only when the metadata tag contains the
correct metadata:

This playbook can be used to fix the shell shock Bashdoor bug immediately by
executing following command:

ansible-playbook –i inventories/openstack.py –l Prod playbooks/ad_
hoc_patch.yml

which would execute the playbook against all customer-facing servers in the Prod
availability zone that contain the vulnerability, so target only production servers.

The playbook would only execute against servers in the production availability
zone that match the metadata value of 122 as an active vulnerability using Ansible
jinja2 when filters, which would allow infrastructure engineers to remove the
vulnerability in minutes. Imagine if security scanners did this metadata tagging
as a feature of their scanner; it would help security massively.

Cloud metadata has many other use cases such as using an owner metadata tag
on servers to send targeted e-mails or alerts if security teams detect any suspicious
activity, or flag servers for re-deployment to install new patches when using
immutable infrastructure.

Compromised servers can also be tagged as quarantined using metadata by security
monitoring tools. Put simply, metadata allows teams to set server profiles using
metadata, so a variety of actions can be carried out on them.

Chapter 11

[325]

If a server is tagged as quarantined, a trigger could be set up to power down the
server and migrate it to a quarantined micro-subnet in the Overlay network with no
external access. This would allow a security team to carry out root cause analysis to
ascertain how the box was compromised and mitigate the attack.

The important point to note is all these security processes can be
automated to help maximize the features provided by public and private
clouds. They should be looked upon as tools that can help automate and
facilitate security processes rather than inhibit security.

Summary
In this chapter, we have looked at network security and ways in which security
practices need to evolve to meet the demands of modern software-defined networks,
as the industry has started to move away from flat layer 2 networks and instead
utilize virtualized overlay networks.

This chapter has also hopefully debunked some of the fear and uncertainty
associated with securing software-defined networks, while tackling hot topics
such as the separation of test and production environments and the use of virtual
firewalling for micro-segmentation as opposed to physical firewalls.

The focus of the chapter then shifted to strategies that can be adopted above
and beyond minimum security requirements and looked at ways to secure SDN
controllers and minimize the attack vectors. This can be achieved by isolating
networks, creating out of band networks for network devices, appropriate
authentication, and using TLS for inter-network device communication.

The chapter has also looked at the gains brought by implementing software-defined
networking, such as the transparency and auditability of application to application
connectivity. It has also explored opportunities to automate compliance checks by
utilizing continuous integration best practices to validate ACL policies as part of
continuous integration builds, rather than being a completely separate process. It
has also explored leveraging cloud metadata to carry out emergency patching as
opposed to it being a manual overhead, and covered other use casesfor using cloud
metadata such as quarantining servers and sending security notifications to teams.

This chapter brings us to the end of the book, which has looked at applying DevOps
and Continuous Delivery principles to networking. The book has hopefully showed
readers that networking does not need to be a manual set of tasks that slow down the
whole Continuous Delivery process.

Securing the Network

[326]

This book has covered a wide variety of topics that should hopefully give some
food for thought and ideas that can be taken and implemented to improve network
operations. Network automation is still relatively sparse in industry, but it doesn't
need to be; the same automation principles that were applied to development,
infrastructure, and testing are equally applicable to network operations.

Network teams shouldn't settle or accept the status quo, instead, be bold and,
initiate real cultural change, and help improve network operations in the industry
by embracing change and learning new skills.

More information:

•	 Blog: http://devarmstrongops.blogspot.co.uk/
•	 LinkedIn: https://uk.linkedin.com/in/steven-armstrong-918629b1
•	 What is a Software-defined Network: https://www.youtube.com/

watch?v=lPL_oQT9tmc

•	 SDN Fundamentals: https://www.youtube.com/watch?v=Np4p1CDIuzc
•	 SDN and OpenFlow: https://www.youtube.com/watch?v=l-DcbQhFAQs

http://devarmstrongops.blogspot.co.uk/
https://uk.linkedin.com/in/steven-armstrong-918629b1
https://www.youtube.com/watch?v=lPL_oQT9tmc
https://www.youtube.com/watch?v=lPL_oQT9tmc
https://www.youtube.com/watch?v=Np4p1CDIuzc
https://www.youtube.com/watch?v=l-DcbQhFAQs

[327]

Index
Symbols
_command module 112, 113
_config module 113
_template module 114

A
Access Control List (ACL) 308
ACL rule

Egress 56
Ingress 56

Active Directory Domain
Services (ADDS) 308

agile testing
benefits, over siloed waterfall approach 229

Amazon Machine Image (AMI) 289
Amazon Web Services (AWS)

approach, for networking 16
availability zones 20
Elastic Load Balancing (ELB) 20
IP addressing 19
overview 12, 13
regions 20
security groups 19, 20
Virtual Private Cloud (VPC) 16-19

Ansible
about 99, 100, 308
_command module 112, 113
_config module 113
_template module 114
A/B subnets, storing in YAML files 181-183
ACL rules, storing in YAML files 181-183
core modules, used for network

operations 111

for network operations 110
delegation 142, 143
directory structure 100, 101
dynamic inventory 147
inventory file 101
jinja2 filters 148, 149
jinja2 templates 106, 107
metadata, tagging 147, 148
modules 102, 103
networking modules, creating 149, 150
playbook, executing 104-106
roles 103, 104
serial, used for controlling roll

percentages 143-146
references 95
used, for configuring network

devices 107, 108
used, for orchestrating load balancers 142
used, for orchestrating SDN

controllers 178, 179
var files 106, 107

Ansible Control Host 99
Ansible Controller Node

inventories folder 101
library folder 101
playbooks folder 101
roles folder 101

Ansible Galaxy
about 109, 110
URL 108

Ansible network automation
reference 122

Ant
URL 189

[328]

Apache Mesos
URL 281

application connectivity topology 320
architectural components, Test Kitchens

Busser framework
driver 238
platform 238
provisioner 238
suites 239

Arista
references 122

Arista CloudVision platform 317
Arista CVX platform 318
Arista EOS

reference 109
Arista EOS operating system 98, 99
Artifactory 266, 316
artifact repositories

about 266
Artifactory 266-268

Artifact Repository 251, 255, 259, 260, 265
Avi Controller 132
Avi Networks

about 132
reference 127

B
bash 86
Bashdoor bug 324
Block I/O (blkio) 285
blue green deployment process

about 139-141
release 1.1, deploying 140
release 1.2, deploying 140

Border Gateway Protocol (BGP) 311
bottom-up DevOps initiatives

complex problem, automating
with network team 91, 92

evangelizing, in network team 88, 89
for networking teams 88
sponsorship, seeking from respected

manager/engineer 90
Bower

URL 268
Business as Usual (BAU) 162
Business Process Management (BPM) 82

C
CD pipeline scheduler

about 265-268
Jenkins 269-272

centralized load balancing 124, 125
Chef

URL 253
Chef Client 259
Chef Server 259
CI Build

Server 188, 210, 233, 212, 235, 321, 322
Cisco

references 122
Cisco IOS operating system 96, 97
Citrix NetScaler

about 127-130
reference, for products 128

cloud approaches
about 1, 2
hybrid cloud 4
private cloud 3
public cloud 2, 3
software-defined operational 4

Cloudbase
URL 10

Cloud Foundry 14
Cloud metadata

using 322-324
CloudVision eXchange (CVX) 98
CloudVision eXchange (CVX) servers 317
command-line interface (CLI) 96
Commit Change 186
Compile Code 251
Completely Fair Scheduler (CFS) 285
Component Test Environment 259, 260
component testing 217
configuration management processes

change requests 119
desired state 115-118
self-service operations 119, 120
used, for managing network devices 114

configuration management processes,
executed roles

bgp 116, 117
bridging role 116, 117
common role 116, 117

[329]

ecmp 117
interface role 116, 117
ipv4 role 116, 117
mlag 117

Connection tracking (conntrack) 158
Consul 287
containerization 282
containers

about 279-281
benefits 285, 286
default Docker networking 292, 293
deploying 286
Docker 288
Docker daemon 288
Docker registry 288
Docker Swarm 294
Docker workflow 291
impact, on networking 303
Kubernetes 298
Linux control groups 285
Linux namespace 283, 284
packaging 289
Solaris Zones 282
user-defined bridge network, Docker 293

containers, deploying
CoreOS 287
etcd 287

containers, packaging
Dockerfile 289
Packer-Docker integration 289-291

Continuous Delivery 161, 254-256, 294, 319
continuous integration build artifacts

packaging, best practices 252
continuous integration build

servers 199, 200
used, for network devices 205, 206
used, for network orchestration 211, 212

continuous integration (CI) 250
about 161, 186, 187
database continuous

integration 190-193
developer continuous integration 188, 189
for network devices 210
package management 253
security checks, wrapping into 321, 322
tools 194

continuous integration package
management 250-252

continuous integration testing 231-233
control groups (cgroups) 285
Control & Management Cluster level 11
CoreOS 287
CoreOS Rocket

URL 281
Cruise Control 200

D
database continuous integration 190-193
Debian

URL 268
declarative configuration sections, HAProxy

Access Control List (ACL) 137
backend 136
check 136
frontend 137

default Docker networking 292, 293
delegation 142, 143
Denial of Service (DoS) 315
continuous deployment 254-257
deployment artifacts

packaging 262-264
deployment methodologies

pull model 258, 259
push model 260
push model/pull model, selecting 261, 262

deployment pipelines
network changes, deploying with 273
tools 265, 266

developer continuous integration 188, 189
DevOps

evangelizing, in network team 88
implementing, for networking team 77, 78
implementing, reasons 75, 76
initiating 74
references 93

DevSecOps 309
distributed load balancing 124-126
Docker

about 280, 288
URL 268, 281
user-defined bridge network 293

[330]

Docker Compose 295
Docker daemon 288
Dockerfile 289, 298
Docker machine 294
Docker registry 288
Docker Swarm

about 294
architecture 296, 297

Docker workflow 291
Domain Name System (DNS) 18
Dynamic Host Configuration

Protocol (DHCP) 19
dynamic inventory 147

E
Egress policies 311
AWS elastic load balancing

reference 127
Elastic Load Balancing (ELB) 20
Electric Flow Deploy

URL 268
endurance testing 219
entities, Avi Networks

analytics profile 133
app profile 133
custom policy 133
health monitor profile 132
PKI profile 133
policy set 133
pool 133
SSL profile 133
TCP/UDP profile 133
virtual service 133

entities, Citrix NetScaler
csvserver 130
gslbserver 130
gslbservice 130
gslbvserver 130
lbvserver 130
monitor 129
server 129
service 130
service group 130

environment file 252
Equal Cost Multipath (ECMP) 243

Extensible Messaging and Presence
Protocol (XMPP) 43

external Border Gate Protocol (eBGP) 8

F
F5 Big-IP

about 130, 131
Big-IP DNS 131
iRules 131
local traffic manager 131
monitor 131
pool 131
pool member 131
rate classes 132
reference 127
traffic class 132
virtual server 131

failover testing 244
feature branches 233
Federal Information Processing

Standard (FIPS) 128

G
gated builds 233
Generic

URL 268
Git

about 101
reference 101

Git LFS
URL 267

Global Server Load Balancing (GSLB) 128
Google Kubernetes

URL 281
Gradle

URL 267
Graphical User Interface (GUI) 2

H
HAProxy

about 127, 135-137
URL 135

HashiCorp 289
Highly Available (HA) 45

[331]

hybrid cloud 4
Hyper-V 10

I
IBM Bluemix

URL 281
Identity and Access

Management (IAM) service 17
immutable infrastructure

load balancing 137
immutable networking, software-defined

networking
A/B immutable networking 174-176
application decommissioning 177
redundant firewall rules, cleaning 176, 177

immutable servers 138, 139
Information Technology Infrastructure

Library (ITIL) 13
Infrastructure as a Service (IaaS)

function 14
Ingress policies 311
Integration Test Environment 259
integration testing 217
internal Border Gate Protocol (iBGP) 8
Internet Control Message

Protocol (ICMP) 316
interprocess communication (IPC) 284
IP Address Management (IPAM) 310
iPerf tool 243
Ivy

URL 267

J
Jenkins 269, 308
jinja2 filters 148, 149
jinja2 templates 106, 107
Juniper

references 122
Juniper Junos operating system 98

K
Key Performance Indicators (KPIs) 221
knife 259
Kubelet 300

Kubernetes
about 298
architecture 298
kubectl 300, 301
SDN integration 302
worker node 299, 300

Kubernetes, architecture
master node 299

Kubernetes cluster
components 298

Kubernetes kubectl 300, 301
Kubernetes master node 299
Kubernetes SDN integration 302
Kubernetes worker node 299, 300

L
Layer 3 (L3) agents 23
Leaf-Spine networking architecture

advantages 9
implementing 7-9
Open vSwitch database (OVSDB) 9-11
versus, Spanning Tree Protocol (STP) 5

Lightweight Directory Access Protocol
(LDAP) 23, 195, 308

Linux control groups 285
Linux namespace 283, 284
Load-Balancer-as-a-Service (LBaaS) 37
load balancing solutions

about 126, 127
Avi Networks 132
Citrix NetScaler 127-130
F5 Big-IP 130
HAProxy 136, 137
Nginx 133-135

load testing 219
LXC containers 97

M
makefile

tutorial, URL 189
Man in the Middle (MitM) 317
Maven

URL , 189
microservice architectures 123

[332]

Microsoft Azure Nano Server
URL 282

Modular Layer 2 (ML2) agents 23
MsBuild

URL 189
Multi-chassis Link Aggregation

(MLAG) mode 8
Multipath Border Gate Protocol

(MP-BGP) 43

N
Network Address Translation-Traversal

(NAT-T) 16
network changes

deploying, with deployment pipelines 273
network changes deployment

configuration management tooling,
incorporating 275

Continuous Delivery pipelines, network
teams role in 276

deployment pipeline, steps 273, 274
failing fast 276, 277
feedback loops 276, 277
network self-service 273

network checklist 241, 242
network code quality tooling 244-246
network continuous integration

about 201, 202
continuous integration builds, used net-

work devices 205, 206
network validation engines 203, 204
simple Jenkins network CI build,

configuring 206-209
network continuous integration builds

validations, adding 209
network devices

configuring, Ansible used 107, 108
continuous integration builds,

using for 205, 206
managing, configuration management

processes used 114, 115
Network Function Virtualization (NFV) 16
networking

containers, impact on 303
networking teams

bottom-up DevOps initiatives 88

top-down DevOps initiatives 79
Network Interface Controller (NIC) 8
network operations, software-defined

networking
API-driven networking, responsibilities 164
overlay architecture setup 164-170
self-service networking 171-173

network orchestration
continuous integration builds,

used 211, 212
network security

about 319
account management 308-310
application connectivity topology 320
Cloud metadata, using 322-324
evolution 307, 308
firewalling 311
network device configuration 310
network segmentation 312-314
security checks, wrapping into Continuous

Integration (CI) 321, 322
vulnerability detection 311, 312

network testing
assigning, to quality gates 236

network user journey 242, 243
network validation engines 203, 204
network vendors

Arista EOS operating system 98, 99
Cisco Ios operating systems 96, 97
Juniper Junos operating system 98
Nxos operating systems 96, 97
operating systems 96

Nexus 316
Nginx

about 127, 133-135
URL 133

nova scheduler rules 35
NPM

URL 267
Nuage Networks Virtual

Service Platform (VSP) 313
Nuage VRS 46
Nuage VSD 46
Nuage VSPK object tree

building 179
Nuage VSP object model 165, 171

[333]

Nuage VSP platform
brownfield projects, setting up 62-67
greenfield projects, setting up 62-68
multicast traffic, routing 68-70
Nuage VSP software-defined

object model 49
used, for integrating OpenStack 44-46
Virtualized Service Controller (VSC) 42
Virtualized Service Directory (VSD) 41
Virtual Routing and Switching (VRS) 42

Nuage VSP software-defined object model
layer 3 domain 49
layer 3 domain template 49
organization 49
overview 49-61
zone segments 50

NuGet
URL 267

Nxos operating system 96, 97

O
OpenFlow 10, 313
OpenStack

approach, for networking 21
availability zones 35
distributions 15
instance, provisioning workflow used 36
integrating, Nuage VSP platform

used 44-46
LBaaS plugins 37
Load-Balancer-as-a-Service (LBaaS) 37
networks, provisioning 24-34
neutron 23, 24
Nuage VSD-managed mode 47, 48
OpenStack-managed mode 47, 48
overview 14, 15
regions 35
services 22
tenant 23
using, for Test Kitchen example 239-241

OpenStack Cinder
reference 139

OpenStack platform 318
OpenStack services

references 22
Open vSwitch 9

Open vSwitch Database (OVSDB)
about 9, 313
implementing 10, 11

Oracle Solaris Zones
URL 281

Out Of Band (OoB) network 317
overlay networks 315
OVSDB 318
ovsdb-server 11
ovs-vswitchd daemon 11

P
PaaS solutions 125
Package 251
Packer

about 289
architecture 290

Peer review process 82
performance testing 219
Pivotal 14
Platform as a Service (PaaS) 4, 280
Plethora 308
post-processors 290
PowerShell 86
private cloud 3
Process ID (PID) 284
public cloud

about 2, 3, 12
Amazon Web Services (AWS),

overview 12, 13
OpenStack, overview 14, 15

Public Key Infrastructure (PKI) 310
pull model

about 258, 259
example 258

Puppet
URL 253

push model
about 260
example 260

push model/pull model
selecting 261, 262

PyEZ 98
PyPi

URL 268

[334]

Q
QEMU Copy On Write (QCOW) 289
quality assurance

best practices 227
best practices, applying to

networking 234-236
challenges 228
continuous integration testing 231-233
gated builds on branches 233
testing feedback loops, creating 230

quality gates
network testing, assigning, to 236

Quality of Service (QoS) 11, 131, 243
Qualys vulnerability scan 323
quarantined compromised servers 324

R
RabbitMQ 36
Rackspace Catrina

URL 281
Raft algorithm 287
Rake

URL 189
rakefile 208
Real-Time Scheduler (RTS) 285
Remote Procedure Call (RPC) 23
REST API 178

architecture 46
calls 46

Restriction of Hazardous
Substances (RoHS) 128

Rocket 280
Role Based Access Control (RBAC) 316
RSpec 238

S
Salt

URL 253
scalability testing 220
SCM System 188, 210, 212
SDN Controllers

orchestrating, Ansible used 178, 179
Secure Copy (SCP) 108

security checks
wrapping, into Continuous

Integration (CI) 321, 322
security groups 20
Selenium 242
Selenium test sample

URL 242
Service Level Agreements (SLA) 2
service-oriented architectures (SOA) 281
services, OpenStack

cinder 22
galera 22
glance 22
heat 22
horizon 22
ironic 22
keystone 22
neutron 22
nova 22
rabbitmq 22
swift 22

shadow IT 2
simple Jenkins network CI build

configuring 206-209
Smart System Upgrade (SSU) 99
Software-defined Networking (SDN) 78,

308
Continuous Delivery 161
Nuage, working 41-43
SDN controller, attacks 318
added network complexity 155, 156
agility 160
arguments 154, 155
benefits 159
complex networks, simplifying 162
controllers 40
immutable networking 174
mean time to recover 160
network operations, splitting up 162, 163
overlay, attacks 315, 316
performance 159
precision 160
redundancy 159
repeatability 160
scalability 159
securing 314

[335]

skills, lacking 156, 157
solutions 39-41
stateful firewalling, lacking 158
underlay, attacks 316, 317
using, for disaster recovery 179, 180

software-defined operational 4
Solaris Zones 282
SonarQube

architecture components 244
SonarQube Runner 245
Source Control Management

(SCM) system 227
source control management (SCM) systems

about 186, 194
branching strategies 197-199
centralized SCM systems 195, 196
centralized SCM systems, examples 196
distributed SCM systems 197
 distributed SCM systems, examples 197
features 200

Spanning Tree Protocol (STP) 5
implementing 5
Open vSwitch database (OVSDB) 9-11
versus, Leaf-Spine networking

architecture 5
spike testing 219
stateful firewalls 310
static infrastructure

load balancing 137, 138
static servers 138, 139
stress testing 219
subject matter expert (SME) 119
Sysdb 98
syslog server 319
system testing 218

T
Terminal Access Controller Access Control

System (TACACS) 308
testing

component testing 217
integration testing 217
performance testing 219
relevance, to network teams 221, 222
system testing 218

unit testing 216
user acceptance testing 220

testing feedback loops
creating 230

Test Kitchen
about 238
example, with OpenStack 239-241

Test Kitchens Busser framework 238
test tools

about 238
failover testing 244
network checklist 241, 242
network code quality tooling 246
network user journey 242, 243
Quality of Service (QoS) 243
unit testing tools 238

ThoughtWorks 308
Time To Live (TTL) 19
Tool Command Language (TCL) 131
tools, continuous integration (CI)

about 194
continuous integration build

servers 199, 201
source control management (SCM)

systems 194
tools, deployment pipeline

artifact repositories 266
CD pipeline scheduler 268

top-down DevOps initiatives
activity diagrams, mapping out 81-83
behavior, changing of network teams 86, 87
for networking teams 79
operational model, changing of

network team 84-86
successful teams, analyzing 79, 80

Total Cost of Ownership (TCO) 3
Transactions Per Second (TPS) 128
Transmission Control Protocol (TCP) 8
Transport Layer Security (TLS) 310, 318

U
underlay network 316
unit testing 216
unit testing tools 238
Unit Tests 251

[336]

Urban Code Deploy
URL 268

user acceptance testing 220
User layer, OSI model 154

V
Vagrant

URL 268
Virtual Extensible LAN (VXLAN) 11, 311
Virtual IP (VIP) 37, 43, 126
Virtualized Service Controller (VSC) 42
Virtualized Service Directory (VSD) 41
Virtualized Service Gateway (VSG) 43, 62
Virtual Private Cloud (VPC) 12, 16-19
Virtual Routing and Switching (VRS) 42
Virtual Tunnel End Points (VTEPs) 313
V-Model

about 223
structure 223-227

VMware Photon
URL 282

volume testing 220
VXLAN Tunnel Endpoint (VTEP) 11

W
waterfall processes 222

X
XL Deploy

URL 268

Y
YAML files

A/B subnets, storing in 181-183
ACL rules, storing in 181-183

YUM
URL 268

Z
Zero Touch Provisioning (ZTP) 99
Zero Touch Replacement (ZTR) 99

	Cover
	Copyright
	About the Author
	Acknowledgments
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: The Impact of Cloud on Networking
	An overview of cloud approaches
	Public clouds
	Private cloud
	Hybrid cloud
	Software-defined

	The difference between Spanning Tree and Leaf-Spine networking
	Spanning Tree Protocol
	Leaf-Spine architecture
	OVSDB

	Changes that have occurred in networking with the introduction of public cloud
	An overview of AWS
	OpenStack overview

	The AWS approach to networking
	Amazon VPC
	Amazon IP addressing
	Amazon security groups
	Amazon regions and availability zones
	Amazon Elastic Load Balancing

	The OpenStack approach to networking
	OpenStack services
	OpenStack tenants
	OpenStack neutron
	Provisioning OpenStack networks
	OpenStack regions and availability zones
	OpenStack instance provisioning workflow
	OpenStack LBaaS

	Summary

	Chapter 2: The Emergence of
Software-defined Networking
	Why SDN solutions are necessary
	How the Nuage SDN solution works
	Integrating OpenStack with the Nuage VSP platform
	Nuage or OpenStack managed networks
	The Nuage VSP software-defined object model
	Object model overview:

	How the Nuage VSP platform can support greenfield and brownfield projects
	The Nuage VSP multicast support
	Summary

	Chapter 3: Bringing DevOps to Network Operations
	Initiating a change in behavior
	Reasons to implement DevOps
	Reasons to implement DevOps for networking

	Top-down DevOps initiatives for networking teams
	Analyzing successful teams
	Mapping out activity diagrams
	Changing the network team’s operational model
	Changing the network team's behavior

	Bottom-up DevOps initiatives for networking teams
	Evangelizing DevOps in the networking team
	Seeking sponsorship from a respected manager or engineer
	Automating a complex problem with the networking team

	Summary

	Chapter 4: Configuring Network Devices Using Ansible
	Network vendors' operating systems
	Cisco Ios and Nxos operating system
	Juniper Junos operating system
	Arista EOS operating system

	Introduction to Ansible
	Ansible directory structure
	Ansible inventory
	Ansible modules
	Ansible roles
	Ansible playbooks
	Executing an Ansible playbook
	Ansible vars and jinja2 templates
	Prerequisites using Ansible to configure network devices
	Ansible Galaxy

	Ansible core modules available for network
operations
	The _command module
	The _config module
	The _template module

	Configuration management processes to manage network devices
	Desired state
	Change requests
	Self-service operations

	Summary

	Chapter 5: Orchestrating Load Balancers Using Ansible
	Centralized and distributed load balancers
	Centralized load balancing
	Distributed load balancing

	Popular load balancing solutions
	Citrix Netscaler
	F5 Big-IP
	Avi Networks
	Nginx
	HAProxy

	Load balancing immutable and static infrastructure
	Static and immutable servers
	Blue/green deployments

	Using Ansible to Orchestrate load balancers
	Delegation
	Utilizing serial to control roll percentages
	Dynamic inventories
	Tagging metadata
	Jinja2 filters
	Creating Ansible networking modules

	Summary

	Chapter 6: Orchestrating SDN Controllers Using Ansible
	Arguments against software-defined networking
	Added network complexity
	Lack of software-defined networking skills
	Stateful firewalling to support regularity requirements

	Why would organizations need
software-defined networking?
	Software-defined networking adds agility and precision
	A good understanding of continuous delivery is key
	Simplifying complex networks
	Splitting up network operations
	New responsibilities in API-driven networking
	Overlay architecture setup
	Self-service networking

	Immutable networking
	A/B immutable networking
	The clean-up of redundant firewall rules
	Application decommissioning

	Using Ansible to orchestrate SDN controllers
	Using SDN for disaster recovery
	Storing A/B subnets and ACL rules in YAML files

	Summary

	Chapter 7: Using Continuous Integration Builds for Network Configuration
	Continuous integration overview
	Developer continuous integration
	Database continuous integration

	Tooling available for continuous integration
	Source control management systems
	Centralized SCM systems
	Distributed SCM systems
	Branching strategies

	Continuous integration build servers

	Network continuous integration
	Network validation engines
	Simple continuous integration builds for network devices
	Configuring a simple Jenkins network CI build
	Adding validations to network continuous integration builds
	Continuous integration for network devices

	Continuous integration builds for network orchestration

	Summary

	Chapter 8: Testing Network Changes
	Testing overview
	Unit testing
	Component testing
	Integration testing
	System testing
	Performance testing
	User acceptance testing
	Why is testing relevant to network teams?
	Network changes and testing today

	Quality assurance best practices
	Creating testing feedback loops
	Continuous integration testing
	Gated builds on branches
	Applying quality assurance best practices to networking
	Assigning network testing to quality gates

	Available test tools
	Unit testing tools
	Test Kitchen example using OpenStack
	Network checklist
	Network user journey
	Quality of Service
	Failover testing
	Network code quality tooling

	Summary

	Chapter 9: Using Continuous Delivery Pipelines to Deploy Network Changes
	Continuous integration package management
	Continuous Delivery and deployment overview
	Deployment methodologies
	Pull model
	Push model
	When to choose pull or push

	Packaging deployment artifacts
	Deployment pipeline tooling
	Artifact repositories
	Artifactory

	CD pipeline scheduler
	Jenkins

	Deploying network changes with deployment pipelines
	Network self-service
	Steps in a deployment pipeline
	Incorporating configuration management tooling
	Network teams' role in Continuous Delivery pipelines
	Failing fast and feedback loops

	Summary

	Chapter 10: The Impact of Containers on Networking
	Overview of containers
	Solaris Zones
	Linux namespaces
	Linux control groups
	Benefits of containers
	Deploying containers
	CoreOS
	etcd

	Docker
	Docker registry
	Docker daemon
	Packaging containers
	Dockerfile
	Packer-Docker integration

	Docker workflow
	Default Docker networking
	Docker user-defined bridge network
	Docker Swarm
	Docker machine
	Docker Compose
	Swarm architecture

	Kubernetes
	Kubernetes architecture

	Impact of containers on networking
	Summary

	Chapter 11: Securing the Network
	The evolution of network security and debunking myths
	Account management
	Network device configuration
	Firewalling
	Vulnerability detection
	Network segmentation

	Securing a software-defined network
	Attacks at Overlay
	Attacks on the underlay network?
	Attacks on the SDN controller

	Network security and continuous delivery
	Application connectivity topology
	Wrapping security checks into continuous integration
	Using Cloud metadata

	Summary

	Index

