O'REILLY"

Mandging
Kubernetes

OPERATING KUBERNETES CLUSTERS IN THE REAL WORLD

Brendan Burns & Craig Tracey




heptio

Jnlock the
ull potential
of upstream
Kupernetes.

B

- Clever products that simplify
day-to-day management of your
cloud native footprint

« Community projects that fillimportant
gaps in the Kubernetes ecosystem

+ Customer confidence fueled
by a proactive support team and
unmatched expertise

heptio.com


https://heptio.com/
https://heptio.com

Managing Kubernetes
Operating Kubernetes Clusters in the Real World

Brendan Burns and Craig Tracey

Bejing - Boston « Farnham - Sebastopol - Tokyo  [@YRIIMNY



Managing Kubernetes
by Brendan Burns and Craig Tracey

Copyright © 2019 Brendan Burns and Craig Tracey. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti-
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Nikki McDonald Indexer: WordCo, Inc.

Development Editor: Virginia Wilson Interior Designer: David Futato
Production Editor: Justin Billing Cover Designer: Karen Montgomery
Copyeditor: Shannon Wright lllustrator: Rebecca Demarest

Proofreader: Chris Edwards
October 2018: First Edition

Revision History for the First Edition
2018-10-05: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492033912 for release details.

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. Managing Kubernetes, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-492-04654-7
[LSI]


http://oreilly.com/safari
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492033912

Preface

1.

Table of Contents

INEPOUCTION. .. e ettt ettt e ettt et e eneeneneneanenennes

How the Cluster Operates

Adjust, Secure, and Tune the Cluster

Responding When Things Go Wrong

Extending the System with New and Custom Functionality
Summary

An Overview of KUDernetes. . ..vvvvrvrenei ittt iiietieieenenennenennes

Containers
Container Orchestration
The Kubernetes API
Basic Objects: Pods, ReplicaSets, and Services
Organizing Your Cluster with Namespaces, Labels, and Annotations
Advanced Concepts: Deployments, Ingress, and StatefulSets
Batch Workloads: Job and Scheduled]ob
Cluster Agents and Utilities: DaemonSets
Summary

Kubernetes ArchitectUure. . ..o vvve ettt ittt eeeneneenenenns

Concepts
Declarative Configuration
Reconciliation or Controllers
Implicit or Dynamic Grouping
Structure
Unix Philosophy of Many Components
API-Driven Interactions

U s W W

10
10
14
15
18
18
18

21
21
21
22
23
25
25
25




Components
Head Node Components
Components On All Nodes
Scheduled Components
Summary

The Kubernetes APIServer................ooovvvnnn.t.
Basic Characteristics for Manageability

Pieces of the API Server
API Management
API Paths
API Discovery
OpenAPI Spec Serving
API Translation
Request Management
Types of Requests
Life of a Request
API Server Internals
CRD Control Loop
Debugging the API Server
Basic Logs
Audit Logs
Activating Additional Logs
Debugging kubectl Requests
Summary

CScheduler. .o

An Overview of Scheduling
Scheduling Process
Predicates
Priorities
High-Level Algorithm
Conflicts

Controlling Scheduling with Labels, Affinity, Taints, and Tolerations

Node Selectors

Node Affinity

Taints and Tolerations
Summary

Installing Kubernetes. ...........coovviiiiiiiiinen.

kubeadm
Requirements

26
26
28
29
30

3
31
31
32
32
33
36
37
38
38
39
46
46
46
47
47
47
48
48

49
49
50
50
50
51
52
53
53
54
56
57

59
59
60

iv

| Table of Contents



kubelet 60

Installing the Control Plane 62
kubeadm Configuration 63
Preflight Checks 64
Certificates 65
eted 65
kubeconfig 67
Taints 68

Installing Worker Nodes 68

Add-Ons 69

Phases 70

High Availability 70

Upgrades 71

Summary 73

. Authentication and User Management.............ccovviiiiiiiiiinniennennn, 75

Users 76

Authentication 77

kubeconfig 85

Service Accounts 87

Summary 89

. Authorization. ...t 91

REST 91

Authorization 92

Role-Based Access Control 93
Role and ClusterRole 94
RoleBinding and ClusterRoleBinding 96
Testing Authorization 98

Summary 99

. Admission Control............oooiiiiiiiiii 101

Configuration 102

Common Controllers 102
PodSecurityPolicies 102
ResourceQuota 104
LimitRange 106

Dynamic Admission Controllers 107
Validating Admission Controllers 108
Mutating Admission Controllers 110

Summary 113

Table of Contents | v



10.

1.

12.

13.

NetWOrKing. . ..ovvii ittt it iii e

Container Network Interface
Choosing a Plug-in
kube-proxy
Service Discovery
DNS
Environment Variables
Network Policy
Service Mesh
Summary

Monitoring Kubernetes..........c.coovviiiiiiiiiiiiiieenieennennnn.

Goals for Monitoring
Differences Between Logging and Monitoring
Building a Monitoring Stack
Getting Data from Your Cluster and Applications
Aggregating Metrics and Logs from Multiple Sources
Storing Data for Retrieval and Querying
Visualizing and Interacting with Your Data
What to Monitor?
Monitoring Machines
Monitoring Kubernetes
Monitoring Applications
Blackbox Monitoring
Streaming Logs
Alerting
Summary

Disaster Recovery.......ovvviiiiiiiiiiiiiiiiiiiiii i

High Availability

State

Application Data
Persistent Volumes
Local Data

Worker Nodes

eted

Ark

Summary

Extending Kubernetes...........ccoovviiiiiiiiiiiiiiiiiieennennns.

Kubernetes Extension Points
Cluster Daemons

115
117
117
119
119
120
121
123
124

127
127
129
129
129
131
133
134
134
135
136
136
136
137
138
139

141
141
142
142
143
143
143
144
145
146

149
149
150

vi

| Table of Contents



Use Cases for Cluster Daemons 150

Installing a Cluster Daemon 151
Operational Considerations for Cluster Daemons 151
Hands-On: Example of Creating a Cluster Daemon 152
Cluster Assistants 152
Use Cases for Cluster Assistants 153
Installing a Cluster Assistant 153
Operational Considerations for Cluster Assistants 154
Hands-On: Example of Cluster Assistants 154
Extending the Life Cycle of the API Server 155
Use Cases for Extending the API Life Cycle 155
Installing API Life Cycle Extensions 155
Operational Considerations for Life Cycle Extensions 156
Hands-On: Example of Life Cycle Extensions 156
Adding Custom APIs to Kubernetes 158
Use Cases for Adding New APIs 158
Custom Resource Definitions and Aggregated API Servers 159
Architecture for Custom Resource Definitions 159
Installing Custom Resource Definitions 160
Operational Considerations for Custom Resources 161
Summary 161
14. Conclusions. .........oovviiiiiiiiiiiiiii 163
INdeX....oviie 165

Table of Contents | vii






Preface

Who should read This Book

This book is aimed at operators of Kubernetes clusters, either on-premise or in the
cloud, or anyone who wants to gain a deeper knowledge of how Kubernetes is archi-
tected, installed and maintained. Although there is useful information in this book if
you are a Kubernetes user or developer, ultimately this book is lower level than most
Kubernetes users will need. Instead it is devoted to the details that concern the people
who are responsible for ensuring that a cluster stays healthy, secure and available for
developers building applications on Kubernetes.

Why we wrote This Book

While there is an increasingly large body of work both online and in printed form
describing how users might best take advantage of Kubernetes to build and deploy
their applications, there is relatively little content available for the operators who
install, maintain and upgrade Kubernetes clusters. This book steps into that gap and
provides a concise collection of the information necessary to successfully operate
Kubernetes for yourself or for others.

Kubernetes is ubiquitous today as the most common way people manage containers
and build cloud native applications. Indeed Kubernetes as a service is available in all
of the major public clouds. But for many people using such a service isn’t appealing.
Perhaps you have regulatory reasons for preserving data in an on-premise environ-
ment like a hospital or financial institution, or perhaps you are operating Kubernetes
in a location like a distant airfield or oil platform where limited bandwidth makes
using the cloud impossible. Alternately you may simply be interested in gaining the
skills needed to run Kubernetes in such an environment.

We hope that the knowledge we have gained through our various experiences operat-
ing Kubernetes can be shared through this book. With luck this book will provide you




the advantage of our experiences without requiring that you go through the trials and
tribulations by which this experience was obtained.

Navigating This Book

This book both summarizes how Kubernetes operates and dives deeply into topics
necessary for successfully administering a Kubernetes cluster. After an introduction
to the various topics in Chapter 1, Chapters 2 through 5 are devoted to describing the
details of the Kubernetes architecture and components. These chapters provide an
overview of the various components of Kubernetes and how they come together to
implement the Kubernetes API. Additionally, details of how Kubernetes API requests
are handled and processed are provided in Chapter 4, while Chapter 5 is devoted to
how pods are scheduled into the cluster. A depth of understand of how Kubernetes
operates will enable you to better serve your users who will need your help when
things go wrong.

The remainder of the book is devoted to specific topics that are required to manage a
Kubernetes cluster, including installing and upgrading Kubernetes (Chapter 6) User
management, authentication and authorization (Chapters 7-8), admission control
(Chapter 9), Kubernetes networking (Chapter 10) and monitoring and disaster recov-
ery (Chapters 11-12). Chapter 13 is devoted to the various ways that the Kubernetes
cluster can be extended.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

x | Preface



This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

\

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/managing-kubernetes/managing-kubernetes.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Managing Kubernetes by Brendan
Burns and Craig Tracey (O’Reilly). Copyright 2019 Brendan Burns and Craig Tracey,
978-1-492-03391-27

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Preface | xi


https://github.com/managing-kubernetes/managing-kubernetes
mailto:permissions@oreilly.com

0'Reilly Safari

Safari (formerly Safari Books Online) is a membership-based
1 training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac-
tive tutorials, and curated playlists from over 250 publishers, including O'Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes-
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/managing-kubernetes.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xii | Preface


http://oreilly.com/safari
http://oreilly.com/safari
http://bit.ly/managing-kubernetes
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments

Brendan would like thank his wonderful family, Robin, Julia, and Ethan for love and
support of everything he does. And the Kubernetes community, without whom none
of this would be possible.

Craig thanks his family, and especially his wife, who have always supported all of his
crazy dreams.

We would both like to thank Scott Collier, Lacie Evenson, Sebastien Goasguen, Erik
St. Martin, Jérome Petazzoni, Ben Straub, and Jason Yee for their feedback on early
versions of the manuscript. Thanks also to Nikki McDonald and Virginia Wilson for
their work in developing the manuscript and helping us bring all of our ideas
together, and to Justin Billing, Shannon Wright, and Chris Edwards for their attention
to the finishing touches.

Preface | xiii






CHAPTER1
Introduction

Kubernetes is an open source orchestrator for deploying containerized applications.
The system was open sourced by Google, inspired by a decade of experience deploy-
ing scalable, reliable systems in containers via application-oriented APIs,' and devel-
oped over the last four years by a vibrant community of open source contributors.

It is used by a large and growing number of developers to deploy reliable distributed
systems, as well as to run machine learning, big data, and other batch workloads. A
Kubernetes cluster provides an orchestration API that enables applications to be
defined and deployed with simple declarative syntax. Further, the Kubernetes cluster
itself provides numerous online, self-healing control algorithms that repair applica-
tions in the presence of failures. Finally, the Kubernetes API exposes concepts like
Deployments that make it easier to perform zero-downtime updates of your software
and Service load balancers that make it easy to spread traffic across a number of repli-
cas of your service. Additionally, Kubernetes provides tools for naming and discovery
of services so that you can build loosely coupled microservice architectures. Kuber-
netes is widely used across public and private clouds, as well as physical infrastruc-
ture.

This book is dedicated to the topic of managing a Kuberentes cluster. You might be
managing your own cluster on your own hardware, part of a team managing a cluster
for a larger organization, or a Kubernetes user who wants to go beyond the APIs and
learn more about the internals of the system. Regardless of where you are in the jour-
ney, deepening your knowledge of how to manage the system can make you more
capable of accomplishing all of the things you need to do with Kubernetes.

1 Brendan Burns et al., Borg, Omega, and Kubernetes: Lessons Learned from Three Container-Management
Systems over a Decade”, ACM Queue 14 (2016): 70-93.



http://bit.ly/2vIrL4S
http://bit.ly/2vIrL4S

When we speak of a cluster, were referring to a collection of
machines that work together to provide the aggregate computing
power that Kubernetes makes available to its end users. A Kuber-
netes cluster is a collection of machines that are all controlled by a
single API and can be used by consumers of that API.

There are a variety of topics that make up the necessary skills for managing a Kuber-
netes cluster:

« How the cluster operates
« How to adjust, secure, and tune the cluster
« How to understand your cluster and respond when things go wrong

« How to extend your cluster with new and custom functionality

How the Cluster Operates

Ultimately, if you are going to manage a system, you need to understand how that
system operates. What are the pieces that it is made up of, and how do they fit
together? Without at least a rough understanding of the components and how they
interoperate, you are unlikely to be successful at managing any system. Managing a
piece of software, especially one as complex as Kubernetes, without this understand-
ing is like attempting to repair a car without knowing how the tail pipe relates to the
engine. It’s a bad idea.

However, in addition to understanding how all the pieces fit together, it’s also essen-
tial to understand how the user consumes the Kubernetes cluster. Only by knowing
how a tool like Kubernetes should be used can you truly understand the needs and
demands required for its successful management. To revisit our analogy of the car,
without understanding the way in which a driver sits in the vehicle and guides it
down the road, you are unlikely to successfully manage the vehicle. The same is true
of a Kubernetes cluster.

Finally, it is critical that you understand the role that the Kubernetes cluster plays in a
user’s daily existence. What is the cluster accomplishing for the end user? Which
applications are they deploying on it? What complexity and hardship is the cluster
removing? What complexity is the Kubernetes API adding? To complete the car anal-
ogy, in order to understand the importance of a car to its end user, it is critical to
know that it is the thing that ensures a person shows up to work on time. Likewise
with Kubernetes, if you don’t understand that the cluster is the place where a user’s
mission-critical application runs, and that the Kubernetes API is what a developer
relies on to fix a problem when something goes wrong at 3 a.m., you won't really
grasp what is needed to successfully manage that cluster.

2 | Chapter1:Introduction



Adjust, Secure, and Tune the Cluster

In addition to knowing how the pieces of the cluster fit together and how the Kuber-
netes API is used by developers to build and deploy applications, it is also critical to
understand the various APIs and configuration options to adjust, secure, and tune
your cluster. A Kubernetes cluster—or really any significant piece of software—is not
something that you simply turn up, start running, and walk away from.

The cluster and its usage have a lifecycle. Developers join and leave teams. New teams
are formed and old ones die. The cluster scales with the growth of the business. New
Kubernetes releases come out to fix bugs, add new features, and improve stability.
Increased demand on the cluster exposes performance problems that had previously
been ignored. Responding to all of these changes in the lifespan of your cluster
requires an understanding of the ways in which Kubernetes can be configured via
command line flags, deployment options, and API configurations.

Additionally, your cluster is not just a target for application deployment. It can also be
a vector for attacking the security of your applications. Configuring your cluster to be
secure against many different attacks—from application compromises to denial of
service—is a critical component of sucessfully managing a cluster. Much of the time,
this hardening is, in fact, simply to prevent mistakes. In many cases, the value of
hardening and security is that they prevent one team or user from accidentally
“attacking” another team’s service. However, active attacks do sometimes happen, and
the configuration of the cluster is critical to both detecting attacks when they occur
and to preventing them from happening in the first place.

Finally, depending on the usage of the cluster, you may need to demonstrate compli-
ance with various security standards that are required for application developers in
many industries, such as healthcare, finance, or government. When you understand
how to build a compliant cluster, you can put Kubernetes to work in these environ-
ments.

Responding When Things Go Wrong

If things never went wrong, it would be a great world to live in. Sadly, of course, that
is not the way things are, especially not with any computer system I've ever helped to
manage. What's critical when things go wrong is that you learn of it quickly, that you
find out through automation and alerts (rather than from a user), and that you are
capable of responding and restoring the system as quickly as possible.

The first step in detecting when things break and in understanding why they are bro-
ken is to have the right metrics in place. Fortunately, there are two technologies
present in the Kubernetes cluster that make this job easier. The first is that Kubernetes
itself is generally deployed inside of containers. In addition to the value in reliable

Adjust, Secure, and Tune the Cluster | 3



packaging and deployment, the container itself forms a boundary where basic metrics
such as CPU, memory, network, and disk usage can be observed. These metrics can
then be recorded into a monitoring system for both alerting and introspection.

In addition to these container-generated metrics, the Kubernetes codebase itself has
been instrumented with a significant number of application metrics. These include
things like the number of requests sent or received by various components, as well as
the latency of those requests. These metrics are expressed using a format popularized
by the Prometheus open source project, and they can be easily collected and popula-
ted into Prometheus, which can be used directly or with other tools, like Grafana, for
visualization and introspection.

Combined together, the baseline metrics from the operating system containers, as
well as the application metrics from Kubernetes itself, provide a rich set of data that
can be used to generate alerts, which tell you when the system isn't working properly,
along with the historical data necessary to debug and determine what went wrong
and when.

Of course, understanding the problem is only the first half of the battle. The next step
is to respond and recover from the problems with the system. Fortunately, Kuber-
netes was built in a decoupled, modular manner, with minimal state in the system.
This means that, generally, at any given time, it is safe to restart any component in the
system that may be overloaded or misbehaving. This modularity and idempotency
means that, once you determine the problem, developing a solution is often as
straightforward as restarting a few applications.

Of course, in some cases, something truly terrible happens, and, your only recourse is
to restore the cluster from a disaster recovery backup somewhere. This presumes that
you have enabled such backups in the first place. In addition to all of the monitoring
to show you what is happening, the alerts to tell you when something breaks, and the
playbooks to tell you how to repair it, successfully managing a cluster requires that
you develop and exercise a disaster response and recovery procedure. It's important
to remember that simply developing this plan is insufficient. You need to practice it
regularly, or you will not be ready (and the plan itself may be flawed) in the presence
of a real problem.

Extending the System with New and Custom
Functionality

One of the most important strengths of the Kubernetes open source project has been
the explosive growth of libraries, tools, and platforms that build on, extend, or other-
wise improve the usage of a Kubernetes cluster.

4 | Chapter 1: Introduction


https://prometheus.io

There are tools like Spinnaker or Jenkins for continuous deployment, and tools like
Helm that make it easy to package and deploy complete applications. Platforms like
Deis provide Git push-style developer workflows, and numerous functions as a ser-
vice (FaaS) platforms build on top of Kubernetes to enable users to consume it via
simple functions. There are even tools for automating the creation and rotation of
certificates, in addition to service mesh technologies that make it easy to link and
introspect a myriad of microservices.

All of these tools in the ecosystem can be used to enhance, extend, and improve the
Kubernetes cluster that you are managing. They can provide new functionality to
make your users’ lives easier and make the software that they deploy more robust and
more manageable.

However, these tools can also make your cluster more unstable, less secure, and more
prone to failures. They can expose your users to immature, poorly supported soft-
ware that feels like an “official” part of the cluster but actually serves to make the
users’ life more difficult.

Part of managing a Kubernetes cluster is knowing how and when to add these tools,
platforms, and projects into the cluster. It requires an exploration and understanding
of not only what a particular project is attempting to accomplish but also of the other
solutions that exist in the ecosystem. Often, users will come to you with a request for
a particular tool based on some video or blog that they happened across. In truth,
they are often asking for a capability like continuous integration and continuous
delivery (CI/CD) or certificate rotation.

It is your job as a cluster manager to act as a curator of such projects. You are also an
editor and an advisor who can recommend alternate solutions or determine whether
a particular project is a good fit for your cluster or if there is a better way of accom-
plishing the same goal for the end user.

Additionally, the Kubernetes API itself contains rich tools for extending and enhanc-
ing the API. A Kubernetes cluster is not limited solely to the APIs that are built into
it. Instead, new APIs can be dynamically added and removed. Besides the existing
extensions just mentioned, sometimes the job of managing a Kubernetes cluster
involves developing new code and new extensions that enhance your cluster in ways
that were previously impossible. Part of managing a cluster may very well be develop-
ing new tooling. Of course, once developed, sharing that tooling with the growing
Kubernetes ecosystem is a great way to give back to the community that brought you
the Kubernetes software in the first place.

Summary

Managing a Kubernetes cluster is more than just the act of installing some software
on a set of machines. Successful management requires a solid grasp of how Kuber-

Summary | 5



netes is put together and how it is put to use by the developers who are Kubernetes
users. It requires that you understand how to maintain, adjust, and improve the clus-
ter over time as its usage patterns change. Additionally, you need to know how to
monitor the information put off by the cluster in operation and how to develop the
alerts and dashboards to tell you when the cluster is sick and how to make it healthy
again. Finally, you need to understand when and how to extend the Kubernetes clus-
ter with other tools to make it even more helpful to your users. We hope that within
this book you find answers and more for all of these topics and that, at completion,
you find yourself with the skills to be successful at Managing Kubernetes.

6 | Chapter1:Introduction



CHAPTER 2
An Overview of Kubernetes

Building, deploying, and managing applications on top of the Kubernetes API is a
complex topic in its own right. It is beyond the scope of this book to give a complete
understanding of the Kubernetes API in all of its detail. For those purposes, there are
a number of books, such as Kubernetes: Up and Running (O’Reilly), and online
resources that will give you the knowledge necessary to build an application on
Kubernetes. If you are completely new to Kubernetes and interested in building appli-
cations on top of the system, we definitely recommend taking advantage of these
resources to augment the information in this chapter.

On the other hand, if you are responsible for managing a Kubernetes cluster or you
have a high-level understanding of the Kubernetes API, this chapter provides an
introduction to the basic concepts of Kubernetes and their role in the development of
an application. If after reading this chapter you still feel uncomfortable having a con-
versation with your users about their use of Kubernetes, we highly recommend that
you avail yourself of these additional resources.

In this chapter, we first introduce the notion of containers and how they can be used
to package and deploy your application. Then we introduce the core concepts behind
the Kubernetes API, and finally, we conclude with some higher-level concepts that
Kubernetes has added to make specific tasks easier.

Containers

Containers were popularized by Docker and enabled a revolution in the way in which
developers package and deploy their applications. However, along the way, the very
word container has taken on many different meanings to many different people.
Because Kubernetes is a container orchestrator to understand Kubernetes, it’s impor-
tant to understand what we mean when we say container.



http://http://bit.ly/kubernetes-up-and-running

In reality, a container is made up of two different pieces, and a group of associated
features. A container includes:

+ A container image

+ A set of operating system concepts that isolates a running process or processes

The container image contains the application runtime, which consists of binaries,
libraries, and other data needed to run the container. Developer can package up their
application as a container image on their development laptop and have faith that
when that image is deployed and run in a different setting—be it another user’s laptop
or a server in a datacenter—the container will behave exactly as it did on the develo-
per’s laptop. This portability and consistent execution in a variety of environments
are among the primary values of container images.

When a container image is run, it is also executed using namespaces in the operating
system. These namespaces contain the process and provide isolation for it and its
peers from other things running on the machine. This isolation means, for example,
that each running container has its own separated filesystem (like a chroot). Addi-
tionally, each container has its own network and PID namespaces, meaning that pro-
cess number 42 in one container is a different process than number 42 in another
container. There are many other namespaces within the kernel that separate various
running containers from each other. Additionally, control groups (cgroups) allow the
isolation of resource usage, like memory or CPU. Finally, standard operating system
security features, like SELinux or AppArmor, can also be used with running contain-
ers. Combined, all of this isolation makes it more difficult for different processes run-
ning in separate containers to interfere with each other.

When we say isolation, it is incredibly important to know that this
is in terms of resources, like CPU, memory, or files. Containers as
implemented in Linux and Windows do not currently provide
strong security isolation for different processes. Containers when
combined with other kernel-level isolation can provide reasonable
security isolation for some use cases. However, in the general case,
only hypervisor-level security is strong enough to isolate truly hos-
tile workloads.

In order to make all of this work, a number of different tools were created to help
build and deploy containerized applications.

The first is the container image builder. Typically the docker command-line tool is
used to build a container image. However, the image format has been standardized
through the Open Container Initiative (OCI) standard. This has enabled the develop-
ment of other image builders, available via cloud API, CI/CD, or new alternative tools
and libraries.

8 | (Chapter2: AnOverview of Kubernetes



The docker tool uses a Dockerfile, which specifies a set of instructions for how to con-
struct the container image. Full details on using the docker tool are beyond the scope
of this book, but there are numerous resources available in books like Docker: Up and
Running (O’Reilly) or in online resources. If you have never built a container image
before, put down this book right now, go read about containers, and come back when
you have built a few container images.

After a container image has been built, we need a way to distribute that image from a
user’s laptop up to other users, the cloud, or a private datacenter. This is where the
image registry comes in. The image registry is an API for uploading and managing
images. After an image has been built, it is pushed to the image registry. After the
image is in the registry, it can be pulled, or downloaded, from that registry to any
machine that has access to the registry. Every registry requires some form of authori-
zation to push an image, but some registries are public, meaning that once an image is
pushed, anyone in the world can pull and start running the image. Others are private
and require authorization to pull an image, as well. At this point, there are registries
as a service available from every public cloud, and there are open source registry
servers, which you can download and run in your own environment. Before you even
begin to set up your Kubernetes cluster, it’s a good idea to figure out where you are
going to store the images that you run in it.

Once you have packaged your application as a container image and pushed it to a
registry, it’s time to use that container to deploy the application, and that’s where con-
tainer orchestration comes in.

Container Orchestration

After you have a container image stored in a registry somewhere, you need to run it
to create a working application. This is where a container orchestrator like Kuber-
netes comes into the picture. Kuberentes’ job is to take a group of machines that pro-
vide resources, like CPU, memory, and disk, and transform them into a container-
oriented API that developers can use to deploy their containers.

The Kubernetes API enables you to declare you desired state of the world, for exam-
ple, “I want this container image to run, and it needs 3 cores and 10 gigabytes of
memory to run correctly” The Kubernetes system then reviews its fleet of machines,
finds a good place for that container image to run, and schedules the execution of that
container on that machine. Developers see their container image running, and more
often than not, they don't need to concern themselves with the specific location where
their container is executing.

Of course, running just a single container is neither that interesting nor that reliable,
so the Kubernetes API also provides easy ways to say, “I want three copies of this con-

Container Orchestration | 9


http://bit.ly/docker-up-running-2e
http://bit.ly/docker-up-running-2e

tainer image running on different machines, each with 3 cores and 10 gigabytes of
memory.”

But the orchestration system is about more than scheduling containers to machines.
In addition to that, the Kubernetes orchestrator knows how to heal those containers if
they fail. If the process inside your container crashes, Kubernetes restarts it. If you
define custom health checks, Kubernetes can use them to determine whether your
application is deadlocked and needs to be restarted (liveness checks) or if it should be
part of a load-balanced service (readiness checks).

Speaking of load balancing, Kubernetes also provides API objects for defining a way
to load balance traffic between these various replicas. It provides a way to say, “Please
create this load balancer to represent these running containers.” These load balancers
are also given easy-to-discover names so that linking different services together
within a cluster is easy.

Kubernetes also has objects that perform zero-downtime rollouts and that manage
configurations, persistent volumes, secrets, and much more. The following sections
detail the specific objects in the Kubernetes API that make all of this possible.

The Kubernetes API

The Kubernetes API is a RESTful API based on HTTP and JSON and provided by an
API server. All of the components in Kubernetes communicate through the API. This
architecture is covered in more detail in Chapter 3. As an open source project, the
Kubernetes API is always evolving, but the core objects have been stable for years and
the Kubernetes community provides a strong deprecation policy that ensures that
developers and operators don’t have to change what they are doing with each revision
of the system. Kubernetes provides an OpenAPI specification for the API, as well as
numerous client libraries in a variety of languages.

Basic Objects: Pods, ReplicaSets, and Services

Although it has a large and growing number of objects in its API, Kubernetes began
with a relatively small number of objects, and these are still the core of what Kuber-
netes does.

Pods

A Pod is the atomic unit of scheduling in a Kubernetes cluster. A Pod is made up of a
collection of one or more running containers. (A Pod is a collection of whales,
derived from Docker’s whale logo.) When we say that a Pod is atomic, what we mean
is that all of the containers in a Pod are guaranteed to land on the same machine in
the cluster. Pods also share many resources between the containers. For example, they
all share the same network namespace, which means that each container in a Pod can

10 | Chapter2: An Overview of Kubernetes


https://github.com/kubernetes-client

see the other containers in the Pod on localhost. Pods also share the process and
interprocess communication namespaces so that different containers can use tools,
like shared memory and signaling, to coordinate between the different processes in
the Pod.

This close grouping means that Pods are ideally suited for symbiotic relationships
between their containers, such as a main serving container and a background data-
loading container. Keeping the container images separate generally makes it more
agile for different teams to own or reuse the container images, but grouping them
together in a Pod at runtime enables them to operate cooperatively.

When people first encounter Pods in Kubernetes, they sometimes spring to the wrong
assumptions. For example, a user may see a Pod and think, “Ah yes, a frontend and a
database server make up a Pod” But this is generally the wrong level of granularity. To
see why, consider that the Pod is also the unit of scaling and replication, which means
that, if you group your frontend and your database in the same container, you will
replicate your database at the same rate that you replicate your frontends. It is
unlikely that you want to do things this way.

Pods also do things to keep your application running. If the process in a container
crashes, Kubernetes automatically restarts it. Pods can also define application-level
health checks that can provide a richer, application-specific way of determining
whether the Pod should be automatically restarted.

ReplicaSets

Of course, if you are deploying a container orchestrator just to run individual con-
tainers, you are probably overcomplicating your life. In general, one of the main rea-
sons for container orchestration is to make it easier to build replicated, reliable
systems. Although individual containers may fail or may be incapable of serving the
load of a system, replicating an application out to a number of different running con-
tainers dramatically reduces the probability that your service will completely fail at a
particular moment in time. Plus, horizontal scaling enables you to grow your applica-
tion in response to load. In the Kubernetes API, this sort of stateless replication is
handled by a ReplicaSet object. A ReplicaSet ensures that, for a given Pod defini-
tion, a number of replicas exists within the system. The actual replication is handled
by the Kubernetes controller manager, which creates Pod objects that are scheduled
by the Kubernetes scheduler. These details of the architecture are described in later
chapters.

The Kubernetes APl | 11



ReplicaSet is a newer object. At its v1 release, Kubernetes had an
API object called a ReplicationController. Due to the depreca-
tion policy, ReplicationControllers continue to exist in the
Kubernetes API, but their usage is strongly discouraged in favor of
ReplicaSets.

Services

After you can replicate your application out using a replica set, the next logical goal is
to create a load balancer to spread traffic to these different replicas. To accomplish
this, Kubernetes has a Service object. A Service represents a TCP or UDP load-
balanced service. Every Service that is created, whether TCP or UDP, gets three
things:

o Its own IP address
o A DNS entry in the Kubernetes cluster DNS
« Load-balancing rules that proxy traffic to the Pods that implement the Service

When a Service is created, it is assigned a fixed IP address. This IP address is virtual
—it does not correspond to any interface present on the network. Instead, it is pro-
grammed into the network fabric as a load-balanced IP address. When packets are
sent to that IP, they are load balanced out to a set of Pods that implements the Ser
vice. The load balancing that is performed can either be round robin or determinis-
tic, based on source and destination IP address tuples.

Given this fixed IP address, a DNS name is programmed into the Kubernetes cluster’s
DNS server. This DNS address provides a semantic name (e.g., “frontend”), which is
the same as the name of the Kubernetes Service object and which enables other con-
tainers in the cluster to discover the IP address of the Service load balancer.

Finally, the Service load balancing is programmed into the network fabric of the
Kubernetes cluster so that any container that tries to talk to the Service IP address is
correctly load balanced to the corresponding Pods. This programming of the network
fabric is dynamic, so as Pods come and go due to failures or scaling of a ReplicaSet,
the load balancer is constantly reprogrammed to match the current state of the clus-
ter. This means that clients can rely on connections to the Service IP address always
resolving to a Pod that implements the Service.

Storage: Persistent Volumes, ConfigMaps, and Secrets

A common question that comes up after an initial exploration of Kubernetes is,
“What about my files?” With all of these containers coming and going within the
cluster and landing on different machines, it’s difficult to understand how you should
manage the files and storage you want to be associated with your containers. Fortu-

12 | Chapter2: An Overview of Kubernetes



nately, Kubernetes provides several different API objects to help you manage your
files.

The first storage concept introduced in Kubernetes was Volume, which is actually a
part of the Pod API. Within a Pod, you can define a set of Volumes. Each Volume can
be one of a large number of different types. At present, there are more than 10 differ-
ent types of Volumes you can create, including NFS, iSCSI, gitRepo, cloud storage—
based Volumes, and more.

Though the Volume interface was initially a point of extensibility
via writing code within Kubernetes, the explosion of different Vol-
ume types eventually showed how unsustainable this model was.
Now, new Volume types are developed outside of the Kubernetes
code and use the Container Storage Interface (CSI), an interface for
storage that is independent of Kubernetes.

When you add a Volume to your Pod, you can choose to mount it to an arbitrary
location in each running container. This enables your running container to have
access to the storage within the Volume. Different containers can mount these Vol-
umes at different locations or can ignore the Volume entirely.

In addition to basic files, there are several types of Kubernetes objects that can them-
selves be mounted into your Pod as a Volume. The first of these is the ConfigMap
object. A ConfigMap represents a collection of configuration files. In Kubernetes, you
want to have different configurations for the same container image. When you add a
ConfigMap-based Volume to your Pod, the files in the ConfigMap show up in the
specified directory in your running container.

Kubernetes uses the Secret configuration type for secure data, such as database pass-
words and certificates. In the context of Volumes, a Secret works identically to a Con
figMap. It can be attached to a Pod via a Volume and mounted into a running
container for use.

Over time, deploying applications with Volumes revealed that the tight binding of
Volumes to Pods was actually problematic. For example, when creating a replicated
container (via a ReplicaSet) the same exact volume must be used by all replicas. In
many situations, this is acceptable, but in some cases, you migth want a different Vol-
ume for each replica. Additionally, specifying a precise volume type (e.g., an Azure
disk-persistent Volume) binds your Pod definition to a specific environment (in this
case, the Microsoft Azure cloud), but it is often desirable to have a Pod definition that
requests a generic type of storage (e.g., 10 gigabytes of network storage) without spec-
ifying a provider. To accomplish this, Kubernetes introduced the notion of Persis
tentVolumes and PersistentVolumeClaims. Instead of binding a Volume directly
into a Pod, a PersistentVolume is created as a separate object. This object is then

The Kubernetes APl | 13



claimed to a specific Pod by a PersistentVolumeClaim and finally mounted into the
Pod via this claim. At first, this seems overly complicated, but the abstraction of Vol-
ume and Pod enables both the portability and automatic volume creation required by
the two previous use cases.

Organizing Your Cluster with Namespaces, Labels, and Annotations

The Kubernetes API makes it quite easy to create a large number of objects in the sys-
tem, but such a collection of objects can easily make administering a cluster a night-
mare. Fortunately, Kubernetes also has many objects that make it easier to manage,
query, and reason about the objects in your cluster.

Namespaces

The first object for organizing your cluster is Namespace. You can think of a Name
space as something like a folder for your Kubernetes API objects. Namespaces pro-
vide directories for containing most of the other objects in the cluster. Namespaces
can also provide a scope for role-based access control (RBAC) rules. Like a folder,
when you delete a Namespace, all of the objects within it are also destroyed, so be
careful! Every Kubernetes cluster has a single built-in Namespace named default, and
most installations of Kubernetes also include a Namespace named kube-systenm,
where cluster administration containers are created.

Kubernetes objects are divided into namespaced and non-
namespaced objects, depending on whether they can be placed in a
Namespace. Most common Kubernetes API objects are namespaced
objects. But some objects that apply to an entire cluster (e.g., Name
space objects themselves, or cluster-level RBAC), are not name-
spaced.

In addition to organizing Kubernetes objects, Namespaces are also placed into the
DNS names created for Services and the DNS search paths that are provided to con-
tainers. The complete DNS name for a Service is something like my-service.svc.my-
namespace.cluster.internal, which means that two different Services in different
Namespaces will end up with different fully qualified domain names (FQDNs). Addi-
tionally, the DNS search paths for each container include the Namespace, thus a DNS
lookup for frontend will be translated to frontend.svc.foo.cluster.internal for a con-
tainer in the foo Namespace and frontend.svc.bar.cluster.internal for a container in the
bar Namespace.

14 | Chapter2: An Overview of Kubernetes



Labels and label queries

Every object in the Kubernetes API can have an arbitrary set of labels associated with
it. Labels are string key-value pairs that help identify the object. For example, a label
might be "role": "frontend", which indicates that the object is a frontend. These
labels can be used to query and filter objects in the API. For example, you can request
that the API server provide you with a list of all Pods where the label role is backend.
These requests are called label queries or label selectors. Many objects within the
Kubernetes API use label selectors as a way to identify sets of objects that they apply
to. For example, a Pod can have a node selector, which identifies the set of nodes on
which the Pod is elegible to run (nodes with GPUs, for example). Likewise, a Service
has a Pod selector, which identifies the set of Pods that the Service should load bal-
ance traffic to. Labels and label selectors are the fundamental manner in which
Kubernetes loosely couples its objects together.

Annotations

Not every metadata value that you want to assign to an API object is identifying
information. Some of the information is simply an annotation about the object itself.
Thus every Kubernetes API object can also have arbitrary annotations. These might
include something like the icon to display next to the object or a modifier that
changes the way that the object is interpreted by the system.

Often, experimental or vendor-specific features in Kubernetes are initially imple-
mented using annotations, since they are not part of the formal API specification. In
these cases, the annotation itself should carry some notion of the stability of the fea-
ture (e.g., beta.kubernetes.io/activate-some-beta-feature).

Advanced Concepts: Deployments, Ingress, and StatefulSets

Of course, simple, replicated, load-balanced Services are not the only style of appli-
cation that you might want to deploy in containers. And, as Kubernetes has evolved,
it has added new API objects to better suit more specialized use cases, including
improved rollouts, HTTP-based load balancing and routing, and stateful workloads.

Deployments

Although ReplicaSets are the primitive for running many different copies of the
same container image, applications are not static entities. They evolve as developers
add new features and fix bugs. This means that the act of rolling out new code to a
Service is as important a feature as replicating it to reliably handle load.

The Deployment object was added to the Kubernetes API to represent this sort of safe
rollout from one version to another. A Deployment can hold pointers to multiple Rep

The Kubernetes APl | 15



licaSets, (e.g., vl and v2), and it can control the slow and safe migration from one
ReplicaSet to another.

To understand how a Deployment works, imagine that you have an application that is
deployed to three replicas in a ReplicaSet named rs-vi. When you ask a Deploy
ment to roll out a new image (v2), the Deployment creates a new ReplicaSet (rs-v2)
with a single replica. The Deployment waits for this replica to becomes healthy, and
when it is, the Deployment reduces the number of replicas in rs-v1 to two. It then
increases the number of replicas in rs-v2 to two also, and waits for the second replica
of v2 to become healthy. This process continues until there are no more replicas of v1
and there are three healthy replicas of v2.

Deployments feature a large number of different knobs that can be
tuned to provide a safe rollout for the specific details of an applica-
tion. Indeed, in most modern clusters, users exclusively use Deploy
ment objects and don’t manage ReplicaSets directly.

HTTP load balancing with Ingress

Although Service objects provide a great way to do simple TCP-level load balancing,
they don't provide an application-level way to do load balancing and routing. The
truth is that most of the applications that users deploy using containers and Kuber-
netes are HTTP web-based applications. These are better served by a load balancer
that understands HTTP. To address these needs, the Ingress API was added to
Kubernetes. Ingress represents a path and host-based HTTP load balancer and
router. When you create an Ingress object, it receives a virtual IP address just like a
Service, but instead of the one-to-one relationship between a Service IP address
and a set of Pods, an Ingress can use the content of an HTTP request to route
requests to different Services.

To get a clearer understanding of how Ingress works, imagine that we have two
Kubernetes Services named “foo” and “bar” Each has its own IP address, but we
really want to expose them to the internet as part of the same host. For example,
foo.company.com and bar.company.com. We can do this by creating an Ingress object
and associating its IP address with both the foo.company.com and bar.company.com
DNS names. In the Ingress object, we also map the two different hostnames to the
two different Kubernetes Services. That way, when a request for https:/ /
foo.company.com is received, it is routed to the “foo” Service in the cluster, and simi-
larly for https://bar.company.com. With Ingress, the routing can be based on either
host or path or both, so https://company.com/bar can also be routed to the “bar” Ser
vice.

16 | Chapter2: An Overview of Kubernetes



The Ingress API is one of the most decoupled and flexible APIs in
Kubernetes. By default, although Kubernetes will store Ingress
objects, nothing happens when they are created. Instead, you need
to also run an Ingress Controller in the cluster to take appropriate

action when the Ingress object is created. One of the most popular
Ingress Controllers is nginx, but there are numerous implementa-
tions that use other HT'TP load balancers or that use cloud or phys-
ical load-balancer APIs.

StatefulSets

Most applications operate correctly when replicated horizontally and treated as iden-
tical clones. Each replica has no unique identity independent of any other. For repre-
senting such applications, a Kubernetes ReplicaSet is the perfect object. However,
some applications, especially stateful storage workloads or sharded applications,
require more differentiation between the replicas in the application. Although it is
possible to add this differentiation at the application level on top of a ReplicaSet,
doing so is complicated, error prone, and repetitive for end users.

To resolve this, Kubernetes has recently introduced StatefulSets as a complement
to ReplicaSets, but for more stateful workloads. Like ReplicaSets, StatefulSets
create multiple instances of the same container image running in a Kubernetes clus-
ter, but the manner in which containers are created and destroyed is more determin-
istic, as are the names of each container.

In a ReplicaSet, each replicated Pod receives a name that involves a random hash
(e.g., frontend-14a2), and there is no notion of ordering in a ReplicaSet. In contrast,

with StatefulSets, each replica receives a monotonically increasing index (e.g.,
backed-0, backend-1, and so on).

Further, StatefulSets guarantee that replica zero will be created and become healthy
before replica one is created and so forth. When combined, this means that applica-
tions can easily bootstrap themselves using the initial replica (e.g., backend-0) as a
bootstrap master. All subsequent replicas can rely on the fact that backend-0 has to
exist. Likewise, when replicas are removed from a StatefulSet, they are removed at
the highest index. If a StatefulSet is scaled down from five to four replicas, it is
guaranteed that the fifth replica is the one that will be removed.

Additionally, StatefulSets receive DNS names so that each replica can be accessed
directly, in addition to the complete StatefulSet. This allows clients to easily target
specific shards in a sharded service.

The Kubernetes APl | 17



Batch Workloads: Job and ScheduledJob

In addition to stateful workloads, another specialized class of workloads are batch or
one-time workloads. In contrast to the previously discussed workloads, these are not
constantly serving traffic. Instead, they perform some computation and are then
destroyed when the computation is complete.

In Kubernetes, a Job represents a set of tasks that needs to be run. Like ReplicaSets
and StatefulSets, Jobs operate by creating Pods to execute work by running con-
tainer images. However, unlike ReplicaSets and StatefulSets, the Pods created by
a Job only run until they complete and exit. A Job contains the definition of the Pods
it creates, the number of times the Job should be run, and the maximum number of
Pods to create in parallel. For example, a Job with 100 repetitions and a maximum
parallelism of 10 will run 10 Pods simultaneously, creating new Pods as old ones com-
plete, until there have been 100 successful executions of the container image.

ScheduledJobs build on top of the Job object by adding a schedule to a Job. A Sched
uledJob contains the definition of the Job object that you want to create, as well as
the schedule on which that Job should be created.

Cluster Agents and Utilities: DaemonSets

One of the most common questions that comes up when people are moving to
Kubernetes is, “How do I run my machine agents?” Examples of agents’ tasks include
intrusion detection, logging and monitoring, and others. Many people attempt non-
Kubernetes approaches to enable these agents, such as adding new systemd unit files
or initialization scripts. Although these approaches can work, they have several
downsides. The first is that Kubernetes does not include agents’ activity in its
accounting of resources in use on the cluster. The second is that container images and
Kubernetes APIs for health checking, monitoring, and more cannot be applied to
these agents. Fortunately, Kubernetes makes the DaemonSet API available to users to
install such agents on their clusters. A DaemonSet provides a template for a Pod that
should be run on every machine. When a DaemonSet is created, Kubernetes ensures
that this Pod is running on each node in the cluster. If, at some later point, a new
node is added, Kubernetes creates a Pod on that node, as well. Although by default
Kubernetes places a Pod on every node in the cluster, a DaemonSet can also provide a
node selector label query, and Kubernetes will only place that DaemonSet’s Pods onto
nodes that match that label query.

Summary

The goal of this book is to teach you how to successfully manage a Kubernetes cluster.
But to successfully manage any service, you need to understand what that service

18 | Chapter2: An Overview of Kubernetes



makes available to the end user, as well as how the user uses the service. In this case,
we are delivering a reliable Kubernetes API to developers. Developers, in turn, are
using this API to successfully build and deploy their applications. Understanding the
various parts of the Kubernetes API will enable you to understand your end users and
to do a better job of managing the system that they rely on for their daily activities.
This chapter is really an abbreviated summary of topics that are covered in much
longer books, like Kubernetes: Up and Running (O'Reilly), as well as on the core
Kubernetes website. Readers who are interested in going more deeply into the Kuber-
netes API are strongly encouraged to learn more from these resources.

Summary | 19


http://http://bit.ly/kubernetes-up-and-running
https://kubernetes.io




CHAPTER 3
Kubernetes Architecture

Although Kubernetes is intended to make it easier to deploy and manage distributed
systems, Kubernetes itself is a distributed system that needs to be managed. To be able
to do that, a developer needs to have a strong understanding of the system architec-
ture, the role of each piece in the system, and how they all fit together.

Concepts

To understand the architecture of Kubernetes, it is helpful, at first, to have a good
grasp of the concepts and design principals that govern its development. Although
the system can seem quite complex, it is actually based on a relatively small number
of concepts that are repeated throughout. This allows Kubernetes to grow, while still
remaining approachable to developers. Knowledge about one component in the sys-
tem often can be directly applied to others.

Declarative Configuration

The notion of declarative configuration—when a user declares a desired state of the
world to produce a result—is one of the primary drivers behind the development of
Kubernetes. For example, a user might say to Kubernetes, “I want there to be five rep-
licas of my web server running at all times” Kubernetes, in turn, takes that declarative
statement and takes responsibility for ensuring that it is true. Unfortunately, Kuber-
netes is unable to understand natural language instructions and so that declaration is
actually in the form of a structured YAML or JSON document.

Declarative configuration differs from imperative configuration in which users take a
series of direct actions (e.g., creating each of the five replicas that they want to have
up and running). Imperative actions are often simpler to understand—one can sim-
ply say, “run this,” instead of using a more complex declarative syntax. However, the

21



power of the declarative approach is that you are giving the system more than a
sequence of instructions—you are giving it a declaration of your desired state.
Because Kubernetes understands your desired state, it can take autonomous action,
independent of user interaction. This means that it can implement automatic self-
correcting and self-healing behaviors. For a developer, this is critical, since it means
that the system can fix itself without waking you up in the middle of the night.

Reconciliation or Controllers

To achieve these self-healing or self-correcting behaviors, Kubernetes is structured
based on a large number of independent reconciliation or control loops. When design-
ing a system like Kubernetes, there are generally two different approaches that you
can take—a monolithic state-based approach or a decentralized controller-based
approach.

In monolithic system design, the system is aware of the entire state of the world and
uses this complete view to move everything forward in a coordinated fashion. This
can be very attractive, since the operation of the system is centralized and thus easier
to understand. The problem with the monolithic approach is that it is not particularly
stable. If anything unexpected happens, the entire system can come crashing down.

Kubernetes takes an alternative decentralized approach in its design. Instead of a sin-
gle monolithic controller, Kubernetes is composed of a large number of controllers,
each performing its own independent reconciliation loop. Each individual loop is
only responsible for a small piece of the system (e.g., updating the list of endpoints
for a particular load balancer), and each small controller is wholly unaware of the rest
of the world. This focus on a small problem and the corresponding ignorance of the
broader state of the world makes the entire system significantly more stable. Each
controller is largely independent of all others and thus unaffected by problems or
changes unrelated to itself. The downside, though, of this distributed approach is that
the overall behavior of the system can be harder to understand, since there is no sin-
gle location to look for an explanation of why the system is behaving the way that it is.
Instead, it is necessary to look at the interoperation of a large number of independent
processes.

The control loop design pattern makes Kubernetes more flexible and stable and is
repeated throughout Kubernetes’ system components. The basic idea behind a con-
trol loop is that it is continually repeating the following steps, as shown in Figure 3-1:

1. Obtain the desired state of the world.

2. Observe the world.

3. Find differences between the observation of the world and the desired state of the
world.

22 | Chapter3: Kubernetes Architecture



4. Take actions to make the observation of the world match the desired state.

Observe the world
User-declared Reconciliation Observed
desired state loop current state
Take actions

Figure 3-1. An illustration of a generic reconciliation loop

The easiest example to help you understand the operation of a reconciliation control
loop is the thermostat in your home. It has a desired state (the temperature that you
entered on the thermostat), it makes observations of the world (the current tempera-
ture of your house), it finds the difference between these values, and it then takes
actions (either heating or cooling) to make the real world match the desired state of
the world.

The controllers in Kubernetes do the same thing. They observe the desired state of
the world via the declarative statements that are made to the Kubernetes API server.
For example, a user might declare, “I want four replicas of that web server” The
Kubernetes replication controller takes this desired state and then observes the world.
It might see that there are currently three replicas of the web-serving container. The
controller finds the difference between the current and desired state (one missing web
server) and then takes action to make the current state match the desired state by cre-
ating a fourth web-serving container.

Of course, one of the challenges of managing this declarative state is determining the
set of web servers that the reconciliation control loop should be paying attention to.
This is where labels and label queries enter the Kubernetes design.

Implicit or Dynamic Grouping

Whether it is grouping together a set of replicas or identifying the backends for a load
balancer, there are numerous times in the implementation of Kubernetes when it is
necessary to identify a set of things. When grouping things together into a set, there
are two possible approaches—explicit/static or implicit/dynamic grouping. With static
grouping, every group is defined by a concrete list (e.g., “The members of my team
are Alice, Bob, and Carol”). The list explicitly calls out the name of each member of
the group, and the list is static—that is, the membership doesn’t change unless the list
itself changes. Much like a monolithic approach to design, this static grouping is
easily understandable. To know who is in a group, one simply has to read the list. The
challenge with static grouping is that it is inflexible—it cannot respond to a dynami-

Concepts | 23



cally changing world. Hopefully, at this point, you know that Kubernetes uses a more
dynamic approach to grouping. In Kubernetes, groups are implicitly defined.

The alternative to explicit, static groups is implicit, dynamic groups. With implicit
groups, instead of the list of members, the group is defined by a statement like, “The
members of my team are the people wearing orange.” This group is implicitly defined.
Nowhere in the definition of the group are the members defined; instead, they are
implied by evaluating the group definition against a set of people who are present.
Because the set of people who are present can always change, the membership of the
group is likewise dynamic and changing. Although this can introduce complexity,
because of the second step (in the example case, looking for people wearing orange),
it is also significantly more flexible and stable, and it can handle a changing environ-
ment without requiring constant adjustments to static lists.

In Kubernetes, this implicit grouping is achieved via labels and label queries or label
selectors. Every API object in Kubernetes can have an arbitrary number of key/value
pairs called “labels” that are associated with the object. You can then use a label query
or label selector to identify a set of objects that matches that query. A concrete exam-
ple of this is shown in Figure 3-2.

Every Kubernetes object has both labels and annotations. Initially
they might seem redundant, but their uses are different. Labels can
be queried and should provide information that serves to identify
the object in some way. Annotations cannot be queried and should
be used for general metadata about the object—metadata that
doesn't represent its identity (e.g., the icon to display next to the
object when it is rendered graphically).

| Stage = Production | 1 App = Frontend, Stage = Canary,

i App = Frontend | : App = Frontend :

| | Stage =Production | | | | Stage = (anary !

i T —— 4
O O -
: ! App =Backend ! :
Lo App =Backend [ | | App = Backend |
: ! Stage = Production : Stage = (anary !
[ [} [}
] b o o - - ————— 4 ]
(|

Figure 3-2. Examples of labels and label selection

24 | Chapter3: Kubernetes Architecture



Structure

Now that you have some sense of the design concepts that are implemented in the
Kubernetes system, let’s consider the design principles used to build Kubernetes. The
following fundamental design tenets are critical in Kubernetes development.

Unix Philosophy of Many Components

Kubernetes ascribes to the general Unix philosophy of modularity and of small pieces
that do their jobs well. Kubernetes is not a single monolithic application that imple-
ments all of the various functionality in a single binary. Instead, it is a collection of
different applications that all work together, largely ignorant of each other, to imple-
ment the overall system known as Kubernetes. Even when there is a binary (e.g., the
controller manager) that groups together a large number of different functions, those
functions are held almost entirely independently from each other in that binary. They
are compiled together largely to make the task of deploying and managing Kuber-
netes easier, not because of any tight binding between the components.

Again, the advantage of this modular approach is that Kubernetes is flexible. Large
pieces of functionality can be ripped out and replaced without the rest of the system
noticing or caring. The downside, of course, is the complexity, since deploying, moni-
toring, and understanding the system requires integrating information and configu-
ration across a number of different tools. Sometimes these pieces are compiled into a
single binary executable, but even when this occurs, they still communicate through
the API server rather than directly within the running process.

API-Driven Interactions

The second structural design within Kubernetes is that all interaction between com-
ponents is driven through a centralized API surface area. An important corollary of
this design is that the API that the components use is the exact same API used by
every other cluster user. This has two important consequences for Kubernetes. The
first is that no part of the system is more privileged or has more direct access to inter-
nals than any other. Indeed, with the exception of the API server that implements the
API, no one has access to the internals at all. Thus, every component can be swapped
for an alternative implementation, and new functionality can be added without rear-
chitecting the core components. As we will see in later chapters, even core compo-
nents like the scheduler can be swapped out and replaced (or merely augmented)
with alternative implementations.

The API-driven interactions incentivize a system to be stably designed in the pres-
ence of version skew. When you roll out a distributed system to a grouping of
machines, for a period of time, you will have both the older version and the new ver-
sion of the software running simultaneously. If you haven’t planned directly for this

Structure | 25



version skew, the unplanned (and often untested) interactions between old and new
versions can cause instability and outages. Because in Kubernetes everything is medi-
ated through the API and the API provides strongly defined API versions and con-
version between different version numbers, the problems of version skew can largely
be avoided. In reality, though, occasional problems can still crop up, and version skew
and upgrade testing is an important part of Kubernetes release qualification.

Components

With knowledge of both the concepts and structures in the Kubernetes architecture,
we can now discuss the individual components that make up Kubernetes. This is a
glossary of sorts—a world map that you can refer to when you need an overview of
how the various pieces of the Kubernetes system fit together. Some of the components
are more important than others, and thus are covered in much more detail in later
chapters, but this reference guide will help ground and contextualize those later
explorations.

Kubernetes is a system that groups together a large fleet of machines into a single unit
that can be consumed via an API, but the implementation of Kubernetes actually sub-
divides the set of machines into two groups: worker nodes and head nodes. Most of
the components that make up the Kubernetes infrastructure run on head or control
plane nodes. There are a limited number of such nodes in a cluster, generally one,
three, or five. These nodes run the components that implement Kubernetes, like etcd
and the API server. There is an odd number of these nodes, since they need to keep
quorum in a shared state using a Raft/Paxos algorithm for quorum. The cluster’s
actual work is done on the worker nodes. These nodes also run a more limited selec-
tion of Kubernetes components. Finally, there are Kubernetes components that are
scheduled to the Kubernetes cluster after it is created. From a Kubernetes perspective,
these components are indistinguishable from other workloads, but they do imple-
ment part of the overall Kubernetes API.

The following discussion of the Kubernetes components breaks them into three
groupings: the components that run on head nodes, the components that run on all
nodes, and the components that run scheduled onto the cluster.

Head Node Components

A head node is the brain of the Kubernetes cluster. It contains a collection of core
components that implement the Kubernetes API functionality. Typically, only these
components run on head nodes; there are no user containers that share these nodes.

26 | Chapter3:Kubernetes Architecture



etcd

The etcd system is at the heart of any Kubernetes cluster. It implements the key-value
stores where all of the objects in a Kubernetes cluster are persisted. The etcd servers
implement a distributed consensus algorithm, namely Raft, which ensures that even if
one of the storage servers fails, there is sufficient replication to maintain the data
stored in etcd and to recover data when an etcd server becomes healthy again and re-
adds itself to the cluster. The etcd servers also provide two other important pieces of
functionality that Kubernetes makes heavy use of. The first is optimistic concurrency.
Every value stored in etcd has a corresponding resource version. When a key-value
pair is written to an etcd server, it can be conditionalized on a particular resource ver-
sion. This means that, using etcd, you can implement compare and swap, which is at
the core of any concurrency system. Compare and swap enables a user to read a value
and update it knowing that no other component in the system has also updated the
value. These assurances enable the system to safely have multiple threads manipulat-
ing data in etcd without the need for pessimistic locks, which can significantly reduce
throughput to the server.

In addition to implementing compare and swap, the etcd servers also implement a
watch protocol. The value of watch is that it enables clients to efficiently watch for
changes in the key-value stores for an entire directory of values. As an example, all
objects in a Namespace are stored within a directory in etcd. The use of a watch ena-
bles a client to efficiently wait for and react to changes without continuous polling of
the etcd server.

APl server

Although etcd is at the core of a Kubernetes cluster, there is actually only a single
server that is allowed to have direct access to the Kubernetes cluster, and that is the
API server. The API server is the hub of the Kubernetes cluster; it mediates all inter-
actions between clients and the API objects stored in etcd. Consequently, it is the cen-
tral meeting point for all of the various components. Because of its importance, the
API server deserves deeper introspection and is covered in Chapter 4.

Scheduler

With etcd and the API server operating correctly, a Kubernetes cluster is, in some
ways, functionally complete. You can create all of the different API objects, like
Deployments and Pods. However, you will find that it never begins to run. Finding a
location for a Pod to run is the job of the Kubernetes scheduler. The scheduler scans
the API server for unscheduled Pods and then determines the best nodes on which to
run them. Like the API server, the scheduler is a complex and rich topic that is cov-
ered more deeply in Chapter 5.

Components | 27



Controller manager

After etcd, the API server, and the scheduler are operational, you can successfully cre-
ate Pods and see them scheduled out onto nodes, but you will find that ReplicaSets,
Deployments, and Services don’t work as you expect them to. This is because all of
the reconciliation control loops needed to implement this functionality are not cur-
rently running. Executing these loops is the job of the controller manager. The con-
troller manager is the most varied of all of the Kubernetes components, since it has
within it numerous different reconciliation control loops to implement many parts of
the overall Kubernetes system.

Components On All Nodes

In addition to the components that run exclusively on the head nodes, there are a few
components that are present on all nodes in the Kubernetes cluster. These pieces
implement essential functionality that is required on all nodes.

Kubelet

The kubelet is the node daemon for all machines that are part of a Kubernetes cluster.
The kubelet is the bridge that joins the available CPU, disk, and memory for a node
into the large Kubernetes cluster. The kubelet communicates with the API server to
find containers that should be running on its node. Likewise, the kubelet communi-
cates the state of these containers back up to the API server so that other reconcilia-
tion control loops can observe the current state of these containers.

In addition to scheduling and reporting the state of containers running in Pods on
their machines, kubelets are also responsible for health checking and restarting the
containers that are supposed to be executing on their machines. It would be quite
inefficient to push all of the health-state information back up to the API server so that
reconciliation loops can take action to fix the health of a container on a particular
machine. Instead, the kubelet shortcircuits this interaction and runs the reconcilia-
tion loop itself. Thus, if a container being run by the kubelet dies or fails its health
check, the kubelet restarts it, while also communicating this health state (and the
restart) back up to the API server.

kube-proxy

The other component that runs on all machines is the kube-proxy. The kube-proxy
is responsible for implementing the Kubernetes Service load-balancer networking
model. The kube-proxy is always watching the endpoint objects for all Services in the
Kubernetes cluster. The kube-proxy then programs the network on its node so that
network requests to the virtual IP address of a Service are, in fact, routed to the end-
points that implement this Service. Every Service in Kubernetes gets a virtual IP
address, and the kube-proxy is the daemon responsible for defining and implement-

28 | Chapter3: Kubernetes Architecture



ing the local load balancer that routes traffic from Pods on the machine to Pods, any-
where in the cluster, that implement the Service.

Scheduled Components

When all of the components just described are successfully operating, they provide a
minimally viable Kubernetes cluster. But there are several additional scheduled com-
ponents that are essential to the Kubernetes cluster that actually rely on the cluster
itself for their implementation. This means that, although they are essential to cluster
function, they also are scheduled, health checked, operated, and updated using calls
to the Kubernetes API server itself.

KubeDNS

The first of these scheduled components is the KubeDNS server. When a Kubernetes
Service is created, it gets a virtual IP address, but that IP address is also programmed
into a DNS server for easy service discovery. The KubeDNS containers implement
this name-service for Kubernetes Service objects. The KubeDNS Service is itself
expressed as a Kubernetes Service, so the same routing provided by the kube-proxy
routes DNS traffic to the KubeDNS containers. The one important difference is that
the KubeDNS service is given a static virtual IP address. This means that the API
server can program the DNS server into all of the containers that it creates, imple-
menting the naming and service discovery for Kubernetes services.

In addition to the KubeDNS service that has been present in Kubernetes since the
first versions, there is also a newer alternative CoreDNS implementation that reached
general availability (GA) in the 1.11 release of Kubernetes.

The ability for the DNS service to be swapped out shows both the modularity and the
value of using Kubernetes to run components like the DNS server. Replacing
KubeDNS with CoreDNS is as easy as stopping one Pod and starting another.

Heapster

The other scheduled component is a binary called Heapster, which is responsible for
collecting metrics like CPU, network, and disk usage from all containers running
inside the Kubernetes cluster. These metrics can be pushed to a monitoring system,
like InfluxDB, for alerting and general monitoring of application health in the cluster.
Also, importantly, these metrics are used to implement autoscaling of Pods within the
Kubernetes cluster. Kubernetes has an autoscaler implementation, that, for example,
can automatically scale the size of a Deployment whenever the CPU usage of the con-
tainers in the Deployment goes above 80%. Heapster is the component that collects
and aggregates these metrics to power the reconciliation loop implemented by the
autoscaler. The autoscaler observes the current state of the world through API calls to
Heapster.

Components | 29


https://coredns.io

As of this writing, Heapster is still the source of metrics for
autoscaling in many Kubernetes clusters. However, as of the 1.11
release, it has been deprecated in favor of the new metrics-server
and Metrics API. Heapster will be removed from Kubernetes in
release 1.13.

Add-ons

In addition to these core components, there are numerous systems that you can find
on most installations of Kubernetes. These include the Kubernetes dashboard, as well
as community add-ons, like functions as a service (Faa$S), automatic certificate agents,
and many more. There are too many Kubernetes add-ons to describe in a few para-
graphs, so extending your Kubernetes cluster is covered in Chapter 13.

Summary

Kubernetes is a somewhat complicated distributed system with a number of different
components that implement the complete Kubernetes API, including the control
plane nodes, which run the API server, and the etcd cluster, which forms the backing
store for the API. Additionally, the scheduler interacts with the API server to sched-
ule containers onto specific worker nodes, and the controller manager operates most
of the control loops that keep the cluster functioning correctly. After the cluster is
functioning correctly, there are numerous components that run on top of the cluster
itself, including the cluster DNS services, the Kubernetes Service load-balancer infra-
structure, container monitoring, and more. We explore even more components you
can run on your cluster in Chapters 12 and 13.

30 | Chapter3: Kubernetes Architecture



CHAPTER 4
The Kubernetes API Server

As mentioned in the overview of the Kubernetes components, the API server is the
gateway to the Kubernetes cluster. It is the central touch point that is accessed by all
users, automation, and components in the Kubernetes cluster. The API server imple-
ments a RESTful API over HTTP, performs all API operations, and is responsible for
storing API objects into a persistent storage backend. This chapter covers the details
of this operation.

Basic Characteristics for Manageability

For all of its complexity, from the standpoint of management, the Kubernetes API
server is actually relatively simple to manage. Because all of the API server’s persistent
state is stored in a database that is external to the API server, the server itself is state-
less and can be replicated to handle request load and for fault tolerance. Typically, in a
highly available cluster, the API server is replicated three times.

The API server can be quite chatty in terms of the logs that it outputs. It outputs at
least a single line for every request that it receives. Because of this, it is critical that
some form of log rolling be added to the API server so that it doesn’t consume all
available disk space. However, because the API server logs are essential to under-
standing the operation of the API server, we highly recommend that logs be shipped
from the API server to a log aggregation service for subsequent introspection and
querying to debug user or component requests to the API.

Pieces of the API Server

Operating the Kubernetes API server involves three core funtions:

31



API management
The process by which APIs are exposed and managed by the server

Request processing
The largest set of functionality that processes individual API requests from a cli-
ent

Internal control loops
Internals responsible for background operations necessary to the successful oper-
ation of the API server

The following sections cover each of these broad categories.

APl Management

Although the primary use for the API is servicing individual client requests, before
API requests can be processed, the client must know how to make an API request.
Ultimately, the API server is an HTTP server—thus, every API request is an HTTP
request. But the characteristics of those HTTP requests must be described so that the
client and server know how to communicate. For the purposes of exploration, its
great to have an API server actually up and running so that you can poke at it. You
can either use an existing Kubernetes cluster that you have access to, or you can use
the minikube tool for a local Kubernetes cluster. To make it easy to use the curl tool
to explore the API server, run the kubectl tool in proxy mode to expose an unau-
thenticated API server on localhost:8001 using the following command:

kubectl proxy

API Paths

Every request to the API server follows a RESTful API pattern where the request is
defined by the HT'TP path of the request. All Kubernetes requests begin with the pre-
fix /api/ (the core APIs) or /apis/ (APIs grouped by API group). The two different
sets of paths are primarily historical. API groups did not originally exist in the Kuber-
netes API, so the original or “core” objects, like Pods and Services, are maintained
under the 7api/’ prefix without an API group. Subsequent APIs have generally been
added under API groups, so they follow the apis/<api-group>/" path. For example,
the Job object is part of the batch API group and is thus found under /apis/
batch/v1/....

One additional wrinkle for resource paths is whether the resource is namespaced.
Namespaces in Kubernetes add a layer of grouping to objects, namespaced resources
can only be created within a namespace, and the name of that namespace is included
in the HTTP path for the namespaced resource. Of course, there are resources that do

32 | Chapter4: The Kubernetes API Server


https://github.com/minikube/minikube

not live in a namespace (the most obvious example is the Namespace API object itself)
and, in this case, they do not have a namespaces component in their HTTP path.

Here are the components of the two different paths for namespaced resource types:

o /api/vl/namespaces/<namespace-name>/<resource-type-name>/<resource-name>

o /apis/<api-group>/<api-version>/namespaces/<namespace-name>/<resource-
type-name>/<resource-name>

Here are the components of the two different paths for non-namespaced resource

types:

o /api/vl/<resource-type-name>/<resource-namme>

« /apis/<api-group>/<api-version>/<resource-type-name>/<resource-name>

API Discovery

Of course, to be able to make requests to the API, it is necessary to understand which
API objects are available to the client. This process occurs through API discovery on
the part of the client. To see this process in action and to explore the API server in a
more hands-on manner, we can perform this API discovery ourselves.

First off, to simplify things, we use the kubectl command-line tool’s built-in proxy to
provide authentication to our cluster. Run:

kubectl proxy

This creates a simple server running on port 8001 on your local machine.

We can use this server to start the process of API discovery. We begin by examining
the /api prefix:

$ curl localhost:8001/api
{
"kind": "APIVersions",
"versions": [
1
]J
"serverAddressByClientCIDRs": [
{
"clientCIDR": "0.0.0.0/0",
"serverAddress": "10.0.0.1:6443"
}
]
}

You can see that the server returned an API object of type APIVersions. This object
provides us with a versions field, which lists the available versions.

Pieces of the AP| Server | 33



In this case, there is just a single one, but for the /apis prefix, there are many. We can
use this version to continue our investigation:

$ curl localhost:8001/api/vi
{

"kind": "APIResourcelList",
"groupVersion": "v1",
"resources": [

{
{

"name": "namespaces",
"singularName": "",
"namespaced": false,
"kind": "Namespace",
"verbs": [
"create",
"delete",
"get",
"list",
"patch",
"update",
"watch"
1,
"shortNames": [

ns
1

"name": "pods",
"singularName": "",
"namespaced": true,
"kind": "Pod",
"verbs": [
"create",
"delete",
"deletecollection",
"get",
"list",
"patch",
"proxy",
"update",
"watch"
1,
"shortNames": [
"po"
1,
"categories": [
"all”
1
1,

34 | Chapter4: The Kubernetes API Server




"name": "pods/attach",
"singularName": ""
"namespaced": true,
"kind": "Pod",
"verbs": []

"name": "pods/binding",
"singularName": ""
"namespaced": true,
"kind": "Binding",
"verbs": [
"create"

1

1,

-
}

(This output is heavily edited for brevity.)

Now we are getting somewhere. We can see that the specific resources available on a
certain path are printed out by the API server. In this case, the returned object con-
tains the list of resources exposed under the /api/v1/ path.

The OpenAPI/Swagger JSON specification that describes the API (the meta-API
object) contains a variety of interesting information in addition to the resource types.
Consider the OpenAPI specification for the Pod object:

{
"name": "pods",
"singularName":
"namespaced": true,
"kind": "Pod",
"verbs": [
"create",
"delete",
"deletecollection",
"get",
"list",
"patch",
"proxy",
"update",
"watch"
1,
"shortNames": [
"o
1,
"categories": [
"all”
1

Pieces of the AP| Server | 35



"name": "pods/attach",
"singularName": ""
"namespaced": true,
"kind": "Pod",
"verbs": []

}

Looking at this object, the name field provides the name of this resource. It also indi-
cates the subpath for these resources. Because inferring the pluralization of an
English word is challenging, the API resource also contains a singularName field,
which indicates the name that should be used for a singular instance of this resource.
We previously discussed namespaces. The namespaced field in the object description
indicates whether the object is namespaced. The kind field provides the string that is
present in the API object’s JSON representation to indicate what kind of object it is.
The verbs field is one of the most important in the API object, because it indicates
what kinds of actions can be taken on that object. The pods object contains all of the
possible verbs. Most of the effects of the verbs are obvious from their names. The two
that require a little more explanation are watch and proxy. watch indicates that you
can establish a watch for the resource. A watch is a long-running operation that pro-
vides notifications about changes to the object. The watch is covered in detail in later
sections. proxy is a specialized action that establishes a proxy network connection
through the API server to network ports. There are only two resources (Pods and
Services) that currently support proxy.

In addition to the actions (described as verbs) that you can take on an object, there
are other actions that are modeled as subresources on a resource type. For example,
the attach command is modeled as a subresource:

{
"name": "pods/attach",
"singularName": "",
"namespaced": true,
"kind": "Pod",
"verbs": []

}

attach provides you with the ability to attach a terminal to a running container
within a Pod. The exec functionality that allows you to execute a command within a
Pod is modeled similarly.

OpenAPI Spec Serving

Of course, knowing the resources and paths you can use to access the API server is
only part of the information that you need in order to access the Kubernetes API. In
addition to the HTTP path, you need to know the JSON payload to send and receive.

36 | Chapter4: The Kubernetes API Server



The API server also provides paths to supply you with information about the sche-
mas for Kubernetes resources. These schemas are represented using the OpenAPI
(formerly Swagger) syntax. You can pull down the OpenAPI specification at the fol-
lowing path:

/swaggerapi
Before Kubernetes 1.10, serves Swagger 1.2

/openapi/v2
Kubernetes 1.10 and beyond, serves OpenAPI (Swagger 2.0)

The OpenAPI specification is a complete subject unto itself and is beyond the scope
of this book. In any event, it is unlikely that you will need to access it in your day-to-
day operations of Kubernetes. However, the various client programming language
libraries are generated using these OpenAPI specifications (the notable exception to
this is the Go client library, which is currently hand-coded). Thus, if you or a user are
having trouble accessing parts of the Kubernetes API via a client library, the first stop
should be the OpenAPI specification to understand how the API objects are modeled.

API Translation

In Kubernetes, an API starts out as an alpha API (e.g., vialphal). The alpha designa-
tion indicates that the API is unstable and unsuitable for production use cases. Users
who adopt alpha APIs should expect both that the API surface area may change
between Kubernetes releases and that the implementation of the API itself may be
unstable and may even destabilize the entire Kubernetes cluster. Alpha APIs are
therefore disabled in production Kubernetes clusters.

Once an API has matured, it becomes a beta API (e.g., vibetal). The beta designa-
tion indicates that the API is generally stable but may have bugs or final API surface
refinements. In general, beta APIs are assumed to be stable between Kubernetes relea-
ses, and backward compatability is a goal. However, in special cases, beta APIs may
still be incompatible between Kubernetes releases. Likewise, beta APIs are intended to
be stable, but bugs may still exist. Beta APIs are generally enabled in production
Kubernetes clusters but should be used carefully.

Finally an API becomes generally available (e.g., v1). General availability (GA) indi-
cates that the AP is stable. These APIs come with both a guarantee of backward com-
patability and a deprecation guarantee. After an API is marked as scheduled for
removal, Kubernetes retains the API for at least three releases or one year, whichever
comes first. Deprecation is also fairly unlikely. APIs are deprecated only after a supe-
rior alternative has been developed. Likewise, GA APIs are stable and suitable for all
production usage.

A particular release of Kubernetes can support multiple versions (alpha, beta, and
GA). In order to accomplish this, the API server has three different representations of

Pieces of the APl Server | 37



the API at all times: the external representation, which is the representation that
comes in via an API request; the internal representation, which is the in-memory rep-
resentation of the object used within the API server for processing; and the storage
representation, which is recorded into the storage layer to persist the API objects. The
API server has code within it that knows how to perform the various translations
between all of these representations. An API object may be submitted as a vialphal
version, stored as a v1 object, and subsequently retrieved as a vibetal object or any
other arbitrary supported version. These transformations are achieved with reason-
able performance using machine-generated deep-copy libraries, which perform the
appropriate translations.

Request Management

The main purpose of the API server in Kubernetes is to receive and process API calls
in the form of HTTP requests. These requests are either from other components in
the Kubernetes system or they are end-user requests. In either event, they are all pro-
cessed by the Kubernetes API server in the same manner.

Types of Requests

There are several broad categories of requests performed by the Kubernetes API
server.

GET
The simplest requests are GET requests for specific resources. These requests
retrieve the data associated with a particular resource. For example, an HTTP GET
request to the path /api/vl/namespaces/default/pods/foo retrieves the data for a
Pod named foo.

LIST
A slightly more complicated but still fairly straightforward request is a collec
tion GET, or LIST. These are requests to list a number of different requests. For
example, an HTTP GET request to the path /api/vi/namespaces/default/pods
retrieves a collection of all Pods in the default namespace. LIST requests can
also optionally specify a label query, in which case, only resources matching that
label query are returned.

POST
To create a resource, a POST request is used. The body of the request is the new
resource that should be created. In the case of a POST request, the path is the
resource type (e.g., /api/vl/namespaces/default/pods). To update an existing
resource, a PUT request is made to the specific resource path (e.g., /api/v1l/name-

spaces/default/pods/foo).

38 | Chapter4: The Kubernetes API Server



DELETE
When the time comes to delete a request, an HTTP DELETE request to the path of
the resource (e.g., /api/vl/namespaces/default/pods/foo) is used. It’s important to
note that this change is permanent—after the HTTP request is made, the
resource is deleted.

The content type for all of these requests is usually text-based JSON (application/
json) but recent releases of Kubernetes also support Protocol Buffers binary encod-
ing. Generally speaking, JSON is better for human-readable and debuggable traffic on
the network between client and server, but it is significantly more verbose and expen-
sive to parse. Protocol Buffers are harder to introspect using common tools, like curl,
but enable greater performance and throughput of API requests.

In addition to these standard requests, many requests use the WebSocket protocol to
enable streaming sessions between client and server. Examples of such protocols are
the exec and attach commands. These requests are described in the following sec-
tions.

Life of a Request

To better understand what the API server is doing for each of these different requests,
we'll take apart and describe the processing of a single request to the API server.

Authentication

The first stage of request processing is authentication, which establishes the identity
associated with the request. The API server supports several different modes of estab-
lishing identity, including client certificates, bearer tokens, and HT'TP Basic Authenti-
cation. In general, client certificates or bearer tokens, should be used for
authentication; the use of HT'TP Basic Authentication is discouraged.

In addition to these local methods of establishing identity, authentication is plugga-
ble, and there are several plug-in implementations that use remote identity providers.
These include support for the OpenID Connect (OIDC) protocol, as well as Azure
Active Directory. These authentication plug-ins are compiled into both the API
server and the client libraries. This means that you may need to ensure that both the
command-line tools and API server are roughly the same version or support the
same authentication methods.

The API server also supports remote webhook-based authentication configurations,
where the authentication decision is delegated to an outside server via bearer token
forwarding. The external server validates the bearer token from the end user and
returns the authentication information to the API server.

Given the importance of this in securing a server, it is covered in depth in a later
chapter.

Request Management | 39



RBAC/Authorization

After the API server has determined the identity for a request, it moves on to authori-
zation for it. Every request to Kubernetes follows a traditional RBAC model. To access
a request, the identity must have the appropriate role associated with the request.
Kubernetes RBAC is a rich and complicated topic, and as such, we have devoted an
entire chapter to the details of how it operates. For the purposes of this API server
summary, when processing a request, the API server determines whether the identity
associated with the request can access the combination of the verb and the HTTP
path in the request. If the identity of the request has the appropriate role, it is allowed
to proceed. Otherwise, an HTTP 403 response is returned.

This is covered in much more detail in a later chapter.

Admission control

After a request has been authenticated and authorized, it moves on to admission con-
trol. Authentication and RBAC determine whether the request is allowed to occur,
and this is based on the HTTP properties of the request (headers, method, and path).
Admission control determines whether the request is well formed and potentially
applies modifications to the request before it is processed. Admission control defines
a pluggable interface:

apply(request): (transformedRequest, error)

If any admission controller finds an error, the request is rejected. If the request is
accepted, the transformed request is used instead of the initial request. Admission
controllers are called serially, each receiving the output of the previous one.

Because admission control is such a general, pluggable mechanism, it is used for a
wide variety of different functionality in the API server. For example, it is used to add
default values to objects. It can also be used to enforce policy (e.g., requiring that all
objects have a certain label). Additionally, it can be used to do things like inject an
additional container into every Pod. The service mesh Istio uses this approach to
inject its sidecar container transparently.

Admission controllers are quite generic and can be added dynamically to the API
server via webhook-based admission control.

Validation

Request validation occurs after admission control, although it can also be imple-
mented as part of admission control, especially for external webhook-based valida-
tion. Additionally, validation is only performed on a single object. If it requires
broader knowledge of the cluster state, it must be implemented as an admission con-
troller.

40 | Chapter4: The Kubernetes API Server



Request validation ensures that a specific resource included in a request is valid. For
example, it ensures that the name of a Service object conforms to the rules around
DNS names, since eventually the name of a Service will be programmed into the
Kubernetes Service discovery DNS server. In general, validation is implemented as
custom code that is defined per resource type.

Specialized requests

In addition to the standard RESTful requests, the API server has a number of special-
lized request patterns that provide expanded functionality to clients:

/proxy, /exec, /attach, /logs

The first important class of operations is open, long-running connections to the API
server. These requests provide streaming data rather than immediate responses.

The logs operation is the first streaming request we describe, because it is the easiest
to understand. Indeed, by default, logs isn’t a streaming request at all. A client makes
a request to get the logs for a Pod by appending /logs to the end of the path for a
particular Pod (e.g., /api/vl/namespaces/default/pods/some-pod/logs) and then speci-
fying the container name as an HTTP query parameter and an HTTP GET request.
Given a default request, the API server returns all of the logs up to the current time,
as plain text, and then closes the HTTP request. However, if the client requests that
the logs be tailed (by specifying the follow query parameter), the HT'TP response is
kept open by the API server and new logs are written to the HTTP response as they
are received from the kubelet via the API server. This connection is shown in
Figure 4-1.

4 —>! APl server Kubelet Container

a ogs

Figure 4-1. The basic flow of an HTTP request for container logs

logs is the easiest streaming request to understand because it simply leaves the
request open and streams in more data. The rest of the operations take advantage of
the WebSocket protocol for bidirectional streaming data. They also actually multiplex
data within those streams to enable an arbitrary number of bidirectional streams over
HTTP. If this all sounds a little complicated, it is, but it is also a valuable part of the
API server’s surface area.

The API server actually supports two different streaming protocols.
It supports the SPDY protocol, as well as HTTP2/WebSocket.
SPDY is being replaced by HTTP2/WebSocket and thus we focus
our attention on the WebSocket protocol.

Request Management | 41



The full WebSocket protocol is beyond the scope of this book, but it is documented in
a number of other places. For the purposes of understanding the API server, you can
simply think of WebSocket as a protocol that transforms HTTP into a bidirectional
byte-streaming protocol.

However, on top of those streams, the Kubernetes API server actually introduces an
additional multiplexed streaming protocol. The reason for this is that, for many use
cases, it is quite useful for the API server to be able to service multiple independent
byte streams. Consider, for example, executing a command within a container. In this
case, there are actually three streams that need to be maintained (stdin, stderr, and
stdout).

The basic protocol for this streaming is as follows: every stream is assigned a number
from 0 to 255. This stream number is used for both input and output, and it concep-
tually models a single bidirectional byte stream.

For every frame that is sent via the WebSocket protocol, the first byte is the stream
number (e.g., 0) and the remainder of the frame is the data that is traveling on that
stream (Figure 4-2).

F"tSt byte First Second Nth
r?urrﬁ)rgr data data data
(0.0) byte byte byte

Figure 4-2. An example of the Kubernetes WebSocket multichannel framing

Using this protocol and WebSockets, the API server can simultaneously multiplex
256-byte streams in a single WebSocket session.

This basic protocol is used for exec and attach sessions, with the following channels:

0
The stdin stream for writing to the process. Data is not read from this stream.

1
The stdout output stream for reading stdout from the process. Data should not
be written to this stream.

2

The stderr output stream for reading stderr from the process. Data should not
be written to this stream.

The /proxy endpoint is used to port-forward network traffic between the client and
containers and services running inside the cluster, without those endpoints being
externally exposed. To stream these TCP sessions, the protocol is slightly more com-

42 | Chapter4: The Kubernetes API Server



plicated. In addition to multiplexing the various streams, the first two bytes of the
stream (after the stream number, so actually the second and third bytes in the Web-
Sockets frame) are the port number that is being forwarded, so that a single Web-
Sockets frame for /proxy looks like Figure 4-3.

F"tSt bYte | ighbyte | Lowbyte |  First Nth
stream data data

number
(9.0) |Twobyteportnumber' byte byte

Figure 4-3. An example of the data frame for WebSockets-based port forwarding

Watch operations

In addition to streaming data, the API server supports a watch API. A watch moni-
tors a path for changes. Thus, instead of polling at some interval for possible updates,
which introduces either extra load (due to fast polling) or extra latency (because of
slow polling), using a watch enables a user to get low-latency updates with a single
connection. When a user establishes a watch connection to the API server by adding
the query parameter ?watch=true to some API server request, the API server
switches into watch mode, and it leaves the connection between client and server
open. Likewise, the data returned by the API server is no longer just the API object—
it is a Watch object that contains both the type of the change (created, updated,
deleted) and the API object itself. In this way, a client can watch and observe all
changes to that object or set of objects.

Optimistically concurrent updates

An additional advanced operation supported by the API server is the ability to per-
form optimistically concurrent updates of the Kubernetes API. The idea behind opti-
mistic concurrency is the ability to perform most operations without using locks
(pessimistic concurrency) and instead detect when a concurrent write has occurred,
rejecting the later of the two concurrent writes. A write that is rejected is not retried
(it is up to the client to detect the conflict and retry the write themselves).

To understand why this optimistic concurrency and conflict detection is required, it’s
important to know about the structure of a read/update/write race condition. The
operation of many API server clients involves three operations:

1. Read some data from the API server.
2. Update that data in memory.
3. Write it back to the API server.

Request Management | 43



Now imagine what happens when two of these read/update/write patterns happen
simultaneously.

Server A reads object O.
Server B reads object O.
Server A updates object O in memory on the client.
Server B updates object O in memory on the client.

Server A writes object O.

AR A

Server B writes object O.

At the end of this, the changes that Server A made are lost because they were over-
written by the update from Server B.

There are two options for solving this race. The first is a pessimistic lock, which
would prevent other reads from occurring while Server A is operating on the object.
The trouble with this is that it serializes all of the operations, which leads to perfor-
mance and throughput problems.

The other option implemented by the Kubernetes API server is optimistic concur-
rency, which assumes that everything will just work out and only detects a problem
when a conflicting write is attempted. To achieve this, every instance of an object
returns both its data and a resource version. This resource version indicates the cur-
rent iteration of the object. When a write occurs, if the resource version of the object
is set, the write is only successful if the current version matches the version of the
object. If it does not, an HTTP error 409 (conflict) is returned and the client musty
retry. To see how this fixes the read/update/write race just described, let’s take a look
at the operations again:

Server A reads object O at version v1.
Server B reads object O at version v1.
Server A updates object O at version v1 in memory in the client.
Server B updates object O at version v1 in memory in the client.

Server A writes object O at version v1; this is successful.

A S o e

Server B writes object O at version v1, but the object is at v2; a 409 conflict is
returned.

Alternate encodings

In addition to supporting JSON encoding of objects for requests, the API server sup-
ports two other formats for requests. The encoding of the requests is indicated by the
Content-Type HTTP header on the request. If this header is missing, the content is

44 | Chapter4: The Kubernetes API Server



assumed to be application/json, which indicates JSON encoding. The first alternate
encoding is YAML, which is indicated by the application/yaml Content Type.
YAML is a text-based format that is generally considered to be more human readable
than JSON. There is little reason to use YAML for encoding for communicating with
the server, but it can be convenient in a few circumstances (e.g., manually sending
files to the server via curl).

The other alternate encoding for requests and responses is the Protocol Buffers
encoding format. Protocol Buffers are a fairly efficient binary object protocol. Using
Protocol Buffers can result in more efficient and higher throughput requests to the
API servers. Indeed, many of the Kubernetes internal tools use Protocol Buffers as
their transport. The main issue with Protocol Buffers is that, because of their binary
nature, they are significantly harder to visualize/debug in their wire format. Addition-
ally, not all client libraries currently support Protocol Buffers requests or responses.
The Protocol Buffers format is indicated by the application/vnd.kubernetes.proto
buf Content-Type header.

Common response codes

Because the API server is implemented as a RESTful server, all of the responses from
the server are aligned with HTTP response codes. Beyond the typical 200 for OK
responses and 500s for internal server errors, here are some of the common response
codes and their meanings:

202
Accepted. An asyncronous request to create or delete an object has been received.
The result responds with a status object until the asynchronous request has com-
pleted, at which point the actual object will be returned.

400
Bad Request. The server could not parse or understand the request.

401
Unauthorized. A request was received without a known authentication scheme.

403
Forbidden. The request was received and understood, but access is forbidden.

409
Conflict. The request was received, but it was a request to update an older ver-
sion of the object.

422
Unprocessable entity. The request was parsed correctly but failed some sort of
validation.

Request Management | 45



API Server Internals

In addition to the basics of operating the HTTP RESTful service, the API server has a
few internal services that implement parts of the Kubernetes API. Generally, these
sorts of control loops are run in a separate binary known as the controller manager.
But there are a few control loops that have to be run inside the API server. In each
case, we describe the functionality as well as the reason for its presence in the API
server.

CRD Control Loop

Custom resource definitions (CRDs) are dynamic API objects that can be added to a
running API server. Because the act of creating a CRD inherently creates new HTTP
paths the API server must know how to serve, the controller that is responsible for
adding these paths is colocated inside the API server. With the addition of delegated
API servers (described in a later chapter), this controller has actually been mostly
abstracted out of the API server. It currently still runs in process by default, but it can
also be run out of process.

The CRD control loop operates as follows:

for crd in AllCustomResourceDefinitions:
if !RegisteredPath(crd):
registerPath

for path in AllRegisteredPaths:
if !CustomResourceExists(path):
markPathInvalid(path)
delete custom resource data
delete path

The creation of the custom resource path is fairly straightforward, but the deletion of
a custom resource is a little more complicated. This is because the deletion of a cus-
tom resource implies the deletion of all data associated with resources of that type.
This is so that, if a CRD is deleted and then at some later date readded, the old data
does not somehow get resurrected.

Thus, before the HTTP serving path can be removed, the path is first marked as inva-
lid so that new resources cannot be created. Then, all data associated with the CRD is
deleted, and finally, the path is removed.

Debugging the API Server

Of course, understanding the implementation of the API server is great, but more
often than not, what you really need is to be able to debug what is actually going on
with the API server (as well as clients that are calling in to the API server). The pri-
mary way that this is achieved is via the logs that the API server writes. There are two

46 | Chapter4: The Kubernetes API Server



log streams that the API server exports—the standard or basic logs, as well as the
more targeted audit logs that try to capture why and how requests were made and the
changed API server state. In addition, more verbose logging can be turned on for
debugging specific problems.

Basic Logs

By default, the API server logs every request that is sent to the API server. This log
includes the client’s IP address, the path of the request, and the code that the server
returned. If an unexpected error results in a server panic, the server also catches this
panic, returns a 500, and logs that error.

10803 19:59:19.929302 1 trace.go:76] Trace[1449222206]:
"Create /api/vl/namespaces/default/events" (started: 2018-08-03
19:59:19.001777279 +0000 UTC m=+25.386403121) (total time: 927.484579ms):
Trace[1449222206]: [927.401927ms] [927.279642ms] Object stored in database
10803 19:59:20.402215 1 controller.go:537] quota admission added
evaluator for: { namespaces}

In this log, you can see that it starts with the timestamp 16803 19:59:.. when the log

line was emitted, followed by the line number that emitted it, trace.go:76, and
finally the log message itself.

Audit Logs

The audit log is intended to enable a server administrator to forensically recover the
state of the server and the series of client interactions that resulted in the current state
of the data in the Kubernetes API. For example, it enables a user to answer questions
like, “Why was that ReplicaSet scaled up to 1002, “Who deleted that Pod?”, among
others.

Audit logs have a pluggable backend for where they are written. Generally, audit logs
are written to file, but it is also possible for them to be written to a webhook. In either
case, the data logged is a structured JSON object of type event in the audit.k8s.io
API group.

Auditing itself can be configured via a policy object in the same API group. This pol-
icy allows you to specify the rules by which audit events are emitted into the audit log.

Activating Additional Logs

Kubernetes uses the github.com/golang/glog leveled logging package for its logging.
Using the - -v flag on the API server you can adjust the level of logging verbosity. In
general, the Kubernetes project has set log verbosity level 2 (--v=2) as a sane default
for logging relevant, but not too spammy messages. If you are looking into specific
problems, you can raise the logging level to see more (possibly spammy) messages.

Debugging the AP Server | 47



Because of the performance impact of excessive logging, we recommend not running
with a verbose log level in production. If you are looking for more targeted logging,
the - -vmodule flag enables increasing the log level for individual source files. This can
be useful for very targeted verbose logging restricted to a small set of files.

Debugging kubectl Requests

In addition to debugging the API server via logs, it is also possible to debug interac-
tions with the API server, via the kubectl command-line tool. Like the API server,
the kubectl command-line tool logs via the github.com/golang/glog package and
supports the --v verbosity flag. Setting the verbosity to level 10 (--v=10) turns on
maximally verbose logging. In this mode, kubectl logs all of the requests that it
makes to the server, as well as attempts to print curl commands that you can use to
replicate these requests. Note that these curl commands are sometimes incomplete.

Additionally, if you want to poke at the API server directly, the approach that we used
earlier to explore API discovery works well. Running kubectl proxy creates a proxy
server on localhost that automatically supplies your authentication and authorization
credentials, based on a local $HOME/.kube/config file. After you run the proxy, it’s
fairly straightforward to poke at various API requests using the curl command.

Summary

As an operator, the core service that you are providing to your users is the Kubernetes
APL To effectively provide this service, understanding the core components that
make up Kubernetes and how your users will put these APIs together to build appli-
cations is critical to implementing a useful and reliable Kubernetes cluster. Having
finished reading this chapter, you should have a basic knowledge of the Kubernetes
API and how it is used.

48 | Chapter4: The Kubernetes API Server



CHAPTER 5
Scheduler

One of the primary jobs of the Kubernetes API is to schedule containers to worker
nodes in the cluster of machines. This task is accomplished by a dedicated binary in
the Kubernetes cluster called the Kubernetes scheduler. This chapter describes how
the scheduler operates, how it can be extended, and how it can even be replaced or
augmented by additional schedulers. Kubernetes can handle a wide variety of work-
loads, from stateless web serving to stateful applications, big data batch jobs, or
machine learning on GPUs. The key to ensuring that all of these very different appli-
cations can operate in harmony on the same cluster lies in the application of job
scheduling, which ensures that each container is placed onto the worker node best
suited to it.

An Overview of Scheduling

When a Pod is first created, it generally doesn’t have a nodeName field. The nodeName
indicates the node on which the Pod should execute. The Kubernetes scheduler is
constantly scanning the API server (via a watch request) for Pods that don’t have a
nodeName; these are Pods that are eligible for scheduling. The scheduler then selects
an appropriate node for the Pod and updates the Pod definition with the nodeName
that the scheduler selected. After the nodeName is set, the kubelet running on that
node is notified about the Pod’s existence (again, via a watch request) and it begins to
actually execute that Pod on that node.

49



If you want to skip the scheduler, you can always set the nodeName
yourself on a Pod. This direct schedules a Pod onto a specific node.
This is, in fact, how the DaemonSet controller schedules a single
Pod onto each node in the cluster. In general, however, direct
scheduling should be avoided, since it tends to make your applica-
tion more brittle and your cluster less efficient. In the general use
case, you should trust the scheduler to make the right decision, just
as you trust the operating system to find a core to execute your
program when you launch it on a single machine.

Scheduling Process

When the scheduler discovers a Pod that hasn't been assigned to a node, it needs to
determine which node to schedule the Pod onto. The correct node for a Pod is deter-
mined by a number of different factors, some of which are supplied by the user and
some of which are calculated by the scheduler. In general, the scheduler is trying to
optimize a variety of different criteria to find the node that is best for the particular
Pod.

Predicates

When making the decision about how to schedule a Pod, the scheduler uses two
generic concepts to make its decision. The first is predicates. Simply stated, a predicate
indicates whether a Pod fits onto a particular node. Predicates are hard constraints,
which, if violated, lead to a Pod not operating correctly (or at all) on that node. An
example of a such a constraint is the amount of memory requested by the Pod. If that
memory is unavailable on the node, the Pod cannot get all of the memory that it
needs and the constraint is violated—it is false. Another example of a predicate is a
node-selector label query specified by the user. In this case, the user has requested
that a Pod only run on certain machines as indicated by the node labels. The predi-
cate is false if a node does not have the required label.

Priorities

Predicates indicate situations that are either true or false—the Pod either fits or it
doesn’t—but there is an additional generic interface used by the scheduler to deter-
mine preference for one node over another. These preferences are expressed as priori-
ties or priority functions. The role of a priority function is to score the relative value of
scheduling a Pod onto a particular node. In contrast to predicates, the priority func-
tion does not indicate whether or not the Pod being scheduled onto the node is viable
—it is assumed that the Pod can successfully execute on the node—but instead, the
predicate function attempts to judge the relative value of scheduling the Pod onto that
particular node.

50 | Chapter5:Scheduler



As an example, a priority function would weight nodes where the image has already
been pulled. Therefore, the container would start faster than nodes where the image
is not present and would have to be pulled, delaying Pod startup.

One important priority function is the spreading function. This function is responsi-
ble for prioritizing nodes where Pods that are members of the same Kubernetes Ser
vice are not present. It is used to ensure reliability, since it reduces the chances that a
machine failure will disable all of the containers in a particular Service.

Ultimately, all of the various predicate values are mixed together to achieve a final
priority score for the node, and this score is used to determine where the Pod is
scheduled.

High-Level Algorithm

For every Pod that needs scheduling, the scheduling algorithm is run. At a high level,
the algorithm looks like this:

schedule(pod): string
nodes := getAllHealthyNodes()
viableNodes := []
for node in nodes:
for predicate in predicates:
if predicate(node, pod):
viableNodes.append(node)

scoredNodes := PriorityQueue<score, Node[]>

priorities := GetPriorityFunctions()

for node in viableNodes:
score = CalculateCombinedPriority(node, pod, priorities)
scoredNodes[score].push(node)

bestScore := scoredNodes.top().score
selectedNodes := []
while scoredNodes.top().score == bestScore:

selectedNodes. append(scoredNodes.pop())

node := selectAtRandom(selectedNodes)
return node.Name

You can find the actual code on the Kubernetes GitHub page.

The basic operation of the scheduler is as follows: first, the scheduler gets the list of
all currently known and healthy nodes. Then, for each predicate, the scheduler evalu-
ates the predicate against the node and the Pod being scheduled. If the node is viable
(the Pod could run on it), the node is added to the list of possible nodes for schedul-
ing. Next, all of the priority functions are run against the combination of Pod and
node. The results are pushed into a priority queue ordered by score, with the best-
scoring nodes at the top of the queue. Then, all nodes that have the same score are

Scheduling Process | 51


http://bit.ly/2Or3Y5Z

popped off of the priority queue and placed into a final list. They are considered to be
entirely identical, and one of them is chosen in a round-robin fashion and is then
returned as the node where the Pod should be scheduled. Round robin is used instead
of random choice to ensure an even distribution of Pods among identical nodes.

Conflicts

Because there is lag time between when a Pod is scheduled (time T_1) and when the
container actually executes (time T_N), the scheduling decision may become invalid,
due to other actions during the time interval between scheduling and execution.

In some cases, this may mean that a slightly less ideal node is chosen, when a better
one could have been assigned. This could be caused by a Pod terminating after time
T_1 but before time T_N or other changes to the cluster. In general, these sorts of soft-
constraint conflicts aren’t that important and they normalize in the aggregate. These
conflicts are thus ignored by Kubernetes. Scheduling decisions are only optimal for a
single moment in time—they can always become worse as time passes and the cluster
changes.

There is some work going on in the Kubernetes community to
improve this situation somewhat. A Kubernetes-descheduler
project, which, if run in a Kubernetes cluster, scans it for Pods that
are determined to be significantly suboptimal. If such Pods are
found, the descheduler evicts the Pod from its current node. Con-
sequently, the Pod is rescheduled by the Kubernetes scheduler, as if
it had just been created.

A more significant kind of conflict occurs when a change to the cluster violates a hard
constraint of the scheduler. Imagine, for example, that the scheduler decides to place
Pod P on node N. Imagine that Pod P requires two cores to operate, and node N has
exactly two cores of spare capacity. At time T_1, the scheduler has determined that
node N has sufficient capacity to run Pod P. However, after the scheduler makes its
decision in code and before the decision is written back to the Pod, a new DaemonSet
is created. This DaemonSet creates a different Pod that runs on every node, including
node N, which consumes one core of capacity. Now Node N only has a single core
free, and yet it has been asked to run Pod P, which requires two cores. This is not
possible, given the new state of node N, but the scheduling decision has already been
made.

When the node notices that it has been asked to run a Pod that no longer passes the
predicates for the Pod and node, the Pod is marked as failed. If the Pod has been cre-
ated by a ReplicaSet, this failed Pod doesn’'t count as an active member of the Repli
caSet and, thus, a new Pod will be created and scheduled onto a different node where
it fits. This failure behavior is important to understand because it means that Kuber-

52 | Chapter5: Scheduler


https://github.com/kubernetes-incubator/descheduler
https://github.com/kubernetes-incubator/descheduler

netes cannot be counted on to reliably run standalone Pods. You should always run
Pods (even singletons) via a ReplicaSet or Deployment.

Controlling Scheduling with Labels, Affinity, Taints, and
Tolerations

Of course, there are times when you want more fine-grained control of the schedul-
ing decisions that Kubernetes performs. You could have this by adding your own
predicates and priorities, but that’s a fairly heavyweight task. Fortunately, Kubernetes
provides you with a number of tools to customize scheduling—without having to
implement anything in your own code.

Node Selectors

Remember that every object in Kubernetes has an associated set of labels. Labels pro-
vide identifying metadata for Kubernetes objects, and label selectors are often used to
dynamically identify sets of API objects for various operations. For example, labels
and label selectors are used to identify the sets of Pods that serve traffic behind a
Kubernetes load balancers.

Label selectors can also be used to identify a subset of the nodes in a Kubernetes clus-
ter that should be used for scheduling a particular Pod. By default, all nodes in the
cluster are potential candidates for scheduling, but by filling in the spec.nodeSelec
tor field in a Pod or PodTemplate, the initial set of nodes can be reduced to a subset.

As an example, consider the task of scheduling a workload to a machine that has
high-performance storage, like NVMe-backed SSD. Such storage (at least at the time
of this writing) is very expensive and therefore may not be present in every machine.
Thus, every machine that has this storage will be given an extra label like:

kind: Node
metadata:
- labels:
nvme-ssd: true

To create a Pod that will always be scheduled onto a machine with an NVMe SSD, you
then set the Pod’s nodeSelector to match the label on the node:

kind: Pod
spec:
nodeSelector:
nvme-ssd: true

Controlling Scheduling with Labels, Affinity, Taints, and Tolerations | 53



Kubernetes has a default predicate that requires every node to match the nodeSelec
tor label query, if it is present. Thus, every Pod with the nvme-ssd label will always be
scheduled onto a node with the appropriate hardware.

As was mentioned earlier in the section on conflicts, Node selectors are only evalu-
ated at the time of scheduling. If nodes are actively added and removed, by the time
the container executes, its node selector may no longer match the node where it is
running.

Node Affinity

Node selectors provide a simple way to guarantee that a Pod lands on a particular
node, but they lack flexibility. In particular, they cannot represent more complex logi-
cal expressions (e.g., “Label foo is either A or B”) nor can they represent antiaffinity
(“Label foo is A but label bar is not C”). Finally, node selectors are predicates—they
specify a requirement, not a preference.

Starting with Kubernetes 1.2, the notion of affinity was added to node selection via
the affinity structure in the Pod spec. Affinity is a more complicated structure to
understand, but it is significantly more flexible if you want to express more compli-
cated scheduling policies.

Consider the example just noted, in which a Pod should schedule onto a node that
has either label foo has a value of either A or B. This is expressed as the following
affinity policy:
kind: Pod
spec:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
# foo == A or B
- key: foo
operator: In
values:
- A
- B

To show antiaffinity, consider the policy label foo has value A and label bar does not
equal C. This is expressed in a similar, though slightly more complicated, specifica-
tion:

kind: Pod

spec:

54 | Chapter5: Scheduler



affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
# foo ==
- key: foo
operator: In
values:
- A
# bar !=C
- key: bar
operator: NotIn
values:
- C

These two examples include the operators In and NotIn. Kuber-
netes also allows Exists, which only requires that a label key be
present regardless of value, as well as NotExists, which requires
that a label be absent. There are also Gt and Lt operators, which
implement greater-than and less-than, respectively. If you use the
Gt or Lt operators, the values array is expected to consist of a single
integer and your node labels are expected to be integrals.

So far, we've seen node affinity provide a more sophisticated way to select nodes, but
we have still only expressed a predicate. This is due to requiredDuringSchedulin
gIgnoredDuringExecution, which is a long-winded but accurate description of the
node affinity behavior. The label expression must match when scheduling is per-
formed but may not match when the Pod is executing.

If you want to express a priority for a node instead of a requirement (or in addition to
a requirement), you can use preferredDuringSchedulingIgnoredDuringExecution.
For example, using our earlier example, where we required that foo be either A or B,
let’s also express a preference for scheduling onto nodes labeled A. The weight term in
the preference struct allows us to tune how significant a preference it is, relative to
other priorities.

kind: Pod
spec:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
# foo == A or B
- key: foo

Controlling Scheduling with Labels, Affinity, Taints, and Tolerations | 55



operator: In

values:

- A

- B
preferredDuringSchedulingIgnoredDuringExecution:
preference:

- weight: 1
matchExpressions:
# foo == A
- key: foo

operator: In
values:
- A

Node affinity is currently a beta feature. In Kubernetes 1.4 and beyond, Pod affinity
was also introduced with similar syntax (substituting pod for node). Pod affinity
allows you to express a requirement or preference for scheduling alongside—or away
from—other Pods with particular labels.

Taints and Tolerations

Node and Pod affinity allow you to specify preferences for a Pod to schedule (or not)
onto a specific set of nodes or near a specific set of Pods. However, that requires user
action when creating containers to achieve the right scheduling behavior. Sometimes,
as the administrator of a cluster, you might want to affect scheduling without requir-
ing your users to change their behavior.

For example, consider a heterogenous Kubernetes cluster. You may have a mixture of
hardware types—some with old 1 Ghz processors and some with new 3 Ghz process-
ors. In general, you don’t want your users to have their work scheduled onto the older
processors unless specifically requested. You can achieve this with node antiaffinity,
since it requires that every user explicitly add antiaffinity to their Pods for the older
machines.

It is this use case that motivated the development of node taints. A node taint is
exactly what it sounds like. When a taint is applied to a node, the node is considered
tainted and will be excluded by default from scheduling. Any tainted node will fail a
predicate check at the time of scheduling.

However, consider a user who wants to access 1 Ghz machines. Their work isn’t time
critical, and the 1 Ghz machines cost less, since there is far less demand. To achieve
this, the user opts into the 1 Ghz machines by adding a toleration for the particular
taint. This toleration enables the scheduling predicate to pass and thus allows for the
node to schedule onto the tainted machine. It is important to note that, although a
toleration for a taint enables a Pod to run on a tainted machine, it does not require
that the Pod runs on the tainted machine. Indeed, all of the priorities run just as

56 | Chapter5:Scheduler



before and, thus, all of the machines in the cluster are available to execute on. Forcing

a Pod onto a particular machine is a use case for nodeSelectors or affinity as
described earlier.

Summary

One of the core features of Kubernetes is the ability to take a user’s request to execute
a container and schedule that container onto an appropriate machine. For a cluster
administrator, the operation of the scheduler—and teaching users how to use it well
—can be critical to building a cluster that is reliable and that you can drive to high
utilization and efficiency.

Summary | 57






CHAPTER 6
Installing Kubernetes

To fully conceptualize and understand how Kubernetes works, it is imperative to
experiment with an actual Kubernetes cluster. And, fortunately, there is no shortage
of tools to get going with Kubernetes—typically, this can be achieved within a matter
of minutes. Whether it be a local installation on your laptop with a tool like minikube
or a managed deployment from any one of the major public cloud providers, a
Kubernetes cluster can be had by just about anyone.

Although many of these projects and services have greatly helped to commoditize the
deployment of a cluster, there are many circumstances that do not allow for this
degree of flexibility. Perhaps there are internal compliance or regulatory constraints
that prevent the use of a public cloud. Or maybe your organization has already inves-
ted heavily in their own datacenters. Whatever the circumstances, you will be hard
pressed to find an environment that is not suitable for a Kubernetes deployment.

Beyond the logistics of where and how you consume Kubernetes, in order to fully
appreciate how the distributed components of Kubernetes operate, it is also impor-
tant to understand the architectures that make production-ready, containerized appli-
cation delivery a reality. In this chapter, we explore the services involved and how
they are installed.

kubeadm

Among the wide array of Kubernetes installation solutions is the community-
supported kubeadm utility. This application provides all of the functionality needed
to install Kubernetes. In fact, in the simplest of cases, a user can have a Kubernetes
installation operational in a matter of minutes—with just a single command. This
simplicity makes it a very compelling tool for developers and for those with
production-grade needs. Because the code for kubeadm lives in-tree and is released

59


https://github.com/kubernetes/minikube

in conjunction with a Kubernetes release, it borrows common primitives and is thor-
oughly tested for a large number of use cases.

Because of the simplicity and great utility provided by kubeadm,
many other installation tools actually leverage kubeadm behind the
scenes. And the number of projects following this trend increases
regularly. So, regardless of whether you ultimately choose kubeadm
as your preferred installation tool, understanding how it works will
likely help you further understand the tool you have chosen.

A production-grade deployment of Kubernetes ensures that data is secured, both dur-
ing transport and at rest, that the Kubernetes components are well matched with their
dependencies, that integrations with the environment are well defined, and that the
configuration of all the cluster components work well together. Ideally, too, these
clusters are easily upgraded and the resulting configuration is continually reflective of
these best practices. kubeadm can help you achieve all of this.

Requirements

kubeadm, just like all of the Kubernetes binaries, is statically linked. As such, there
are no dependencies on any shared libraries, and kubeadm may be installed on just
about any x86_64, ARM, or PowerPC Linux distribution.

Fortunately, there is also not much that we need from a host application perspective,
either. Most fundamentally, we require a container runtime and the Kubernetes kube-
let, but there are also a few necessary standard Linux utilities.

When it comes to installing a container runtime, you should ensure that it adheres to
the Container Runtime Interface (CRI). This open standard defines the interface that
the kubelet uses to speak to the runtime available on the host. At the time of this writ-
ing, some of the most popular CRI-compliant runtimes are Docker, rkt, and CRI-O.
For each of these, developers should consult the installation instructions provided by
the respective projects.

When choosing a container runtime, be sure to reference the
Kubernetes release notes. Each release will clearly indicate which
container runtimes have been tested. This way you know which
runtimes and versions are known to be both compatible and per-
formant.

kubelet

As you may recall from Chapter 3, the kubelet is the on-host process responsible for
interfacing with the container runtime. In the most common cases, this work typi-

60 | Chapteré6: Installing Kubernetes



cally amounts to reporting node status to the API server and managing the full lifecy-
cle of Pods that have been scheduled to the host on which it resides.

Installation of the kubelet is usually as simple as downloading and installing the
appropriate package for the target distribution. In all cases, you should be sure to
install the kubelet with a version that matches the Kubernetes version you intend to
run. The kubelet is the single Kubernetes process that is managed by the host service
manager. In almost all cases, this is likely to be systemd.

If you are installing the kubelet with the system packages built and provided by the
community (currently deb and rpm), the kubelet will be managed by systemd. As with
any process managed in this way, a unit file defines which user the service runs as,
what the command-line options are, how the service dependency chain is defined,
and what the restart policy should be:

[unit]
Description=kubelet: The Kubernetes Node Agent
Documentation=http://kubernetes.io/docs/

[Service]
ExecStart=/usr/bin/kubelet
Restart=always
StartLimitInterval=0
RestartSec=10

[Install]
WantedBy=multi-user.target

Even if you are not installing the kubelet with the community-
provided packages, examining the provided unit files is often be
helpful for understanding common best practices for running the
kubelet daemon. These unit files change often, so be sure to refer-
ence the versions that match your deployment target.

The behavior of the kubelet can be manipulated by adding additional unit files to
the /etc/systemd/system/kubelet.service.d/ path. These unit files are read lexically (so
name them appropriately) and allow you to override how the package configures the
kubelet. This may be required if your environment calls for specific needs (i.e., con-
tainer registry proxies).

For example, when deploying Kubernetes to a supported cloud provider, you need to
set the - -cloud-provider parameter on the kubelet:
$ cat /etc/systemd/system/kubelet.service.d/09-extra-args.conf

[Service]
Environment="KUBELET_EXTRA_ARGS= --cloud-provider=aws"

kubeadm | 61



With this additional file in place, we simply perform a daemon reload and then
restart the service:

$ sudo systemctl daemon-reload
$ sudo systemctl restart kubelet

By and large, the default configurations provided by the community are typically
more than adequate and usually do not require modification. With this technique,
however, we can utilize the community defaults while simultaneously maintaining
our ability to override, when applicable.

The kubelet and container runtime are necessary on all hosts in the cluster.

Installing the Control Plane

Within Kubernetes the componentry that directs the actions of the worker nodes is
termed the control plane. As we covered in Chapter 3, these components consist of
the API server, the controller manager, and the scheduler. Each of these daemons
directs some portion of how the cluster ultimately operates.

In addition to the Kubernetes components, we require a place to store our cluster
state. That data store is etcd.

Fortunately, kubeadm is capable of installing all of these daemons on a host (or hosts)
that we, as administrators, have delegated as a control plane node. kubeadm does so
by creating a static manifest for each of the daemons that we require.

With static manifests, we can write Pod specifications directly to
disk, and the kubelet, upon start, immediately attempts to launch
the containers specified therein. In fact, the kubelet also monitors
these files for changes and attempts to reconcile any specified
changes. Note, however, that since these Pods are not managed by
the control plane, they cannot be manipulated with the kubectl
command-line interface.

In addition to the daemons, we need to secure the components with Transport Layer
Security (TLS), create a user that can interact with the API, and provide the capability
for worker nodes to join the cluster. Kubeadm does all of this.

In the simplest of scenarios, we can install the control plane components on a node
that has already been prepared with a running kubelet and functional container run-
time, like so:

$ kubeadm init

After detailed descriptions of the steps kubeadm has taken on behalf of the user, the
end of the output might look something like this:

62 | Chapteré6: Installing Kubernetes



Your Kubernetes master has initialized successfully!
To start using your cluster, you need to run the following as a regular user:

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) S$SHOME/.kube/config

You should now deploy a pod network to the cluster.
Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:
https://kubernetes.io/docs/concepts/cluster-administration/addons/

You can now join any number of machines by running the following on each node
as root:

kubeadm join --token 878b76.ddab3219269370b2 10.1.2.15:6443 \
--discovery-token-ca-cert-hash \
sha256:312ce807a9e98d544f5a53b36ae3bb95cdcbe50cf8d1294d22ab5521ddb54d68

kubeadm Configuration

Although kubeadm init is the simplest case for configuring a controller node,
kubeadm is capable of managing all sorts of configurations. This can be achieved by
way of the various but somewhat limited number of kubeadm command-line flags, as
well as the more capable kubeadm APIL

The API looks something like this:

apiVersion: kubeadm.k8s.io/v1alphal
kind: MasterConfiguration
api:
advertiseAddress: <address|string>
bindPort: <int>
etcd:
endpoints:
- <endpointl|string>
- <endpoint2|string>
caFile: <path|string>
certFile: <path|string>
keyFile: <path|string>
networking:
dnsDomain: <string>
serviceSubnet: <cidr>
podSubnet: <cidr>
kubernetesVersion: <string>
cloudProvider: <string>
authorizationModes:
- <authorizationModel|string>
- <authorizationMode2|string>
token: <string>
tokenTTL: <time duration>

Installing the Control Plane | 63



selfHosted: <bool>

apiServerExtraArgs:
<argument>: <value|string>
<argument>: <value|string>

controllerManagerExtraArgs:
<argument>: <value|string>
<argument>: <value|string>

schedulerExtraArgs:
<argument>: <value|string>
<argument>: <value|string>

apiServerCertSANs:

- <namel|string>

- <name2|string>

certificatesDir: <string>

It may be provided to the kubeadm command line with the - -config flag. Regardless
of whether you, as an administrator, decide to explicitly use this configuration format,
one is always generated internally upon executing kubeadm init. Moreover, this con-
figuration is saved as a ConfigMap to the just-provisioned cluster. This functionality
serves two purposes—first, to provide a reference for those who need to understand
how a cluster was configured, and second, it may be leveraged when upgrading a
cluster. In the event of upgrading a cluster, a user modifies the values of this Config
Map and then executes a kubeadm upgrade.

The kubeadm configuration is also accessible by standard kubectl
ConfigMap interrogation and is, by convention, named the
cluster-info ConfigMap in the kube-public namespace.

Preflight Checks

After we have run this command, kubeadm first executes a number of preflight
checks. These sanity checks ensure that our system is appropriate for an install. “Is
the kubelet running?”, “Has swap been disabled?”, and “Are baseline system utilities
installed?” are the types of questions that are asked here. And, naturally, kubeadm
exits with an error if these baseline conditions are not met.

Although not recommended, it is possible to sidestep the preflight
checks with the --skip-preflight-checks command-line option.
This should only be exercised by advanced administrators.

64 | Chapteré6: Installing Kubernetes



Certificates

After all preflight checks have been satisfied, kubeadm, by default, generates its own
certificate authority (CA) and key. This CA is then used to, subsequently, sign various
certificates against it. Some of these certificates are used by the API server when
securing inbound requests, authenticating users, making outbound requests (i.e., to
an aggregate API server), and for mutual TLS between the API server and all down-
stream kubelets. Others are used to secure service accounts.

All of these public key infrastructure (PKI) assets are placed in the /etc/kubernetes/pki
directory on the control plane node:

$ 1s -al /etc/kubernetes/pki/

total 56

drwxr-xr-x 2 root root 4096 Mar 15 02:42 .

drwxr-xr-x 4 root root 4096 Mar 15 02:42 ..
1

-TW-r--r-- root root 1229 Mar 15 02:42 apiserver.crt

STW------- 1 root root 1675 Mar 15 02:42 apiserver.key

-rw-r--r-- 1 root root 1099 Mar 15 02:42 apiserver-kubelet-client.crt
STW--=----- 1 root root 1679 Mar 15 02:42 apiserver-kubelet-client.key
-rw-r--r-- 1 root root 1025 Mar 15 02:42 ca.crt

STW------- 1 root root 1675 Mar 15 02:42 ca.key

-rw-r--r-- 1 root root 1025 Mar 15 02:42 front-proxy-ca.crt
STW------- 1 root root 1675 Mar 15 02:42 front-proxy-ca.key
-rw-r--r-- 1 root root 1050 Mar 15 02:42 front-proxy-client.crt
STW------- 1 root root 1675 Mar 15 02:42 front-proxy-client.key
STW------- 1 root root 1675 Mar 15 02:42 sa.key

STW------- 1 root root 451 Mar 15 02:42 sa.pub

Since this default CA is self-signed, any third-party consumers
need to also provide the CA certificate chain when attempting to
use a client certificate. Fortunately, this is not typically problematic
for Kubernetes users, since a kubeconfig file is capable of embed-
ding this data, and is done automatically by kubeadm.

Self-signed certificates, although extremely convenient, are sometimes not the prefer-
red approach. This is often especially true in corporate environments or for those
with more exacting compliance requirements. In this case, a user may prepopulate
these assets in the /etc/kubernetes/pki directory prior to executing kubeadm init. In
this case, kubeadm attempts to use the keys and certificates that may already be in
place and to generate those that may not already be present.

etcd

In addition to the Kubernetes components that are configured by way of kubeadm, by
default, if not otherwise specified, kubeadm attempts to start a local etcd server
instance. This daemon is started in the same manner as the Kubernetes components

Installing the Control Plane | 65



(static manifests) and persists its data to the control plane node’s filesystem via local
host volume mounts.

At the time of this writing, kubeadm 1init, by itself, does not
natively secure the kubeadm-managed etcd server with TLS. This
basic command is only intended to configure a single control plane
node and, is typically, for development purposes only.

Users that need kubeadm for production installs should provide a
list of TLS-secured etcd endpoints with the --config option
described earlier in this chapter.

Although having an easily deployable etcd instance is favorable for a simple Kuber-
netes installation process, it is not appropriate for a production-grade deployment. In
a production-grade deployment, an administrator deploys a multinode and highly
available etcd cluster that sits adjacent to the Kubernetes deployment. Since the etcd
data store will contain all states for the cluster, it is important to treat it with care.
Although Kubernetes components are easily replaceable, etcd is not. And, as a result,
etcd has a component life cycle (install, upgrade, maintenance, etc.) that is quite dif-
ferent. For this reason, a production Kubernetes cluster should segregate these
responsibilities.

Secrets data

All data that is written to etcd is unencrypted by default. If someone were to gain
privileged access to the disk backing etcd, the data would be readily available. Fortu-
nately, much of the data that Kubernetes persists to disk is not sensitive in nature.

The exception, however, is Secret data. As the name suggests, Secret data should
remain, secret. To ensure that this data is encrypted on its way to etcd, administrators
ought to the --experimental-encryption-provider-config kube-apiserver
parameter. With this parameter, administrators can define symmetric keys to encrypt
all Secret data.

At the time of this writing, --experimental-encryption-
provider-config 1is still an experimental kube-apiserver
command-line parameter. Since this is subject to change, native
support for this feature in kubeadm is limited. You may still make
use of this feature by adding encryption.conf to the /etc/kuber-
netes/pki directory of all control plane nodes and by adding this
configuration parameter to the apiServerExtraArgs field within
your kubeadm MasterConfig prior to kubeadm init.

66 | Chapter6: Installing Kubernetes



This is accomplished with an EncryptionConfig:

$ cat encryption.conf
kind: EncryptionConfig
apiVersion: vi1
resources:
- resources:
- secrets
providers:
- identity: {}
- aescbc:
keys:
- name: encryptionkey
secret: BHk41SZnaMjPYtEHR/jRmLp+ymazbHirgxBHoJZqu/Y=

For the recommended aescbc encryption type, the secret field should be a ran-
domly generated 32-byte key. Now, by adding --experimental-encryption-
provider-config=/path/to/encryption.conf to the kube-apiserver command-
line parameters, all Secrets are encrypted before being written to etcd. This may help
prevent the leakage of sensitive data.

You may have noticed that the EncryptionConfig also includes a resources field. For
our use case, Secrets are the only resources we want to encrypt, but any resource type
may be included here. Use this according to your organization’s needs, but remember
that encrypting this data does marginally impact performance of the API server’s
writes. As a general rule of thumb, only encrypt the data that you deem sensitive.

This configuration supports multiple encryption types, some of which may be more
or less appropriate for your specific needs. Likewise, this configuration also supports
key rotation, a measure that is necessary to ensure a strong security stance. Be sure to
consult the Kubernetes documentation for additional details on this experimental fea-
ture.

Your requirements for data at rest will have dependencies on your
architecture. If you have chosen to colocate your etcd instances on
your control plane nodes, utilizing this feature might not serve
your needs, since encryption keys would also be colocated with the
data. In the event that privileged access to the disk is gained, the
keys may be used to unencrypt the etcd data, thus subverting
efforts to secure these resources. This is yet another compelling
reason for segregating etcd from your Kubernetes control plane
nodes.

kubeconfig

In addition to creating the PKI assets and configuring the static manifests that serve
the Kubernetes components, kubeadm also generates a number of kubeconfig files.

Installing the Control Plane | 67



Each of these files will be used for some means of authentication. Most of these will
be used to authenticate each of the Kubernetes services against the API, but kubeadm
also creates a primary administrator kubeconfig file at /etc/kubernetes/admin.conf.

Because kubeadm so easily creates this kubeconfig with cluster
administrator credentials, many users tend to use these generated
credentials for much more than their intended use. These creden-
tials should be used only for bootstrapping a cluster. Any produc-
tion deployment should always configure additional identity
mechanisms, and these will be discussed in Chapter 7.

Taints

For production use cases, we recommend that user workloads be isolated from the
control plane components. As such, kubeadm taints all control plane nodes with the
node-role.kubernetes.io/master taint. This instructs the scheduler to ignore all
nodes with this taint, when determining where a Pod may be placed.

If your use case is that of a single-node master, you may remove this restriction by
removing the taint from the node:

kubectl taint nodes <node name> node-role.kubernetes.io/master-

Installing Worker Nodes

Worker nodes follow a very similar installation mechanism. Again, we require the
container runtime and the kubelet on every node. But, for workers, the only other
Kubernetes component that we need is the kube-proxy daemon. And, just as with the
control plane nodes, kubeadm starts this process by way of another static manifest.

Most significantly, this process performs a TLS bootstrapping sequence. Through a
shared token exchange process, kubeadm temporarily authenticates the node against
the API server and then attempts to perform a certificate signing request (CSR)
against the control plane CA. After the node’s credentials have been signed, these
serve as the authentication mechanism at runtime.

This sounds complex, but, again, kubeadm makes this process extraordinarily simple:
$ kubeadm join --token <token> --discovery-token-ca-cert-hash <hash> \
<apil endpoint>

Although not as simple as the control plane case, it is pretty straightforward nonethe-
less. And, in the case where you use kubeadm manually, the output from the kubeadm
init command even provides the precise command that needs to be run on a worker
node.

68 | Chapteré6: Installing Kubernetes



Obviously, if we are asking a worker node to join itself to the Kubernetes cluster, we
need to tell it where to register itself. That is where the <api endpoint> parameter
comes in. This includes the IP (or domain name) and port of the API server.

Since this mechanism allows for a node to initiate the join, we want to ensure that
this action is secure. For obvious reasons, we do not want just any node to be able to
join the cluster, and similarly, we want the worker node to be able to verify the
authenticity of the control plane. This is where the - - token and - -discovery-token-
ca-cert-hash parameters come into play.

The - - token parameter is a bootstrap token that has been predefined with the control
plane. In our simple use case, a bootstrap token has been automatically allocated by

way of the kubeadm init invocation. Users may also create these bootstrap tokens on
the fly:

$ kubeadm token create [--ttl <duration>]

This mechanism is especially handy when adding new worker nodes to the cluster. In
this case, the steps are simply to use kubeadm token create to define a new boot-
strap token and then use that token in a kubeadm join command on the new worker
node.

The --discovery-token-ca-cert-hash provides the worker node a mechanism to
validate the CA of the control plane. By presharing the SHA256 hash of the CA, the
worker node may validate that the credentials it received, were, in fact, from the
intended control plane.

The whole command may look something like this:

$ kubeadm join --token 878b76.ddab3219269370b2 10.1.2.15:6443 \
--discovery-token-ca-cert-hash \
sha256:312ce807a9e98d544f5a53b36ae3bb95cdcbe50cf8d1294d22ab5521ddb54d68

Add-Ons

After you install the control plane and bring up a few worker nodes, the obvious next
step is to get some workloads deployed. Before we can do so, we need to deploy a few
add-ons.

Minimally, we need to install a Container Network Interface (CNI) plug-in. This
plug-in provides Pod-to-Pod (also known as east-west) network connectivity. There
are a multitude of options out there, each with their own specific life cycles, so
kubeadm stays out of the business of trying to manage them. In the simplest of cases,
this is a matter of applying the DaemonSet manifest outlined by your CNI provider.

Add-Ons | 69



Additional add-ons that you might want in your production clusters would probably
include log aggregation, monitoring, and maybe even service mesh capabilities.
Again, since these can be complex, kubeadm does not attempt to manage them.

The one special add-on that kubeadm manages is that of cluster DNS. kubeadm cur-
rently supports kube-dns and CoreDNS, with kube-dns being the default. As with all
parts of kubeadm, you may even choose to forego these standard options and install
the cluster DNS provider of your choosing.

Phases

As we alluded to earlier in the chapter, kubeadm serves as the basis for a variety of
other Kubernetes installation tools. As you might imagine, if we are trying to make
use of kubeadm in this way, we may want some parts of the installation to be man-
aged by kubeadm and others to be handled by the wrapping installer framework.
kubeadm supports this use case, as well, with a feature called phases.

With phases, a user may leverage kubeadm to perform discrete actions undertaken in
the installation process. For instance, maybe the wrapping tool would like to use
kubeadm for its ability to generate PKI assets. Or perhaps that tool wants to leverage
kubeadm’s preflight checks in order to ensure that a cluster has best practices in place.
All of this—and more—is available with kubeadm phases.

High Availability

If you have been paying close attention, you probably noticed that we haven’t spoken
about a highly available control plane. That is somewhat intentional.

As the purview of kubeadm is primarily from the perspective of a single node at a
time, evolving kubeadm into a general-use tool for managing highly available installs
would be relatively complicated. Doing so would start to blur the lines of the Unix
philosophy of “doing one thing, and doing it well”

That said, kubeadm can be (and is) used to provide the components necessary for a
highly available control plane. Although there are a number of precise (and some-
times nuanced) actions that a user needs to take in order to create a highly available
control plane, the basic steps are:

1. Create a highly available etcd cluster.

2. Initialize a primary control plane node with kubeadm init and a configuration
that makes use of the etcd cluster created in step 1.

3. Transfer the PKI assets securely to all of the other control plane nodes.

4. Front the control plane API servers with a load balancer.

70 | Chapteré6: Installing Kubernetes



5. Join all workers nodes to the cluster by way of the load-balanced endpoints.

If this is your use case, and you would like to use kubeadm to
install a production-grade, highly available cluster, be sure to con-
sult kubeadm high availability documentation. This documentation
is maintained with each release of Kubernetes.

Upgrades

As with any deployment, there will come a time when you want to take advantage of
all the new features that Kubernetes has to offer. Similarly, if you require a critical
security update, you want the ability to enable it with as little disruption as possible.
Fortunately, Kubernetes provides for zero-downtime upgrades. Your applications
continue to run while the underlying infrastructure is modified.

Although there are countless ways to upgrade a cluster, we focus on the kubeadm use
case—a feature that has been available since version 1.8.

There are a lot of moving parts in any Kubernetes cluster, and this can make orches-
trating the upgrade complicated. kubeadm simplifies this significantly, as it is able to
track well-tested version combinations for the kubelet, etcd, and the container images
that serve the Kubernetes control plane.

The order of operations when performing an upgrade is straightforward. First, we
plan our upgrade, and then we apply our determined plan.

During the plan phase, kubeadm analyzes the running cluster and determines the
possible upgrade paths. In the simplest case, we upgrade to a minor or patch release
(e.g., from 1.10.3 to 1.10.4). Slightly more complicated is the upgrade to a whole new
minor release that is two (or more) releases forward (e.g., 1.8 to 1.10). In this case, we
need to walk the upgrades through each successive minor version until we reach our
desired state.

kubeadm performs a number of preflight checks to ensure that the cluster is healthy
and then examines the kubeadm-config ConfigMap in the kube-system namespace.
This ConfigMap helps kubeadm determine the available upgrade paths and ensures
that any custom configuration items are carried forward.

Although much of the heavy lifting happens automatically, you may recall that the
kubelet (and kubeadm itself) is not managed by kubeadm. When performing the
plan, kubeadm indicates which unmanaged components also need to be upgraded:

root@controll:~# kubeadm upgrade plan

[preflight] Running pre-flight checks.

[upgrade] Making sure the cluster is healthy:
[upgrade/config] Making sure the configuration is correct:

Upgrades | 71



[upgrade/config] Reading configuration from the cluster...
[upgrade/config] FYI: You can look at this config file with
'kubectl -n kube-system get cm kubeadm-config -oyaml'
[upgrade/plan] computing upgrade possibilities

[upgrade] Fetching available versions to upgrade to
[upgrade/versions] Cluster version: v1.9.5
[upgrade/versions] kubeadm version: v1.10.4
[upgrade/versions] Latest stable version: v1.10.4
[upgrade/versions] Latest version in the v1.9 series: v1.9.8

Components that must be upgraded manually after you have upgraded
the control plane with 'kubeadm upgrade apply':

COMPONENT CURRENT AVAILABLE

Kubelet 4 x v1.9.3 v1.9.8

Upgrade to the latest version in the v1.9 series:

COMPONENT CURRENT AVAILABLE
API Server v1.9.5 v1.9.8
Controller Manager v1.9.5 v1.9.8
Scheduler v1.9.5 v1.9.8
Kube Proxy v1.9.5 v1.9.8
Kube DNS 1.14.8 1.14.8

You can now apply the upgrade by executing the following command:

kubeadm upgrade apply v1.9.8

Components that must be upgraded manually after you have upgraded
the control plane with 'kubeadm upgrade apply':

COMPONENT CURRENT AVAILABLE

Kubelet 4 x v1.9.3 v1.10.4

Upgrade to the latest stable version:

COMPONENT CURRENT  AVAILABLE
API Server v1.9.5 v1.10.4
Controller Manager v1.9.5 v1.10.4
Scheduler v1.9.5 v1.10.4
Kube Proxy v1.9.5 v1.10.4
Kube DNS 1.14.8 1.14.8

You can now apply the upgrade by executing the following command:

kubeadm upgrade apply v1.10.4

You should upgrade system components consistent with the manner in which they
were installed (typically with the OS package manager).

72 | Chapteré6: Installing Kubernetes



After you have determined your planned upgrade approach, begin to execute the
upgrades in the order specified by kubeadm. If there are multiple releases in the
upgrade path, perform those on each node, as indicated.

root@controll:~# kubeadm upgrade apply v1.10.4

Again, preflight checks are performed, primarily to ensure that the cluster is still
healthy, backups of the various static Pod manifests are made, and the upgrade takes
place.

In terms of node order, ensure that you upgrade the control plane nodes first and
then perform the upgrades on each worker node. Control plane nodes should be
unregistered as upstreams for any front-facing load balancers, upgraded, and then,
after the entire control plane has been successfully upgraded, all control plane nodes
should be re-registered as upstreams with the load balancer. This may introduce a
short-lived period of time when the API is unavailable, but it ensures that all clients
have a consistent experience.

If you are performing upgrades for each worker in place, the workers may be upgra-
ded in parallel. Note that this may result in a period of time when there are no kube-
lets available for scheduling Pods. Alternatively, you may upgrade workers in a rolling
fashion. This ensures that there is always a node that may be deployed to.

If your upgrade also involves simultaneously performing disruptive
upgrades on the worker nodes (e.g., upgrading the kernel), it is
advisable to use the kubectl cordon and/or kubectl drain
semantics to ensure that your user workloads are rescheduled prior
to the maintenance.

Summary

In this chapter, we looked at how to easily install Kubernetes across a number of use
cases. Although we have only scratched the surface with regard to what kubeadm is
capable of, we hope we have demonstrated what a versatile tool it can be.

Since many of the deployment tools available today have kubeadm as an underpin-
ning, knowing how it works should help you understand what higher-order tools are
doing on your behalf. And, if you are so inclined, this understanding can help you
develop your own in-house deployment tooling.

Summary | 73






CHAPTER 7
Authentication and User Management

Now that we have successfully installed Kubernetes, one of the most fundamental
aspects of a successful deployment centers around consistent user management. As
with any multitenant, distributed system, user management forms the basis for how
Kubernetes ultimately authenticates identities, determines appropriate levels of
access, enables self-service capabilities, and maintains auditability.

In this chapter and the next, we explore how to make the best use of the authentica-
tion and access control capabilities of Kubernetes. But to get a true understanding of
how these constructs work, it is important to first understand the life cycle of an API
request.

Every API request that makes its way to the API server needs to successfully navigate
a series of challenges, as illustrated in Figure 7-1, before the server will accept (and
subsequently act) on the request. Each of these tests falls into one of three groups:
authentication, access control, and admission control.

75



API Request

!

Authentication
Has this user proven their identity?

'

Access control
Is this user allowed to perform
this action?

'

Admission control
Does this request look good?

'

Process the request

Fail the request

v

Figure 7-1. Kubernetes API request flow

The number and complexity of these challenges depends on how the Kubernetes API
server is configured, but best practices call for production clusters to implement all
three in some form or fashion.

The first two phases of servicing an API request (authentication and access control)
focus on what we know about a user. In this chapter, we offer an understanding of
what a user is from the perspective of the API server and, ultimately, how to leverage
user resources to provide secure API access to the cluster.

Users

The term users pertains to how you and I (and maybe even your continuous delivery
tooling) connect and gain access to the Kubernetes API. In the most common case,
users are often connecting to the Kubernetes API from some external place, often by
way of the kubectl command-line interface. However, since the Kubernetes API
forms the basis for all interactions with the cluster, these controls are also in place for
all kinds of access—your custom scripts and controllers, the web user interface, and
much more. This provides a consistent, secure position from which to start.

You may have noticed that, until now, we have refrained from using a capital “U”
when referring to users. Many newcomers to Kubernetes are often surprised to learn
that, among the wide array of resources provided by the API, users are, in fact, not a

76 | Chapter7: Authentication and User Management



top-level supported resource. They are not manipulated directly by way of the Kuber-
netes API, but, most commonly, are defined in an external user identity management
system.

There is good reason for this—it stands in support of good user management
hygiene. If you are like the vast majority of organizations that have deployed Kuber-
netes, you almost certainly already have some form of user management in place.
Whether this comes in the form of a corporate-wide Active Directory cluster or a
one-off Lightweight Directory Access Protocol (LDAP) server, how you manage your
users should remain consistent across your organization, regardless of the systems
consuming it. Kubernetes supports this design tenet by providing the connectivity to
leverage these existing systems, thus enabling consistent and effective user manage-
ment across your infrastructure.

The absence of such systems does not mean that you won't be able
to use Kubernetes. It may just mean that you may need to leverage
a different mechanism for authenticating users, as we will discover
in the following section.

Authentication

At the time of this writing, Kubernetes supports multiple ways of authenticating
against the API. As with any authentication mechanism, this serves as the first gate-
keeper for any kind of programatic access. The questions we are evaluating here are,
“Who is this user?” and “Do their credentials match our expectations?” At this point
in the API flow we are not yet concerned about whether the request should be granted
based on the user’s role or even whether the request conforms to our standards. The
question here is simple, and the answer binary: “Is this a genuine user?”

Just as with many well-designed REST-based APIs, there are multiple strategies that
Kubernetes can employ for authenticating users. We can think about each of these
strategies as belonging to one of three major groups:

« Basic Authentication
o X.509 client certificates

o Bearer tokens

The way that a user ultimately arrives at obtaining credentials depends on the identity
provider enabled by the cluster administrator, but the mechanism will adhere to one
of these broad groups. And although these mechanisms are vastly different in terms
of how they are implemented, we will come to see how each ultimately provides the
API server with the data it needs to verify the authenticity and access levels of a user
(by way of the UserInfo resource).

Authentication | 77



Basic Authentication

Basic Authentication is perhaps the most primitive of the authentication plug-ins
available to a Kubernetes cluster. Basic Authentication is a mechanism whereby the
API client (typically kubectl) sets the HT'TP Authorization header to a base64 hash
of the combined username and password. Since base64 is merely a hash and provides
no level of encryption for the transmitted credentials, it is imperative that Basic
Authentication be used in conjunction with HTTPS.

To configure Basic Authentication on the API server, the administrator needs to sup-
ply a static file of usernames, passwords, user IDs, and a list of groups that this user
should be associated with. The format is as follows:

password,username,uid, "groupl,group2,group3"
password,username,uid, "groupl,group2,group3"

Note that the format of these lines matches the fields of the UserInfo resource.

This file is supplied to the Kubernetes API server by way of the - -basic-auth-file
command-line parameter. Since the API server does not currently monitor this file
for changes, whenever a user is added, removed, or updated, the API server needs to
be restarted in order for these changes to take effect. Because of this constraint, Basic
Authentication is not normally recommended for production clusters. This file may
certainly be managed by an external entity (e.g., configuration management tooling)
in order to get to production-like configurations, but experience shows that this
quickly becomes unsustainable.

These shortcomings aside, it should be noted that Basic Authentication can be a
excellent tool for a fast and straightforward test of a Kubernetes cluster. In the
absence of a more elaborate authentication configuration, Basic Authentication
allows an administrator to quickly experiment with features like access control.

X.509 client certificates

An authentication mechanism that is typically enabled by most of Kubernetes instal-
lers is X.509 client certificates. The reasons for this may be many, but it is almost cer-
tainly due to the fact that they are secure, ubiquitous, and may be generated relatively
easily. If there is access to a signing CA, new users can be created in short order.

When installing Kubernetes in a production-quality manner, we want to be sure that
not only are user-initiated requests transmitted securely, but also that service-to-
service communication is encrypted. X.509 client certificates make perfect sense for
this use case. So, if this is already a requirement, why not use it to authenticate users,
as well?

This is precisely how many of the installation tools work. For example, kubeadm, the
community-supported installer, creates a self-signed root CA certificate and then uses

78 | Chapter7: Authentication and User Management



this for signing various certificates for the service components as well as the single
administrative certificate that it creates.

A single certificate for all of your users is not the best way to manage users within
Kubernetes, but it will do for getting things up and running. When the need to
onboard additional users arises, administrators may sign additional client certificates
from this signing authority.

Since kubeadm is intended to be both an easy on-ramp for users to
stand up a cluster and a tool for building production-grade clus-
ters, it is highly configurable. For instance, users require the use of
their own CA, they may configure kubeadm to sign certificates for
both the service and user authentication requirements.

There are a variety of tools that can help an administrator create and manage client
certificates. Some of the more popular choices are the OpenSSL client tools and a util-
ity from Cloudflare, named cfssl. If you are already familiar with these tools, you
know that the command-line options can sometimes be a bit cumbersome. We focus
on cfss1 here, since it has, in our opinion, a workflow that is a bit easier to grasp.

We assume that you already have an existing signing CA. The first step is to create a
CSR, which will be used to generate the client certificate. Again, we need to map a
user’s identity to a UserInfo resource. We can do so with the signing request. Here,
our specification of Common Name CN maps to username, and all Organization fields
0 map to the groups that the user is a member of.

cat > joesmith-csr.json <<EOF

{
"CN": "joesmith",
"key": {
"algo": "rsa",
"size": 2048
1,
"names": [
{
"c": "us",
"L": "Boston",
"0": "qga",
"0": "infrastructure",
"OU": "Acme Sprockets Company",
"ST": "MA"
}
1
}

In this case, the user "joesmith" is a member of both "qa" and "infrastructure".

We can generate the certificate as follows:

Authentication | 79


https://github.com/cloudflare/cfssl

cfssl gencert \
-ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-profile=kubernetes \
joesmith-csr.json | cfssljson -bare admin

Enabling X.509 client certificate authentication on the API server is as simple as spec-
ifying the --client-ca-file=, the value of which will point at the certificate file on
disk.

Even though cfssl simplifies the task of creating client certificates, this means of
authentication can still be a bit unwieldy. Just as with basic authentication, there are
some drawbacks when a user is onboarded, removed, or when a change is required
(e.g., adding a user to a new group). If certificates are chosen as an authentication
option, administrators should, minimally, be sure that this process is automated in
some fashion and that this automation includes a process for rotating certificates over
time.

If the number of expected end users is quite low, or if the majority of users will inter-
act with the cluster by way of some intermediary (e.g., continuous delivery tools), X.
509 client certificates may be an adequate solution. If this is not the case, however,
you may find some of the token-based options to be a bit more flexible.

OpenlID Connect

OIDC is an authentication layer built on top of OAuth 2.0. With this authentication
provider, the user independently authenticates with a trusted identity provider. If this
user successfully authenticates, the provider then, through a series of web requests,
provides the user with one or more tokens.

Because this exchange of codes and tokens is somewhat complex
and is not really pertinent to how Kubernetes authenticates and
authorizes the user, we focus on the desired state, where the user
has authenticated and both an id_token and a refresh_token have
been granted.

The tokens are provided to the user in the RFC 7519 JSON Web Token (JWT) format.
This open standard allows for the representation of user claims between multiple par-
ties. Put more simply, with a trivial amount of human-parsable JSON, we can share
information, such as username, user ID, and the groups this user may belong to.
These tokens are authenticated with a Hash-based Message Authentication Code
(HMAC) and are not encrypted. So, again, be sure that all communication including
JWT is encrypted, preferably with TLS.

A typical token payload looks something like this:

80 | Chapter7: Authentication and User Management



"{ss": "https://auth.example.com",
"sub": "Ch5hdXRoMHWMTYzOTgzZTdjN2EyNWQXMDViNFESBWF1N2Q2",
"aud": "dDblg7x07dks1uG60p976jC7TjuzDCDZ",
"exp": 1517266346,
"{at": 1517179946,
"at_hash": "0jgZQ@vauibNVcXP52CtoQ",
"username": "user",
"email": "user@example.com",
"email_verified": true,
"groups": [
"ga",
"{nfrastructure"
]
}

The fields in this JSON document are called claims, and they serve to identify various
attributes of the user. Although many of these claims are standardized (e.g., iss, iat,
exp), identity providers may also add their own custom claims. Fortunately, the API
server allows us to indicate how these claims will map back to our UserInfo resource.

To enable OIDC authentication on the API server, we need to add the --oidc-
issuer-url and --oidc-client-1id parameters on the command line. These are the
URL of the identity provider and the ID of the client configuration, respectively, and
both of these values are given by your provider. The two other options that we may
want to configure, though this is not mandatory, are --oidc-username-claim
(default: sub) and --oidc-group-claim (default: groups). It’s great if these defaults
match the structure of your tokens. But even if they don’t match, each allows you to
map claims on the identity provider to their respective UserInfo attributes.

There is a fantastic tool for examining the structure of JWTs. This
tool from AuthO not only allows you to paste your token for explo-
ration of its contents but also offers an in-depth reference of open
source JWT signing and verification libraries.

This type of authentication is a bit different than the others that we have looked at in
that it involves an intermediary. With basic authentication and X.509 client certifi-
cates, the Kubernetes API server is able to perform all of the steps required for
authentication. As shown in Figure 7-2, with OIDC, the end user authenticates
against our mutually trusted identity provider and then use the tokens she has
received to subsequently prove her identity to the API server. The flow looks some-
thing like the illustration in Figure 7-2.

Authentication | 81


https://jwt.io

A 4

|dentity
provider

v 0 0

User interfacing | Kubernetes

with kubectl o APl server

authentication o frontend

User attempts a‘ AuthN/AuthZ o
(3

Figure 7-2. Kubernetes OIDC flow

1. The user authenticates and authorizes the Kubernetes API server application.

2. The authentication frontend passes the user’s credentials on to the identity pro-
vider.

3. If the identity provider is able to authenticate the user, the provider returns an
access code. This access code is then returned to the identity provider and
exchanged for an identity token and (usually) a refresh token.

4. The user adds these tokens to the kubeconfig configuration.

5. Now that the kubeconfig file contains OIDC identity information, kubectl
attempts to inject the token as a bearer token on each Kubernetes API request. If
the token is expired, kubectl will first attempt to get a new identity token by
exchanging the expired identity token with the issuer.

6. The Kubernetes API server ensures that this token is legitimate by requesting
user information from the identity provider, based on the token credentials.

7. If the token is validated, the identity provider returns user information and the
Kubernetes API server allows the original Kubernetes API request to continue its
flow.

Webhook

In some scenarios, an administrator already has access to systems that are capable of
generating bearer tokens. You might be able to imagine a scenario where an in-house
system grants a user a long-lived token that he or she may be able to use to authenti-
cate to any number of systems within the environment. It may not be as elaborate or
standards-compliant as OIDC, but as long as we can programmatically challenge the
authenticity of that token, Kubernetes is able to verify the identity of a user.

With webhook authentication in place, the API server extracts any bearer token
present on an inbound request and subsequently issues a client POST request to the

82 | Chapter7: Authentication and User Management



authentication service. The body of this request will be a JSON serialized TokenRe
view resource embedded with the original bearer token.

{
"apiVersion": "authentication.k8s.io/vlbetal",
"kind": "TokenReview",
"spec": {
"token": "some-bearer-token-string"
}
}

After the authenticating service evaluates this token for authenticity, it is then
required to formulate its own response, again, with a TokenReview as the body. The

response indicates, with a simple true or false, whether the bearer token is legiti-
mate. If the request fails authentication, the response is a simple one:

{
"apiVersion": "authentication.k8s.io/vibetal",
"kind": "TokenReview",
"status": {
"authenticated": false

}
}

If there was an error in authenticating the user for some reason, the
service may also respond with an error string field as a sibling to
authenticated.

Conversely, if the response is that the authentication was successful, the provider
should respond, minimally, with data about the user with an embedded UserInfo
resource object. This object has fields for username, uid, groups, and even one for
extra data the service may want to pass along.

{
"apiVersion": "authentication.k8s.io/vibetal",
"kind": "TokenReview",
"status": {
"authenticated": true,
"user": {
"username": "janedoe@example.com",
"uid": "42",
"groups": [
"developers",
"qa
1,
"extra": {
"extrafield1": [
"extravaluel”,

Authentication | 83



"extravalue2"

Once the API initiates the request and receives a response, the API server grants or
denies the Kubernetes API request, in accordance with the guidance provided by the
authentication service.

One thing to keep in mind with nearly all of the token-based
authentication mechanisms is that verification of the token often
involves an additional request and response. In the case of both
OIDC and webhook authentication, for instance, this additional
roundtrip to authenticate the token may become a performance
bottleneck for the API request if the identity provider does not
respond in timely fashion. With any of these plug-ins in play, be
sure that you have low-latency and performant providers.

Featured project: dex

What happens when none of these services are appropriate for your use case? You
may have noticed that commonly utilized directory services are not included in the
list of natively supported authentication plug-ins for Kubernetes. For example, at the
time of this writing, there are no connectors for Active Directory, LDAP, or others.

Of course, you could always write your own authenticating proxy that would interface
with these systems, but that would quickly become yet another piece of infrastructure
to develop, manage, and maintain.

Enter dex, a project from CoreOS that may be used as an OIDC broker. dex provides
a standards-compliant OIDC frontend to a variety of common backends. There is
support for LDAP, Active Directory, SQL, SAML, and even SaaS providers, such as
GitHub, GitLab, and LinkedIn. Just imagine your delight when you receive that invite
from your Kubernetes administrator:

I'd like to add you to my professional Kubernetes cluster network on LinkedIn.

84 | Chapter7: Authentication and User Management


https://github.com/coreos/dex

It is important to note that the authentication mechanisms config-
ured in a Kubernetes cluster are not mutually exclusive. In fact, we
recommend enabling multiple plug-ins simultaneously.

As an administrator, you may, for instance, configure both TLS cli-
ent certificate and OIDC authentication at the same time. Although
it is probably not appropriate to use multiple mechanisms on a
daily basis, such a configuration may prove valuable when you
need to debug a failing secondary API authentication mechanism.
In this scenario, you can leverage a well-known (and hopefully pro-
tected) certificate to garner additional data on the failure.

Note that when multiple authentication plug-ins are active at the
same time, the first plug-in to successfully authenticate a user will
shortcircuit the authentication process.

kubeconfig

With all of the authentication mechanisms we have described, we need to craft a
kubeconfig file that records the details of how we authenticate. kubectl uses this con-
figuration file to determine where and how to issue requests to the API server. This
file is typically located in your home directory under ~/.kube/config but may also be
specified explicitly on the command line with the - -kubeconfig parameter or by way
of the KUBECONFIG environment variable.

Whether or not you embed your credentials in your kubeconfig depends on which
authentication mechanism you use and possibly even your security stance. Remem-
ber that, if you do embed credentials into this configuration file, they may be used by
anyone who has access to this file. Treat this file as if it were a highly sensitive pass-
word, because it effectively is.

For someone who may not be familiar with a kubeconfig file, it is important to under-
stand its three top-level structures: users, clusters, and contexts. With users we
name a user and provide the mechanism by which he or she will authenticate to a
cluster. The clusters attribute provides all of the data necessary to connect to a clus-
ter. This, minimally, includes the IP or fully qualified domain name for the API server
but may also include items like the CA bundle for a self-signed certificate. And con
texts is where we associate users with clusters as a single named entity. The context
serves as the means by which kubectl connects and authenticates to an API server.

All of your credentials for all of your clusters may be represented with a single kube-
config configuration. Best of all, this is manipulated by way of a few kubectl com-
mands:

$ export KUBECONFIG=mykubeconfig
$ kubectl config set-credentials cluster-admin --username=admin \
- -password=somepassword

kubeconfig | 85



User "cluster-admin" set.
$ kubectl config set-credentials regular-user --username=user \
- -password=someotherpassword
User "regular-user" set.
$ kubectl config set-cluster clusterl --server=https://10.1.1.3
Cluster "clusterl" set.
$ kubectl config set-cluster cluster2 --server=https://192.168.1.50
Cluster "cluster2" set.
$ kubectl config set-context clusterl-admin --cluster=clusteril \
--user=cluster-admin
Context "clusterl-admin" created.
$ kubectl config set-context clusterl-regular --cluster=clusteril \
--user=regular-user
Context "clusterl-regular" created.
$ kubectl config set-context cluster2-regular --cluster=cluster2 \
--user=regular-user
Context "cluster2-regular" created.
$ kubectl config view
apiVersion: vi1
clusters:
- cluster:
server: https://10.1.1.3
name: clusterl
- cluster:
server: https://192.168.1.50
name: cluster2
contexts:
- context:
cluster: clusterl
user: cluster-admin
name: clusterl-admin
- context:
cluster: clusterl
user: regular-user
name: clusterl-regular
- context:
cluster: cluster2
user: regular-user
name: cluster2-regular
current-context: ""
kind: Config
preferences: {}
users:
- name: cluster-admin
user:
password: somepassword
username: admin
- name: regular-user
user:
password: someotherpassword
username: user

86 | (Chapter7: Authentication and User Management



Here, we have created two user definitions, two cluster definitions, and three con-
texts. And now, with just one more kubectl, we can reset our context with a single
additional command.

$ kubectl config use-context cluster2-regular
Switched to context "cluster2-regular".

This makes it extraordinarily simple to change from one cluster to the next, switch
both cluster and user, or even impersonate a different user on the same cluster (some-
thing that is quite useful to have in an administrator’s toolbox).

Although this was a very simple example utilizing basic authentication, users and
clusters may be configured with all kinds of options. And these configurations can
become relatively complex. That said, this is a powerful tool made simple with a few
command-line operations. Utilize the contexts that make the most sense for your use
case.

Service Accounts

So far in this chapter, we have discussed how users authenticate with the API. And, in
that time, we have only really focused on authentication as it applies to a user that is
external to a cluster. Perhaps this is you, executing a kubectl command from your
console or even with a click through the web interface.

There is another important use case to consider though, and this pertains to how the
processes running inside a Pod access the API. At first, you might ask yourself why a
process running in the context of a Pod might require API access.

A Kubernetes cluster is a state machine made up of a collection of controllers. Each of
these controllers is responsible for reconciling the state of the user-specified resour-
ces. So, in the most fundamental case, we need to provide API access for any custom
controllers that we intend to implement. But access to the Kubernetes API from a
controller is not the only use case. There are countless reasons why a Pod might
require self-awareness or even awareness about the cluster as a whole.

The way that Kubernetes handles these use cases is using the ServiceAccount
resource:

$ kubectl create sa testsa
$ kubectl get sa testsa -oyaml
apiVersion: vi1
kind: ServiceAccount
metadata:
name: testsa
namespace: default
secrets:
- name: testsa-token-nrémd

Service Accounts | 87



You can think of ServiceAccounts as namespaced user accounts for all Pod resour-
ces.

In the output above, note that when we created the ServiceAccount, a Secret named
testsa-token-nrémd was also created automatically. Just as with the end-user
authentication we discussed earlier, this is the token that will be included as a bearer
token on every API request. These credentials are mounted into the Pod in a well-
known location that is accessible by the various Kubernetes clients.

$ kubectl run busybox --image=busybox -it -- /bin/sh
If you don't see a command prompt, try pressing enter.
/ # 1ls -al /var/run/secrets/kubernetes.io/serviceaccount

total 4

drwxrwxrwt 3 root root 140 Feb 11 20:17 .

drwxr-xr-x 3 root root 4096 Feb 11 20:17 ..

drwxr-xr-x 2 root root 100 Feb 11 20:17 \
..2982_11 02_20_17_08.558803709

Trwxrwxrwx 1 root root 31 Feb 11 20:17 ..data ->

..2982_11 02_20_17_08.558803709

Trwxrwxrwx 1 root root 13 Feb 11 20:17 ca.crt -> ..data/ca.crt

Trwxrwxrwx 1 root root 16 Feb 11 20:17 namespace -> \
..data/namespace

Trwxrwxrwx 1 root root 12 Feb 11 20:17 token -> ..data/token

Even though we are attempting to authenticate a process, we again use JWTs, and the
claims within look a lot like what we saw in the end-user token scenarios. Recall that
one of the API server’s objectives is to map data about this user to a UserInfo
resource, and this case is no different:

{
"{ss": "kubernetes/serviceaccount",
"kubernetes.io/serviceaccount/namespace": "default",
"kubernetes.io/serviceaccount/secret.name": "testsa-token-nrémd",
"kubernetes.io/serviceaccount/service-account.name": "testsa",
"kubernetes.io/serviceaccount/service-account.uid":

"23fe204f-0f66-11e8-85d0-080027da173d",

"sub": "system:serviceaccount:default:testsa"

}
Every Pod that is launched has an associated ServiceAccount.

apiVersion: vi1
kind: Pod
metadata:
name: testpod
spec:
serviceAccountName: testpod-sa

If none is specified in the Pod manifest, a default ServiceAccount is used. This
default ServiceAccount is available on a namespace-wide basis and is automatically
created when a namespace is.

88 | Chapter7: Authentication and User Management



There are many scenarios where it is inappropriate, from a security
perspective, to provide a Pod with access to the Kubernetes API.
Although it is not possible to prevent a Pod from having an associ-
ated ServiceAccount, in the next chapter we explore how these use
cases may be secured.

Summary

In this chapter, we covered the most commonly deployed end-user authentication
mechanisms in Kubernetes. Hopefully one or more of these stood out as something
you would be interested in enabling in your environment. If not, there are a handful
of others (e.g., static token files, authenticating proxies, and others) that may be
implemented. One or more of these will almost certainly fit your needs.

Although you should perform due diligence upfront to onboard your users in a
secure and scalable manner, remember that, just as with nearly everything in Kuber-
netes, these configurations may evolve over time. Use the solution that makes sense
for your organization today, knowing that you may adopt additional capabilities
seamlessly in the future.

Summary | 89






CHAPTER 8
Authorization

Authentication is only the first challenge for a Kubernetes API request. As we intro-
duced in Chapter 7, there are two additional tests for every request: access control
and admission control. Although authentication is a critical component for ensuring
that only trusted users can effect change on a cluster, as we explore in this chapter,
authentication also becomes the enabler for fine-grained control concerning what
those users may do.

Beyond just verifying a user’s authenticity and determining levels of access, we also
want to be sure that every request conforms to our business needs. Every organiza-
tion has a number of implemented standards. These policies and procedures help us
make sense of the complex infrastructures that are required to bring applications to
production environments. In this chapter, we take a look at how Kubernetes stands in
support of this with admission controllers.

REST

As we have already covered, the Kubernetes API is a RESTful API. The advantageous
properties of a RESTful APIs are many (e.g., scalability and portability), but its simple
structure is what enables us to determine levels of access within Kubernetes.

For readers who may not be familiar with REST, the semantics are straightforward:
resources are manipulated using verbs. As in traditional languages, if we ask someone
to “delete the Pod,” we do so with a noun and a verb. REST APIs function in the same
way.

To illustrate this concept, let’s look precisely at how kubectl requests information
about a Pod. By simply increasing the log level using the -v option, we can get an in-
depth view of the API calls that kubectl is making on our behalf.

91



$ kubectl -v=6 get po testpod

10202 00:28:31.933993 17487 loader.go:357] Config loaded from file
/home/ubuntu/.kube/config

10202 00:28:31.994930 17487 round_trippers.go:436] GET
https://10.0.0.1:6443/api/v1l/namespaces/default/pods/testpod 200 OK

In this simple Pod information request, we can see that kubectl has issued a GET
request (this is the verb) for the pods/testpod resource. You may also notice that
there are other elements of the URL path, such as the version of the API, as well as
the namespace that we are querying (default, in this case). These elements add addi-
tional context for our request, but suffice it to say that the resource and the verb are
the primary actors here.

Those who have encountered REST before will be familiar with the four most basic
verbs: Create, Read, Update, and Delete (CRUD). These four actions map directly to
the HTTP verbs POST, GET, PUT, and DELETE, respectively, and in turn, make up the
vast majority of HT'TP requests normally found on the internet.

You may also notice that these verbs look somewhat like the verbs we would use when
dealing with Kubernetes resources, and you would be right. We can certainly create,
delete, update, and even gather information about a Pod, for instance. Just as with
HTTP, these four verbs constitute the most basic elements of how we would interact
with Kubernetes resources, but in our case we are not limited to just these four.
Within the Kubernetes API, in addition to get, update, delete, and patch, we also
have access to the verbs 1ist, watch, proxy, redirect, and deletecollection, when
dealing with resources. These are the verbs that kubectl (and any client, for that mat-
ter) is using behind the scenes on our behalf.

Resources in Kubernetes are familiar constructs—Pods, Services, and Deployments,
among others—that we manipulate by way of those verbs.

Authorization

Just because users are authenticated does not mean that we should give equal access
rights to all of them. For example, we may want members of the web development
team to have the ability to manipulate the Deployments serving web requests but not
the underlying Pods that serve as the units of compute for those Deployments. Or
perhaps, even within the web team itself, we might have a group that can create
resources and another group that can not. In short, we would like to determine which
actions are permissible based upon who the user is and/or which groups she is a
member of.

This process is known as authorization, and it is the next challenge that Kubernetes
tests for every API request. Here, we are asking, “Is this user allowed to perform this
action?”

92 | Chapter8: Authorization



Just as with authentication, authorization is the responsibility of the API server. The
API server may be configured to implement various authorization modules using the
aptly named - -authorization-mode argument to the kube-apiserver executable.

The API server passes each request to these modules in the order defined by the
comma-delimited --authorization-mode argument. Each module, in turn, may
either weigh in on the decision-making process or choose to abstain. In the case of
abstinence, the API request simply moves on to the next module for evaluation. If,
however, a module does make a decision, the authorization is terminated and reflects
the decision of the authorizing module. If the module denies the request, the user
receives an appropriate HTTP 403 (Forbidden) response, and if the request is
allowed, the request makes its way to the final step of API flow: admission controller
evaluation.

At the time of this writing, there are six authorization modules that may be config-
ured. The simplest and most direct are the AlwaysAllow and AlwaysDeny modules,
and just as the names suggest, these modules allow or deny a request, respectively.
Both of these modules are really only suited for test environments.

The Node authorization module is responsible for applying the authorization rules
that we would like to apply to API requests made by worker nodes. Just like end
users, the kubelet processes on each of the nodes perform a variety of API requests.
For example, the Node status that is presented when you execute kubectl get nodes
is possible because the kubelet has provided its state to the API server with a PATCH
request.

PATCH https://k8s.example.com:6443/api/vl/nodes/nodel.example.com/status 200 OK

Obviously, the kubelet should not have access to resources like our web service Pods.
This module restricts the capabilities of the kubelet to the subset of requests neces-
sary to maintain a functional worker node.

Role-Based Access Control

The most effective means of user authorization in Kubernetes uses the RBAC module.
Short for role-based access control, this module allows for the implementation of
dynamic access control polices at runtime.

Those who are accustomed to this type of authorization from other frameworks
might be groaning by now. The way that some of these frameworks have imple-
mented RBAC is all too often a complicated and convoluted process. When defining
levels of access is tedious, it can be tempting to provide coarse-grained access con-
trols, if any at all. Worse, when the configuration of these controls is static or inflexi-
ble, you can almost guarantee that they will not be implemented effectively.

Role-Based Access Control | 93



Fortunately, Kubernetes makes the definition and implementation of RBAC policies
extraordinarily simple. Put succinctly, Kubernetes maps the attributes of the User
Info object to the resources and verbs that the user should have access to.

Role and ClusterRole

With the RBAC module, authorization to perform an action on a resource is defined
with the Role or ClusterRole resource types. (We will dive into the difference
between these resources shortly.) To start, let’s first focus only on the Role resource.
An implementation of the previous example (where a user has read-write access to
Deployments but only read access to Pods) might look something like this:

kind: Role
apiVersion: rbac.authorization.k8s.io0/v1
metadata:
name: web-rw-deployment
namespace: some-web-app-ns
rules:
- apiGroups: [""]
resources: ["pods"]
verbs: ["get", "list", "watch"]
- apiGroups: ["extensions", "apps"]
resources: ["deployments"]
verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]

In this Role configuration, we have created a policy that allows for read-type actions
to be applied to Pods and for full read-write access rights for Deployments. This Role

would enforce that all changes that happen to the child Pods of a Deployment happen
at the Deployment level (e.g., rolling updates or scaling).

The apiGroups field of each rule simply indicates to the API server the namespace of
the API that it should act on. (This reflects the API namespace defined in the apiver
sion field of your resource definition.)

In the next two fields, resources and verbs, we encounter those REST constructs we
discussed earlier. And, in the case of RBAC, we explicitly allow these types of API
requests for a user with this web- rw-deployment role. Since rules is an array, we may
add as many combinations of permissions as are appropriate. All of these permissions

are additive. With RBAC, we can only grant actions, and this module otherwise denies
by default.

Role and ClusterRole are identical in functionality and differ only in their scope. In
the example just shown, you may notice that this policy is bound to the resources in
the some-web-app-ns namespace. That means that this policy is only applied to
resources in that namespace.

94 | Chapter8: Authorization



If we want to grant a permission that has cross-namespace capabilities, we use the
ClusterRole resource. This resource, in the same manner, grants fine-grained con-
trol but on a cluster-wide basis.

You might be wondering why someone would ever want to implement policies like
this. ClusterRoles are typically employed for two primary use cases—to easily grant
cluster administrators a wide degree of freedom or to grant very specific permissions
to a Kubernetes controller.

The first case is simple. We often want administrators to have broad access so that
they can easily debug problems. Of course, we could have a Role policy for every
namespace that we eventually create, but it may be more expedient to just grant this
access with a ClusterRole. Since these permissions are far reaching, we use this con-
struct with caution.

Most Kubernetes controllers are interested in watching resources across namespaces
and then reconciling cluster states appropriately. We can use ClusterRole policies to
ensure that controllers only have access to the resources they care about.

All Kubernetes controllers (e.g., Deployments or StatefulSets)
have the same basic structure. They are a state machine that
watches the Kubernetes API for changes (additions, modification,
and deletions) and seeks to reconcile from the current state to the
user-specified desired state.

Imagine a scenario where we wanted to create DNS records based upon a user-
specified annotation on a Service or Ingress resource. Our controller would need to
watch these resources and take action upon some sort of change. It would be insecure
to give this controller access to other resources and inappropriate verbs (e.g., DELETE
on Pods). We can use a ClusterRole policy to provide the correct level of access as
follows:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: external-dns
rules:
- apiGroups: [""]
resources: ["services"
verbs: ["get", "watch", "list"]
- apiGroups: ["extensions"]
resources: ["ingresses"]
verbs: ["get", "watch", "list"]

And this is exactly how the external-dns Kubernetes incubator project works.

Role-Based Access Control | 95


http://bit.ly/2Qp5GlP

With this ClusterRole policy in place, an external-dns controller can watch for addi-
tions, modifications, or even deletions of Service and Ingress resources and act on
them accordingly. And, most importantly, these controllers do not have access to any
other aspects of the APL

Be sure to understand all implications when granting users access
rights with RBAC. Always seek to give only the rights that are nec-
essary, since this significantly reduces your security exposure. Also
understand that some rights grant implicit—and perhaps uninten-
tional—rights to other resources. In particular, you should know
that granting create rights to a Pod effectively grants read access to
more sensitive and related resources, like Secrets. Because Secrets
may be mounted or exposed via environment variables to a Pod,
the Pod create rights allows a Pod owner to read those Secrets
unencrypted.

RoleBinding and ClusterRoleBinding

You'll notice that neither Role nor ClusterRole specify which users or groups to tar-
get with their rules. Policies alone are useless unless they are applied to a user or a
group. To associate these policies with users, groups, or ServiceAccounts, we can use
the RoleBinding and ClusterRoleBinding resources. The only difference here is
whether we are trying to bind a Role or ClusterRole. Again, RoleBindings are
namespaced.

RoleBinding and ClusterRoleBinding associate a policy with a subject:

kind: RoleBinding
apiVersion: rbac.authorization.k8s.i0/v1
metadata:

name: web-rw-deployment

namespace: some-web-app-ns
subjects:
- kind: User

name: "joesmith@example.com"

apiGroup: rbac.authorization.k8s.io
- kind: Group

name: "webdevs"

apiGroup: rbac.authorization.k8s.1o
roleRef:

kind: Role

name: web-rw-deployment

apiGroup: rbac.authorization.k8s.1o

In this example, we have associated the web-rw-deployment Role in the some-web-
app-ns namespace to joesmith@example.com, as well as to a group with the name web
devs.

96 | Chapter8: Authorization



As you may recall from Chapter 7, the objective of every type of authentication mech-
anism is two-fold—first, to ensure that the user’s credentials match our expectations,
and second, to obtain information about an authenticated user. This information is
conveyed with the aptly named UserInfo resource. The string values that we specify
here are reflective of the user information obtained during authentication.

When it comes to authorization, there are three subject types to which we may apply
policy: Users, Groups, and ServiceAccounts. In the case of Users and Groups, these
are defined by the UserInfo username and groups fields, respectively.

The values of these fields are strings, in the case of username, and a
list of strings for groups, and the comparison used for inclusion is
a simple string match. These string values are up to you, and they
can be any unique string values that your authorization system pro-
vides to identify a user or group.

ServiceAccounts are specified explicitly with the appropriately named ServiceAc
count subject type.

subjects:
- kind: ServiceAccount
name: testsa
namespace: some-web-app-ns

Remember that ServiceAccounts supply the Kubernetes API credentials for all run-
ning Pod processes. Every Pod has an associated ServiceAccount, regardless of
whether we specify which serviceAccountName to use in the Pod manifest. Left unat-
tended, this could pose a significant security concern.

This concern can be largely mitigated with RBAC policies. Since RBAC policies are
default deny, we recommended that any Pod that requires API capabilities have its
own (or possibly shared) ServiceAccount with an associated fine-grained RBAC pol-
icy. Only grant this ServiceAccount the actions and resources that it requires to
function properly.

Recall the ClusterRole external-dns example. Because the controller state machine
issues requests to the Kubernetes API from a Pod context, we can use a ClusterRole
Binding with a ServiceAccount subject to enable this functionality:

apiVersion: rbac.authorization.k8s.io/vibetal
kind: ClusterRoleBinding
metadata:
name: external-dns-binding
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole

Role-Based Access Control | 97



name: external-dns
subjects:
- kind: ServiceAccount
name: external-dns
namespace: default

Testing Authorization

As the number of users, groups, and workloads on a Kubernetes cluster increases, so
too does the complexity. Although RBAC is a simple mechanism by which to apply
authorization policies to a collection of subjects, implementing and debugging access
rights can sometimes be tough. Fortunately, kubectl provides a handy resource for
verifying our policies without needing to effect any real change on the cluster.

To test access, simply use kubectl to set the context of the user you want to verify (or
a user who is part of a group you need to check).

$ kubectl use-context admin
$ kubectl auth can-i get pod
yes

Here, we can see that the admin user has GET access to the Pod resource in the
default namespace.

After creating a much more restricted policy, where the user is prevented from creat-
ing any Namespace resources (which are scoped at the cluster), we use can-1 to con-
firm this policy:

$ kubectl use-context basic-user

$ kubectl create namespace mynamespace

Error from server (Forbidden): namespaces is forbidden: User "basic-user"
cannot create namespaces at the cluster scope

$ kubectl auth can-i create namespace

no

Note that the user received the appropriate Forbidden when she first attempted to
create the Namespace mynamespace.

In this chapter, we do not cover the attribute-based access control
(ABAC) module. This module is semantically very similar to the
RBAC module, with the exception that these policies are statically
defined with a configuration file on each of the Kubernetes API
servers. Just like some of the other file-based configuration items
we have discussed, this policy is not dynamic. An administrator
needs to restart the kube-apiserver process each time he wants to
modify this policy. This aspect makes it impractical for the more
robust and production-ready RBAC module.

98 | Chapter8: Authorization



Summary

In this chapter, we covered the RESTful nature of the Kubernetes API and how its
structure lends itself well to policy enforcement. We have also explored how authori-
zation directly relates to what we have already covered about authentication.

Authorization is one of the critical components necessary for the deployment of a
secure, multitenant distributed system. With RBAC, Kubernetes affords us the capa-
bility to enforce both very coarse-grained, sweeping policies and those that are
extremely specific to a user or group. And, because Kubernetes makes the definition
and maintenance of these policies so trivial to implement, there is really no reason
why even the most basic of deployments cannot make use of them. This is a perfect
first step toward happy users, administrators, and auditors alike.

Summary | 99






CHAPTER9
Admission Control

As we mentioned in the previous two chapters, admission control is the third phase of
API request onboarding. By the time we have reached this phase of an API request
life cycle, we have already determined that the request has come from a real, authenti-
cated user and that the user is authorized to perform this request. What we care about
now is whether the request meets the criteria for what we consider to be a valid
request, and, if not, what action to take. Should we reject the request entirely, or
should we alter it to meet our business standards? For those who are familiar with the
concept of API middleware, admission controllers are very similar in function.

Although authentication and admission control are both critical to a successful
deployment, admission control is where, you, as an administrator, can really start to
wrangle your users workloads. Here, you are able to limit resources, enforce policies,
and enable advanced features. This helps to drive utilization, add some sanity to
diverse workloads, and seamlessly integrate new technology.

Fortunately, just as with the other two phases, Kubernetes provides a wide array of
admission capabilities right out of the box. Although authentication and authoriza-
tion don’t change much between releases, admission control is quite the opposite.
There is a seemingly never-ending list of capabilities that users are looking for when
it comes to how they administer their clusters. And, because admission control is
where most of that magic happens, it is no surprise that this componentry is continu-
ally evolving.

We could write books on the native admission control capabilities of Kubernetes.
However, because that is not really practical, here we focus on some of the more pop-
ular controllers, as well as demonstrate how you can implement your own.

101



Configuration

Enabling admission control is extremely simple. Since this is an API function, we add
the --enable-admission-plugins flag to the kube-apiserver runtime parameters.
This, like other configuration items, is a comma-delimited list of the admission con-
trollers that we want to enable.

Prior to Kubernetes 1.10, the order in which admission controllers
were specified mattered. With the introduction of the --enable-
admission-plugins command-line parameter, this is no longer the
case. For versions 1.9 and earlier, you should use the order-
dependent - -admission-control parameter.

Common Controllers

Much of the functionality that users take for granted in Kubernetes actually happens
by way of admission controllers. For example, the ServiceAccount admission con-
troller automatically allocates Pods to a ServiceAccount. Similarly, if you have tried
to add new resources to a Namespace that is currently in a terminating state, your
request was likely rejected by the NamespaceLifecycle controller.

The admission controllers available out of the box from Kubernetes have two primary
goals: ensuring that sane defaults are utilized in the absence of user-specified values,
and ensuring that users do not have more capabilities than they need. Many of the
actions that a user is authorized to perform are controlled with RBAC, but admission
controllers allow administrators to define additional fine-grained policies that extend
beyond the simplistic resource, action, and subject policies offered by authorization.

PodSecurityPolicies

One of the most widely utilized admission controllers is the PodSecurityPolicies
controller. With this controller, administrators can specify the constraints of the pro-
cesses under Kubernetes' control. With PodSecurityPolicies, administrators may
enforce that Pods are not able to run in a privileged context, that they cannot bind to
the hostNetwork, must run as a particular user, and that they are constrained by a
variety of other security-focused attributes.

When PodSecurityPolicies are enabled, users are unable to onboard new Pods
unless there are authorized policies in place. Policies may be as permissive or restric-
tive as required by your organization’s security posture. In production multiuser envi-
ronments, administrators should use most of the policies offered by
PodSecurityPolicies, since these significantly improve overall cluster security.

102 | Chapter9: Admission Control



Let’s consider a simple yet typical case, where we would like to ensure that Pods are
not able to run in a privileged context. Defining the policy happens, as usual, by way
of the Kubernetes API:

apiVersion: policy/vibetal
kind: PodSecurityPolicy
metadata:

name: non-privileged
spec:

privileged: false

If you were to create this policy, apply it to the API server, and then attempt to create
a conformant Pod, the request would be rejected, since your user and/or the Service
Account would not have permission to use the policy. To rectify this situation, simply
create an RBAC Role that allows either of those subject types to use this PodSecurity
Policy:

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: non-privileged-user
namespace: user-namespace
rules:
- apiGroups: ['policy']
resources: ['podsecuritypolicies']
verbs: ['use']
resources:
- non-privileged

and its RoleBinding:

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: non-privileged-user
namespace: user-namespace
roleRef:
kind: Role
name: non-privileged-user
apiGroup: rbac.authorization.k8s.1o
subjects:
- kind: ServiceAccount
name: some-service-account
namespace: user-namespace

After a user is authorized to use a PodSecurityPolicy, the Pod may be declared as
long as it conforms to the policies defined.

Common Controllers | 103



Since PodSecurityPolicys are implemented as an admission con-
troller (which enforces policy during the API request flow) Pods
that have been scheduled prior to PodSecurityPolicy being
enabled may no longer conform. Keep this in mind, since restarts
of those Pods may render them unable to be scheduled. Ideally, the
PodSecurityPolicy admission controller is enabled at installation
time.

ResourceQuota

Generally speaking, it is good practice to enforce quotas on your cluster. Quotas
ensure that no one user is able to utilize more than she has been allocated and is a
critical component in driving overall cluster utilization. If you intend to enforce user
quotas, you should also enable the ResourceQuota controller.

This controller ensures that any newly declared Pods are first evaluated against the
current quota utilization for the given namespace. By performing this check during
workload onboarding, we give immediate notice to a user that his Pod will or will not
fit within the quota. Note, too, that when a quota is defined for a namespace, all Pod
definitions (even if originating from another resource, such as Deployments or Repli
caSets) are required to specify resource requests and limits.

Quotas may be implemented for an ever-expanding list of resources, but some of the
most common include CPU, memory, and volumes. It is also possible to place quotas
on the number of distinct Kubernetes resources (e.g., Pods, Deployments, Jobs, and
more) within a Namespace.

Configuring quotas is straightforward:

$ cat quota.yml
apiVersion: vi1
kind: ResourceQuota
metadata:
name: memoryquota
namespace: memoryexample
spec:
hard:
requests.memory: 256Mi
limits.memory: 512Mi

Now, if we try to exceed the limit, even with a single Pod, our declaration is immedi-
ately rejected by the ResourceQuota admission controller:

$ cat pod.yml
apiVersion: vi1
kind: Pod
metadata:
name: nginx
namespace: memoryexample

104 | Chapter9: Admission Control



labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx
ports:
- containerPort: 80
resources:
limits:
memory: 1Gi
requests:
memory: 512Mi
$ kubectl apply -f pod.yml
Error from server (Forbidden): error when creating "pod.yml": pods "nginx" is
forbidden: exceeded quota: memoryquota, requested:
limits.memory=1Gi,requests.memory=512Mi, used: limits.memory=0,requests.memory=0,
limited: limits.memory=512Mi,requests.memory=256Mi

Although somewhat less obvious, the same holds true for Pods created by way of
higher-order resources, such as Deployments:

$ cat deployment.yml
apiVersion: apps/vi
kind: Deployment
metadata:
name: nginx-deployment
namespace: memoryexample
labels:
app: nginx
spec:
replicas: 3
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx
ports:
- containerPort: 80
resources:
limits:
memory: 256Mi
requests:
memory: 128Mi
$ kubectl apply -f deployment.yml
deployment.apps "nginx-deployment" configured
$ kubectl get po -n memoryexample

Common Controllers | 105



NAME READY STATUS RESTARTS AGE
nginx-deployment-55dd98c6c8-9xmjn  1/1 Running © 25s
nginx-deployment-55dd98c6c8-hc2pf 1/1 Running © 24s

Even though we have specified three replicas, we could only satisfy two based upon
the quota. If we describe the resulting ReplicaSet, we see the failure:

Warning FailedCreate 3s (x4 over 3s) replicaset-controller
(combined from similar events): Error creating: pods
"nginx-deployment-55dd98c6c8-tkrtz" is forbidden: exceeded quota:
memoryquota, requested: limits.memory=256Mi,requests.memory=128Mi,
used: limits.memory=512Mi,requests.memory=256Mi, limited:
limits.memory=512Mi, requests.memory=256Mi

Again, this error is originating from the ResourceQuota admission controller, but this
time, the error is somewhat hidden, since it is being returned to the Deployment’s
ReplicaSet (which is the creator of the Pods).

By now, it is probably becoming clear that quotas can help you effectively manage
your resources.

LimitRange

Complementary to ResourceQuota, the LimitRange admission controller is necessary
if you have defined any LimitRange policies against a Namespace. A LimitRange, put
simply, allows you to place default resource limits for Pods that are declared as a
member of a particular Namespace.

apiVersion: vi1
kind: LimitRange
metadata:
name: default-mem
spec:
limits:
- default:
memory: 1024Mi
defaultRequest:
memory: 512Mi
type: Container

This capability is important in scenarios where quotas have been defined. When quo-
tas are enabled, a user who has not defined resource limits on her Pod has her request
rejected. With the LimitRange admission controller, a Pod with no resource limits
defined is, instead, given defaults (as defined by the administrator) and the Pod is
accepted.

106 | Chapter9: Admission Control



Dynamic Admission Controllers

So far, we have focused on the admission controllers that are available from Kuber-
netes itself. There may, however, be times when the native functionality just doesn’t
cut it. In scenarios like this, we need to develop additional functionality that helps us
meet our business objectives. Fortunately, Kubernetes supports a wide array of exten-
sibility points, and this is also true for admission controllers.

Dynamic admission control is the mechanism by which we inject custom business
logic into the admission control pipeline. There are two types of dynamic admission
control: validating and mutating.

With validating admission control, our business logic simply accepts or rejects a user’s
request, based upon our requirements. In the event of failure, an appropriate HTTP
status code and reason for failure is returned to the user. We are placing the onus on
the end user to declare conformant resource specifications and, hopefully, doing so in
a way that does not cause consternation.

In the mutating admission controller case, we are again evaluating requests against the
API server, but in this case we are selectively altering the declaration to meet our
objectives. In simplistic cases, this may be something as straightforward as applying a
series of well-known labels to the resource. In more elaborate cases, we may go so far
as to transparently inject a sidecar container. While in this case, we are taking on
much of the burden for the end user, it can sometimes become a bit confusing for the
user when he discovers that some additional magic is happening behind the scenes.
That said, this capability, if well-documented, can be critical for implementing
advanced architectures.

In both cases, this functionality is implemented using user-defined webhooks. These
downstream webhooks are called by the API server when it sees that a qualifying
request has been made. (As we will see in the following examples, users are able to
qualify requests in a fashion similar to the way in which RBAC policies are defined.)
The API server POSTs an AdmissionReview object to these webhooks. The body of
this request includes the original request, the status of the object, and metadata about
the requesting user.

In turn, the webhook provides a simple AdmissionResponse object. This object
includes fields for whether this request is allowed, a reason and code for failure, and
even a field for what a mutating patch would look like.

In order to utilize Dynamic Admission Controllers, you must first configure the API
server with a change to the - -enable-admission-plugins parameter:

--enable-admission-plugins=...,MutatingAdmissionWebhook,\
ValidatingAdmissionWebhook

Dynamic Admission Controllers | 107



Note that Dynamic Admission Control, although extraordinarily
powerful, is still somewhat early in its maturity cycle. These fea-
tures were alpha as of 1.8 and beta in 1.9. As with all new function-
ality, be sure to consult the Kubernetes documentation for
additional recommendations regarding these extension points.

Validating Admission Controllers

Let’s take a look at how we can implement our own validating admission controller
and reuse an earlier example. Our controller will inspect all Pod CREATE requests to
ensure that each Pod has an environment label and that the label has a value of dev or
prod.

To demonstrate that you can write Dynamic Admission Controllers in your language
of choice, we use a Python Flask application for this example:

import json
import os

from flask import jsonify, Flask, request
app = Flask(__name__)

@app.route('/', methods=['POST'])
def validation():
review = request.get_json()
app.logger.info('Validating AdmissionReview request: %s',
json.dumps(review, indent=4))

labels = review['request']['object'][ 'metadata']['labels']
response = {}
msg = None
if 'environment' not in list(labels):
msg = "Every Pod requires an 'environment' label."
response[ 'allowed'] = False
elif labels['environment'] not in ('dev', 'prod',):
msg = "'environment' label must be one of 'dev' or 'prod'"
response[ 'allowed'] = False
else:
response[ 'allowed'] = True

status = {
'metadata’': {3},
'message': msg
}

response[ 'status'] = status

review[ 'response'] = response
return jsonify(review), 200

108 | Chapter9: Admission Control



context = (
os.environ.get('WEBHOOK_CERT', '/tls/webhook.crt'),
os.environ.get('WEBHOOK_KEY', '/tls/webhook.key'),

)
app.run(host='0.0.0.0"', port='443', debug=True, ssl_context=context)

We containerize this application and make it available internally with a ClusterIP
Service:

apiVersion: vi1
kind: Pod
metadata:

name: label-validation

namespace: infrastructure

labels:
controller: label-validator
spec:

containers:

- name: label-validator
image: label-validator:latest
volumeMounts:

- mountPath: /tls
name: tls

volumes:

- name: tls
secret:

secretName: admission-tls
kind: Service
apiVersion: vi1
metadata:

name: label-validation

namespace: infrastructure

spec:
selector:
controller: label-validator
ports:
- protocol: TCP
port: 443

In this case, the webhook is hosted on-cluster. For simplicity’s sake we have used a
standalone Pod, but there is no reason why this couldn’t be deployed with something
a bit more robust, like a Deployment. And, just as with any web service, we secure it
with TLS.

After this Service becomes available, we need to direct the API server to call our

webhook. We indicate which resources and operations we care about, and the API
server only calls this webhook when a request that meets this qualification is

observed.

Dynamic Admission Controllers | 109



apiVersion: admissionregistration.k8s.io/vibetal
kind: ValidatingWebhookConfiguration
metadata:
name: label-validation
webhooks:
- name: admission.example.com
rules:
- apiGroups:
apiVersions:
- vl
operations:
- CREATE
resources:
- pods
clientConfig:
service:
namespace: infrastructure
name: label-validation
caBundle: <base64 encoded bundle>

With a ValidatingWebhookConfiguration in place, we can now verify that our pol-
icy is working as expected. Attempting to apply a Pod without an environment label
yields:

# kubectl apply -f pod.yaml

Error from server: error when creating "pod.yaml": admission webhook

"admission.example.com" denied the request: Every Pod requires an 'environment'
label.

Similarly, with an environment=staging label:

# kubectl apply -f pod.yaml

Error from server: error when creating "pod.yaml": admission webhook
"admission.example.com" denied the request: 'environment' label must be one of
'dev' or 'prod'

It is only when we add an environment label according to the specification that we
are able to successfully create a new Pod.

Notice that our application is being served over TLS. As API
requests may contain sensitive information, all traffic should be
encrypted.

Mutating Admission Controllers

If we modify our example, we can easily develop a mutating webhook. Again, with a
mutating webhook we are attempting to alter the resource definition transparently
for the user.

110 | Chapter9: Admission Control



In this example, we inject a proxy sidecar container. Although this sidecar is simply a
helper nginx process, we could modify any aspect of the resource.

Exercise care when modifying resources at runtime, since there
may be existing logic that depends on well-defined and/or previ-
ously defined values. A general rule of thumb is to only set previ-

\ ously unset fields. Always avoid altering any namespaced values
(e.g., resource annotations).

Our new webhook looks like this:

import base64
import json
import os

from flask import jsonify, Flask, request
app = Flask(__name__)
@app.route("/", methods=["POST"])
def mutation():
review = request.get_json()
app.logger.info("Mutating AdmissionReview request: %s",

json.dumps(review, indent=4))

response = {}

patch = [{
'op': 'add',
'path': '/spec/containers/0',
'value': {
"image': 'nginx',
'name': 'proxy-sidecar',
}
1

= True
base64.b64encode(json.dumps(patch))
'] = 'application/json-patch+json'

response[ 'allowed']
response[ 'patch'] =
response[ 'patchType

review[ 'response'] = response
return jsonify(review), 200

context = (
os.environ.get("WEBHOOK_CERT", "/tls/webhook.crt"),
os.environ.get("WEBHOOK_KEY", "/tls/webhook.key"),

)
app.run(host='0.0.0.0"', port='443', debug=True, ssl_context=context)

Here, we use the JSON Patch syntax to add the proxy-sidecar to the Pod.

Dynamic Admission Controllers | 111



Just as with the validating webhook, we containerize the application and then dynam-
ically configure the API server to forward requests to the webhook. The only differ-
ence is that we will use a MutatingWebhookConfiguration and, naturally, point to the
internal ClusterIP Service:

apiVersion: admissionregistration.k8s.1o/vlbetal
kind: MutatingWebhookConfiguration
metadata:
name: pod-mutation
webhooks:
- name: admission.example.com
rules:
- apiGroups:
apiVersions:
- vl
operations:
- CREATE
resources:
- pods
clientConfig:
service:
namespace: infrastructure
name: pod-mutator
caBundle: <base64 encoded bundle>

Now, when we apply a very simple, single-container Pod, we get something a bit
more:

# cat pod.yaml
apiVersion: vi1
kind: Pod
metadata:
name: testpod
labels:
app: testpod
environment: prod
#staging
spec:
containers:
- name: busybox
image: busybox
command: ['/bin/sleep', '3600']

Even though our Pod declared only the busybox container, we now have two contain-
ers at runtime:

# kubectl get pod testpod
NAME READY STATUS RESTARTS AGE
testpod 2/2 Running 0 im

And a deeper inspection reveals that our sidecar was injected properly:

112 | Chapter9: Admission Control



spec:
containers:
- image: nginx
imagePullPolicy: Always
name: proxy-sidecar
resources: {}
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
- command:
- /bin/sleep
- "3600"
image: busybox

With mutating webhooks, we have an extremely powerful tool for standardizing our
user’s declarations. Use this power with caution.

Summary

Admission control is yet another tool for sanitizing your cluster’s state. Since this
functionality is ever-evolving, be sure to check for new capabilities with every Kuber-
netes release and to implement those controllers that will help secure your environ-
ment and drive utilization. And, where appropriate, don’t be afraid to roll up your
sleeves, implementing the logic that makes the most sense for your particular use
cases.

Summary | 113






CHAPTER 10
Networking

Just as with any distributed system, Kubernetes relies on the network in order to pro-
vide connectivity between services, as well as for connecting external users to exposed
workloads.

Managing networking in traditional application architectures has always proven quite
difficult. In many organizations, there was a segregation of duties—developers would
create their applications, and operators would be responsible for running them. Many
times, as the application evolved, the needs from the networking infrastructure would
drift. In the best of scenarios, the application simply would not operate, and an opera-
tor would take corrective action. However, in the worst of scenarios, significant gaps
in areas like network security would arise.

Kubernetes allows developers to define network resources and policies that can live
alongside their application deployment manifests. These resources and policies may
be well scoped by cluster administrators and can leverage any number of best-of-
breed technology implementations using common abstraction layers. By removing
developers from the nuts and bolts of how the network works, and by colocating the
demands of the infrastructure with those of the application, we can have better assur-
ances that our applications can be delivered in a consistent and secure manner.

Container Network Interface

Before we talk about how to connect users with containerized workloads, we need to
understand how Pods communicate with other Pods. These Pods may be colocated
on the same node, across nodes in the same subnet, and even on nodes in different
subnets that are, perhaps, even located in different datacenters. As shown in
Figure 10-1, regardless of what the network plumbing looks like, we aim to connect
Pods in a seamless, routable manner.

115



Worker node A Worker node B Worker node C
Pod A Pod B Pod C

| Container B l Container D Pod D

T Container E | Container G l
X

N [

(NI pod-to-pod network
Figure 10-1. CNI networking

il

Kubernetes interfaces with the network using the CNI specification. The objective of
this open specification is to standardize how container orchestration platforms con-
nect containers with the underlying network and to do so in a pluggable way. There
are dozens of solutions, each with their own architectures and capabilities. Most are
open source solutions, but there are also proprietary solutions from a number of dif-
ferent vendors within the cloud-native ecosystem. Regardless of the environment in
which you are deploying your cluster, there will certainly be a plug-in to meet your
needs.

Although there are multiple aspects to networking within Kubernetes, the role of CNI
is simply to facilitate Pod-to-Pod connectivity. The manner in which this happens is
relatively simple. The container runtime (e.g., Docker) calls the CNI plug-in exe-
cutable (e.g., Calico) to add or remove an interface to or from the container’s net-
working Namespace. These are termed sandbox interfaces.

As you recall, every Pod is allocated an IP address, and the CNI plug-in is responsible
for its allocation and assignment to a Pod.

You may be asking yourself, “If a Pod can have multiple containers,
how does the CNI know which one to connect?” If you have ever
interrogated Docker to list the containers running on a given
Kubernetes node, you may have noticed a number of pause con-
tainers associated with each of your Pods. These pause containers
do nothing meaningful computationally. They merely serve as pla-
ceholders for each Pod’s container network. As such, they are the
first container to be launched and the last to die in the life cycle of
an individual Pod.

After the plug-in has executed the desired task on behalf of the container runtime, it
returns the status of the execution, just like any other Linux process: 0 for success and

116 | Chapter 10: Networking



any other return code to indicate a failure. As part of a successful operation, the CNI
plug-in also returns the details of the IPs, routes, and DNS entries that were manipu-
lated by the plug-in in the process.

In addition to connecting a container to a network, CNI has capabilities for IP
Address Management (IPAM). IPAM ensures that CNI always has a clear picture of
which addresses are in use, as well as those that are available for configuration of new
interfaces.

Choosing a Plug-in

When choosing a CNI plug-in for use in your environment, there are two primary
considerations to keep in mind:

What is the topology of your network?
The topology of your network dictates a large part of what you are ultimately able
to deploy within your environment. For instance, if you are deploying to multiple
availability zones within a public cloud, you likely need to implement a plug-in
that has support for some form of encapsulation (also known as an overlay net-
work).

Which features are imperative for your organization?
You need to consider which features are important for your deployment. If there
are hard requirements for mutual TLS between Pods, you may want to use a
plug-in that provides this capability. By the same token, not every plug-in pro-
vides support for NetworkPolicy. Be sure to evaluate the features that are offered
by the plug-in before you deploy your cluster.

The CNI is not the only mechanism for enforcing mutual TLS
between Pods. With a sidecar pattern called service mesh, cluster
administrators can require that workloads only communicate by a
TLS-enabled local proxy. Service mesh not only provides end-to-
end encryption but may also enable higher-level features, such as
circuit breaking, blue/green deployments, and distributed tracing.
It may also be enabled transparently for the end user.

kube-proxy

Even with Pod-to-Pod networking in place, Kubernetes would still be relatively prim-
itive in terms of connectivity if it did not provide some additional abstractions over
direct IP-to-IP connectivity. How would we handle the case where a Deployment has
multiple replicas and, therefore, multiple serving IPs? Do we just pick one of the IPs
and hope it doesn’t get removed at some point in the future? Wouldn't it be nice to

kube-proxy | 117



reference these replicas by a virtual IP? And, taking things one step further, wouldn’t
it be nice to have a DNS record?

All of this is possible with the Kubernetes Service resource that we covered in Chap-
ter 2. With the Service resource, we assign a virtual IP for network services exposed
by a collection of Pods. The backing Pods are discovered and connected using a Pod
selector.

Many newcomers to Kubernetes typically think of the relationship
between a collection of Pods (i.e., a Deployment) and a Service as
being one-to-one. Because Services are connected to Pods by way
of label selectors, any Pod with the appropriate label is considered a
Service endpoint. This functionality allows you to mix and match
backing Pods and can even enable advanced deployments, such as
blue/green and canary rollouts.

Behind the scenes, the Kubernetes component that is making all of this possible is the
kube-proxy process. kube-proxy typically runs as a privileged container process, and
it is responsible for managing the connectivity for these virtual Service IP addresses.

The name proxy is a misnomer of historical origin: kube-proxy was originally imple-
mented with a userspace proxy. This has since changed, and in the most common
scenario, kube-proxy is simply manipulating iptables rules on every node. These
rules redirect traffic that is destined for a Service IP to any one of the backing end-
point IPs. Since kube-proxy is a controller, it watches for state changes and reconciles
to the appropriate state upon any modifications.

If we take a look at a Service that is already defined in our cluster, we can get a sense
of how kube-proxy works behind the scenes:

$ kubectl get svc -n kube-system kubernetes-dashboard

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes-dashboard ClusterIP  10.104.154.139 <none> 443/TCP  40d
$ kubectl get ep -n kube-system kubernetes-dashboard

NAME ENDPOINTS AGE

kubernetes-dashboard 192.168.63.200:8443,192.168.63.201:8443  406d

$ sudo iptables-save | grep KUBE | grep "kubernetes-dashboard"

-A KUBE-SEP-3HWS50GCGRHMJ23K -s 192.168.63.201/32 -m comment --comment \
"kube-system/kubernetes-dashboard:" -j KUBE-MARK-MASQ

-A KUBE-SEP-3HWS50GCGRHMJ23K -p tcp -m comment --comment \
"kube-system/kubernetes-dashboard:" -m tcp -j DNAT \
--to-destination 192.168.63.201:8443

-A KUBE-SEP-XWHZMKM53W55IFOX -s 192.168.63.200/32 -m comment --comment \
"kube-system/kubernetes-dashboard:" -j KUBE-MARK-MASQ

-A KUBE-SEP-XWHZMKM53W55IFOX -p tcp -m comment --comment \
"kube-system/kubernetes-dashboard:" -m tcp -j DNAT \
--to-destination 192.168.63.200:8443

-A KUBE-SERVICES ! -s 192.168.0.0/16 -d 10.104.154.139/32 -p tcp -m comment \

118 | Chapter 10: Networking



--comment "kube-system/kubernetes-dashboard: cluster IP" -m tcp --dport 443 \
-j KUBE-MARK-MASQ

-A KUBE-SERVICES -d 10.104.154.139/32 -p tcp -m comment --comment \
"kube-system/kubernetes-dashboard: cluster IP" -m tcp --dport 443 \
-j KUBE-SVC-XGLOHA7QRQ3V22RZ

-A KUBE-SVC-XGLOHA7QRQ3V22RZ -m comment --comment \
"kube-system/kubernetes-dashboard:" -m statistic --mode random \
--probability 0.50000000000 -3j KUBE-SEP-XWHZMKM53W55IFO0X

-A KUBE-SVC-XGLOHA7QRQ3V22RZ -m comment --comment \
"kube-system/kubernetes-dashboard:" -j KUBE-SEP-3HWS50GCGRHMI23K

This might be a bit hard to follow, so let’s break it down. In this scenario, we are look-
ing at the kubernetes-dashboard ClusterIP Service. We see that it has a ClusterIP of
10.104.154.139 and Pod endpoints at 192.168.63.200:8443 and 192.168.63.201:8443.
Here, kube-proxy has created a number of iptables rules to reflect this state on each
node. These rules, in effect, say that any packets coming from the Pod CIDR
(192.168.0.0/16) destined for the dashboard ClusterIP (10.104.154.139/32) on TCP
port 443 should be redirected, randomly, to one of the downstream Pods hosting the
dashboard container on container port 8443.

In this way, every Pod on every node is able to communicate with defined Services
by way of the kube-proxy daemon’s manipulation of iptables rules.

iptables is the implementation most commonly found in the wild.
With Kubernetes 1.9, a new IP Virtual Server (IPVS) implementa-
tion has been added. This is not only more performant but also
affords a variety of load-balancing algorithms that may be utilized.

Service Discovery

In any environment where there is a high degree of dynamic process scheduling, we
want a means by which to reliably discover where Service endpoints are located.
This is true of many clustering technologies, and Kubernetes is no different. Fortu-
nately, with the Service resource, we have a good place from which to enable Ser
vice discovery.

DNS

The most common way to discover Services within Kubernetes is via DNS. Although
there are no native DNS controllers within the Kubernetes componentry itself, there
are add-on controllers that may be utilized for providing DNS records for Service
resources.

The two most widely deployed add-ons in this space are the kube-dns and CoreDNS
controllers that are maintained by the community. These controllers watch the Pod

Service Discovery | 119



and Service state from the API server and, in turn, automatically define a number of
different DNS records. The difference between these two controllers is primarily
implementation—the CoreDNS controller uses CoreDNS as its implementation, and
kube-dns leverages dnsmasq.

Every Service, upon creation, gets a DNS A record associated with the virtual Ser-
vice IP, which takes the form of <service name>.<namespace>.svc.cluster.local:

# kubectl get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes  ClusterIP 10.96.0.1 <none> 443/TCP  35d
# kubectl run --image=alpine dns-test -it -- /bin/sh

If you don't see a command prompt, try pressing enter.

/ # nslookup kubernetes

Server: 10.96.0.10

Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local

Name: kubernetes
Address 1: 10.96.0.1 kubernetes.default.svc.cluster.local

For headless Services, the records are slightly different:

# kubectl run --image=alpine headless-test -it -- /bin/sh
If you don't see a command prompt, try pressing enter.

/ # nslookup kube-headless

Name: kube-headless

Address 1: 192.168.136.154 1p-192-168-136-154.ec2.internal
Address 2: 192.168.241.42 ip-192-168-241-42.ec2.internal

In this case, instead of an A record for the Service ClusterIP, users are presented with
a list of A records that they may use at their discretion.

Headless Services are ClusterIP Services with clusterIP=None.
These are used when you would like to define a Service but do not
require that it be managed by kube-proxy. Since you will still have
access to the endpoints for the Service, you can leverage this if you
would like to implement your own Service discovery mechanisms.

Environment Variables

In addition to DNS, a lesser-used feature but one to be aware of nonetheless is Ser
vice discovery using automatically injected environment variables. When a Pod is
launched, a collection of variables describing the ClusterIP Services in the current
namespace will be added to the process environment.

# kubectl get svc test

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
test ClusterIP 10.102.163.244  <none> 8080/TCP  9m

120 | Chapter 10: Networking



TEST_SERVICE_PORT_8080_8080=8080
TEST_SERVICE_HOST=10.102.163.244
TEST_PORT_8080_TCP_ADDR=10.102.163.244
TEST_PORT_8080_TCP_PORT=8080
TEST_PORT_8080_TCP_PROTO=tcp
TEST_SERVICE_PORT=8080
TEST_PORT=tcp://10.102.163.244:8080
TEST_PORT_8080_TCP=tcp://10.102.163.244:8080

This mechanism can be used in the absence of DNS capabilities, but there is one
important caveat to keep in mind. Because the process environment is populated at
Pod startup time, any Service discovery using this method requires that the neces-
sary Service resources are defined before the Pod is. This method does not account
for any updates to a Service after the Pod has been started.

Network Policy

A critical aspect of securing user workloads, whether with Kubernetes or not, involves
ensuring that Services are only exposed to the appropriate consumers. If, for
instance, you were developing an API that required a database backend, a typical
deployment pattern would be to expose only the API endpoint to external consumers.
Accessing the database would only be possible from the API Service itself. This type
of Service isolation at layer 3 and layer 4 of the OSI model helps to ensure that the
surface area for attack is limited. Traditionally, these types of restrictions have been
implemented with some type of firewall, and, on Linux systems, this policy is typi-
cally enforced with IPTables.

IPTables rules, under normal circumstances, are only manipulated by a server admin-
istrator and are local to the node on which they are implemented. This poses a bit of a
problem for Kubernetes users who would like to have self-service capabilities for
securing their services.

Fortunately, Kubernetes provides the NetworkPolicy resource for users to define
layer 3 and layer 4 rules as they pertain to their own workloads. The NetworkPolicy
resource offers both ingress and egress rules that can be applied to namespaces, Pods,
and even regular CIDR blocks.

Network Policy | 121



Note that NetworkPolicy can only be defined in environments
where the CNI plug-in supports this functionality. The Kubernetes
API server will gladly accept your NetworkPolicy declaration, but
since there is no controller to reconcile the declared state, no poli-
cies will be enacted. For instance, Flannel can provide an overlay
network for Pod-to-Pod communication, but it does not include a
policy agent. For this reason, many who want the functionality of
Flannel’s overlay with NetworkPolicy capabilities have turned to
Canal, which combines the overlay of Flannel with the policy
engine from Calico.

A typical NetworkPolicy manifest may look something like this:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: backend-policy
namespace: api-backend
spec:
podSelector:
matchLabels:
role: db
policyTypes:
- Ingress
- Egress
ingress:
- from:
- namespaceSelector:
matchLabels:
project: api-midtier
- podSelector:
matchLabels:
role: api-management
ports:
- protocol: TCP
port: 3306
egress:
- to:
- ipBlock:
cidr: 10.3.4.5/32
ports:
- protocol: TCP
port: 22

Reading and crafting these NetworkPolicy resources can take a bit of getting used to,
but once you master the schema, this can be an extremely powerful tool at your dis-
posal.

In this example, we are declaring a policy that will be placed on all Pods with the
role=db labels in the api-backend Namespace. The ingress rules in place allow for

122 | Chapter10: Networking



traffic to port 3306 from either a Namespace with the project=api-midtier label or
from a Pod with the role=api-management label. Additionally, we are limiting the
outbound, or egress, traffic from the role=db Pods to an SSH server at 10.3.4.5. Per-
haps we would use this for rsyncing backups to an externally available location.

Although these rules are relatively specific, we can also create broad allow-all or
deny-all policies, for both ingress and egress traffic, for any given Namespace. For
example, the following policy (and perhaps the most interesting) creates a default
deny ingress policy for a Namespace:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy

metadata:
name: default-deny
spec:
podSelector: {}
policyTypes:
- Ingress

It is important to note that, by default, there are no network restric-
tions for Pods. It is only through NetworkPolicy that we can begin
to lock down Pod interconnectivity.

Service Mesh

Understanding the network flows between workloads can be a complicated endeavor.
In the simplest of cases, a single Pod replica with a single container is fronted by a
Service resource. With this scenario, we simply need to analyze where traffic is origi-
nating from by looking at the container’s application logs.

In a microservices environment, however, it is often typical for traffic to enter the
cluster via an Ingress, which is backed by a Service, which is then backed by any
number of Pod replicas. Further, these Pods might, themselves, connect to other clus-
ter Services and their respective backing Pods. As you can probably see, these flows
get intricate very quickly, and this is where service mesh solutions may help.

A service mesh is simply a collection of “smart” proxies that can help users with a
variety of east-west or Pod-to-Pod networking needs. These proxies may operate as
sidecar containers in the application Pods or may operate as DaemonSets, where they
are node-local infrastructure components that may be utilized by any of the Pods on a
given node. Simply configure your Pods to proxy their traffic to these service mesh
proxies (typically with environment variables), and your Pods are now a part of the
mesh.

ServiceMesh | 123



Whether you deploy as a sidecar or as a DaemonSet is typically
determined by the service mesh technology that you choose and/or
the availability of resources on your cluster. Since these proxies run
as Pods, they do consume cluster resources and, as such, you need
to make decisions about whether these resources should be shared
or associated with a Pod.

Service mesh solutions typically provide common functionality.

Traffic management

Most service mesh solutions include some features targeted at driving incoming
requests at particular Services. This can enable advanced patterns such as can-
ary and blue/green deployments. Additionally, some solutions are protocol-
aware. Instead of acting as a “dumb” layer 4 proxy, they have the ability to
introspect higher-level protocols and make intelligent proxying decisions. For
example, if a particular upstream were to respond slowly to HTTP requests, the
proxy could weight that backend lower than a responsive upstream.

Observability

When deploying microservices to a Kubernetes cluster, the interconnectivity
between Pods can quickly become difficult to understand. As more and more
Pods communicate with one another, how should you debug a user-reported
connectivity issue? How do you find the application that is slow to respond?
Most service mesh solutions provide automatic mechanisms for distributed trac-
ing (commonly based on the OpenTracing standard). In a transparent way, you
can uniquely trace the flow of individual requests.

Security
In environments where the underlying network provides no default encryption
(which is common for most CNI plug-ins), service mesh can intercede by offer-
ing mutual TLS for all east-west traffic. This can be advantageous because poli-
cies may be enforced such that all connectivity is secure by default.

Projects like Istio, Linkerd, and Conduit are commonly utilized service mesh solu-
tions. If the features just mentioned speak to your use case, give these projects some
consideration.

Summary

Networking in any distributed system is always complex. Kubernetes simplifies this
critical capability by offering well-conceived abstractions over multiple layers of the
OSI networking stack. Often, these abstractions are implemented with tried and tes-
ted networking technologies that have been reliably utilized for decades. However,
because these abstractions are intended to provide a common interface for function-

124 | Chapter 10: Networking


https://istio.io
https://linkerd.io
https://conduit.io

ality, you, as the cluster administrator, are free to utilize the implementations that best
suit your needs. When coupling your application’s networking requirements with its
deployment manifests, it is much easier to deploy complex, stable, and secure appli-
cation architectures.

Summary | 125






CHAPTER 11
Monitoring Kubernetes

It’s all well and good to set up or use a Kubernetes cluster from a public cloud vendor.
But without the right strategy for monitoring metrics and logs from that cluster and
firing appropriate alerts when something goes wrong, the cluster that you have cre-
ated is a disaster waiting to happen. Although Kubernetes makes it easy for develop-
ers to build and deploy their applications, it also creates applications that are
dependent on Kubernetes for successful operation. This means that, when a cluster
fails, your users’ applications often fail, as well. And, if a cluster fails too often, users
lose trust in the system and begin to question the value of the cluster and its opera-
tors. This chapter discusses approaches to developing and deploying monitoring and
alerting for your Kubernetes cluster to prevent this from happening. Additionally, we
describe how you can add monitoring onto your cluster so that application develop-
ers can automatically take advantage of it for their own applications.

Goals for Monitoring

Before we step into the details of how to monitor your cluster, it's important to go
over the goals for this monitoring. All of the specifics of how to deploy and manage
monitoring are in service of these goals, and thus a crystal clear sense of the why? will
help in understanding the what.

Obviously, the first and foremost goal of monitoring is reliability. In this case, reliabil-
ity is both that of the Kubernetes cluster and that of the applications running on top
of the cluster. As an example of this relationship, consider a binary, like the controller
manager. If it stops operating correctly, Service discovery will start to slowly go out
of date. Existing Services will have already been properly propogated to the DNS
server in the cluster, but new Services, or Services that change due to rollouts or
scaling operations, won't have their DNS updated.

127



This failure shows the importance of understanding the underlying
Kubernetes architecture. If you can't crisply explain the role of the
controller manager in the overall Kubernetes cluster, this might be
a good time to step back and review Chapter 3, which covers
Kubernetes components and architecture.

This sort of failure actually won’t be reflected in the correct operation of the Kuber-
netes cluster itself. All of its Service discovery is largely static after cluster initializa-
tion. However, it is reflected in the correctness of the applications running on top of
the Kubernetes cluster, since their Service discovery and failover will themselves
start failing.

This example demonstrates two important points about Kubernetes monitoring. The
first is that, in many cases, the cluster itself appears to be operating correctly, but it is
actual failing. This points to the importance of not just monitoring the cluster pieces
but also monitoring the cluster functionality that users require. In this case, the best
type of monitoring would be a blackbox monitor that continuously deploys a new
Pod and Service and that validates that the Service discovery works as expected.

Throughout this chapter, we refer to two different types of moni-
toring. Whitebox monitoring looks at signals that applications pro-
duce and uses these signals to find problems. Blackbox or probe
monitoring uses the public interfaces (e.g., Kubernetes) to take
actions with known expected outcomes (e.g., “Create a ReplicaSet
of size three leads to three pods”) and fires alerts if the expected
outcome does not occur.

The other important lesson of this DNS example is how important it is to have proper
alerting in place. If you only notice that there is a problem with your Kubernetes clus-
ter when you have users complaining about failures of their application, you have a
monitoring gap. Although live site incidents are an inevitable part of running a Ser
vice, customer-reported incidents should be nonexistent in a well-monitored system.

In addition to reliability, another significant feature of a monitoring system is provid-
ing observability into your Kubernetes cluster. There are lots of reasons why observ-
ing your cluster is important and relevant.

It is one thing to be able to fire monitoring alerts that indicate that there is a problem
with your cluster. It is another to be able to determine exactly what is going wrong to
cause the alert, and yet another to be able to see and correct problems before they
become end-user facing problems. The ability to observe, visualize, and query your
monitoring data is a critical tool in determining what problems are happening and in
identifying problems before they become incidents.

128 | Chapter 11: Monitoring Kubernetes



In addition to insight in the service of reliability, another important use case for clus-
ter monitoring data is that of providing users with insight into the operation of the
cluster. For example, users may be curious to know, on average, how long it takes to
pull and begin running their images. A user may be wondering how fast, in practice, a
Kubernetes DNS record is created, or a person from finance may want to track
whether users are really using all of the compute resources they are requesting. All of
this information is available from a cluster monitoring system.

Differences Between Logging and Monitoring

One important topic to cover before we delve into the details of monitoring Kuber-
netes is the difference between logging and monitoring. Though closely related, they
are actually quite different and are used for different problems and often stored in
different infrastructure.

Logging records events (e.g., a Pod being created or an API call failing), and monitor-
ing records statistics (e.g., the latency of a particular request, the CPU used by a pro-
cess, or the number of requests to a particular endpoint). Logged records, by their
nature, are discrete, whereas monitoring data is a sampling of some continuous value.

Logging systems are generally used to search for relevant information. (“Why did cre-
ating that Pod fail?” “Why didn’t that Service work correctly?”) For this reason, log
storage systems are oriented around storing and querying vast quantities of data,
whereas monitoring systems are generally geared around visualization. (“Show me
the CPU usage over the last hour”) Thus, they are stored in systems that can effi-
ciently store time-series data.

It is worth noting that neither logging nor monitoring alone are sufficient to under-
stand your cluster. Monitoring data can give you a good sense of the overall health of
your cluster and can help you identify anomalous events that may be occuring. Log-
ging, on the other hand, is critical for diving in and understanding what is actually
happening, possibly across many machines, to cause such anomalous behavior.

Building a Monitoring Stack

Now that you have some understanding of why and what you may need to monitor
your Kubernetes cluster, let’s take a look at how you might accomplish it.

Getting Data from Your Cluster and Applications

Monitoring begins with exposing data to the monitoring system. Some of this data is
obtained generically from the kernel about the cgroups and namespaces that make up
containers in your cluster, but the bulk of the information that is useful to monitor is
added to the applications themselves by the developer. There are numerous different

Differences Between Logging and Monitoring | 129



ways to integrate metrics into your application, but one of the most popular—and the
choice of Kuberentes for exposing metrics—is the Prometheus monitoring interface.

Every server in Kubernetes exposes monitoring data via an HTTP(S) endpoint that
serves the monitored data using the Prometheus protocol. If you have a Kubernetes
kubelet server that is up and running, you can access this data via a standard HTTP
client, like curl, at the following URL: http://localhost:9093.

To integrate new application metrics into your code, you need to link in the relevant
Prometheus libraries. This not only adds the right HTTP server to your application
but also exposes the specific metrics for scraping from that server. Prometheus has
official libraries for Go, Java, Python, and Ruby, in addition to unofficial libraries for
numerous other languages.

Here’s an example of how to instrument a Go application. First, you add the Prome-
theus server to your code:

import "github.com/prometheus/client_golang/prometheus/promhttp"
func main() {
http.Handle("/metrics", promhttp.Handler())

Once you have the server running, you need to define a metric and observe values:

"github.com/prometheus/client_golang/prometheus"
histogram := prometheus.NewHistogram(...)

histogram.Observe(somelLatency)

In addition to the monitoring information that Kubernetes makes available, each of
the Kubernetes binaries logs a great deal of information to the stdout file stream.
Often, this output is captured and redirected to a log-rotated file, such as /var/lib/
kubernetes-apiserver.log. If you SSH into the master node running the Kubernetes API
server, you can find the API server log file in /var/lib/kube-apiserver.log, and you can
watch the log lines in action using the tail -f .. command. The Kubernetes compo-
nents use the github.com/google/glog library to log data to the file at different severity
levels. When looking through the file, you can detect these severity levels by looking
at the first letter that was logged. For example, an error-level log looks like:

E0610 03:39:40.323732 1753 reflector.go:205] ...
You can see the E for the error log level, the time of the log, and the file that logged.

The Kubernetes components also log data at different levels of verbosity. Most instal-
lations of Kubernetes set the verbosity at two, which is also the default. This produces

130 | Chapter 11: Monitoring Kubernetes


https://prometheus.io
http://localhost:9093

a good balance between verbosity and spam. If you need to increase or decrease the
verbosity of the logging, you can use the --v flag and set it between 0 and 10, where
10 indicates maximum verbosity, which can be quite spammy. You can also use the -
vmodu'le flag to set the verbosity for a particular file or set of files.

Setting the verbosity of your logs to a higher level increases visi-
bilty, but it comes at a price—both financially and in terms of per-
formance. Because the absolute number of logs is higher, it
increases storage and retention costs and can make your querying
slower. When increasing the logging level, generally only do it for a
short period of time and be sure that you bring the logging back to
a standard level as soon as possible.

Aggregating Metrics and Logs from Multiple Sources

Once you have your components generating data, you need a place to group it
together or to aggregate it and then, after it is aggregated, store it for querying and
introspection. This section deals with aggregation of logging and monitoring data,
and later sections deal with choices in terms of storage.

When it comes to aggregation, there are two different styles. In pull aggregation, the
aggregation system proactively reaches out to each monitored system and pulls the
monitoring information into the aggregate store. An alternate approach is a push-
based monitoring system, in which the system that is being monitored is responsible
for sending its metrics to the aggregation system. Each of these two different moni-
toring designs has advantages and disadvantages and are easier or harder to imple-
ment, depending on the details of the system. When you look at Prometheus and
Fluentd, the two systems that we examine in detail for logging and monitoring aggre-
gation, you can see that the two systems have different designs. Getting to know each
of them and why they chose their designs helps you understand the trade-offs.

Prometheus is a pull-based aggregator for monitoring metrics. As we have seen, when
you expose a Prometheus metric, it is exposed as a web page that can be scraped and
aggregated into the Prometheus server. Prometheus chooses this design because it
makes adding more systems to monitor quite trivial. As long as the system imple-
ments the expected interface, it is as simple as adding an additional URL to the Prom-
etheus configuration, and that server’s data will start being monitored. Because
Prometheus is responsible for scraping the data and aggregating it at its own pace, the
Prometheus system doesn’t need to worry about bursty or lagging clients sending it
data at different intervals. Instead, Prometheus always knows exactly what time it is
when it requests the monitoring data, and it also is in control of the rate at which it
samples data, ensuring that the sample rate is consistent and evenly distributed across
all systems being monitored.

Building a Monitoring Stack | 131



In contrast, the fluentd daemon is a push-based log aggregator. Just as Prometheus
chose the pull model for a variety of pragmatic reasons, Fluentd chose the push
model based on a number of real design considerations. The primary reason that Flu-
entd selected a push-based model is that nearly every system that logs does so to a file
or to a stream on the local machine. As a result, to integrate into the logging stack,
Fluentd needs to read from a large variety of files on disk to get the latest logs. It is
generally not very possible to inject custom code into the system being monitored
(e.g., to print to a logging system instead of stdout). Consequently, Fluentd chose to
take control of the logging information, read it from each of the different files, and
push it into an aggregate log system, which means that adding fluentd to an existing
binary is quite straightforward. You don’t change the binary at all. Instead, you con-
figure fluentd to load in data from a file in a specific path and to forward those logs
to a log storage system. To illustrate this, here is an example Fluentd configuration to
monitor and push Kubernetes API server audit logs:

<source>

@type tail

format json

path /var/log/audit

pos_file /var/log/audit.pos

tag audit

time_key time

time_format %Y-%m-%dT%H:%M:%S . %N%z
</source>

You can see from this example that Fluentd is highly configurable, taking the file loca-
tion, the file format, and expressions for both parsing dates from the logs and adding
tags to the data. Because the Kubernetes servers use the glog package, log lines follow
a consistent format, thus you can expect (and extract) structured data from every line
that Kubernetes logs.

Prometheus is often linked into an application, but you can still use
it with off-the-shelf software. There are a wide variety of Prome-
theus adapters that can be run as sidecars next to your application.
These can be ambassadors between the application and the
expected Prometheus interfaces. In many cases (e.g., Redis or Java),
the adapter knows directly how to talk to the application to expose
its data in a format that Prometheus can understand. Additionally,
there are adapters from common monitoring protocols (e.g.,
StatsD) such that Prometheus can also scrape metrics that were
originally intended for some other system.

132 | Chapter 11: Monitoring Kubernetes


https://www.fluentd.org

Storing Data for Retrieval and Querying

After monitoring and logging data has been aggregated by Prometheus or Fluentd,
the data still needs to be stored somewhere for retention for a period of time. How
long you retain monitoring data depends on the needs of your system and the costs
you're willing to pay, in terms of storage space for the data. However, in our experi-
ence, the minimum you should have is 30-45 days’ worth of data. At first, this might
seem like a lot, but the truth is that many problems begin slowly and take a long time
before they become apparent. Having a historical perspective allows you to see differ-
ences before they became significant problems and to more easily identify the source
of the problem.

For example, a release four weeks ago could have introduced some additional latency
in request processing. That might not have been significant enough to cause prob-
lems, but when combined with a more recent increase in request traffic, requests are
being processed far too slowly and your alerts are firing. Without historical data to
pinpoint the initial increase in latency four weeks ago, you wouldn’t be able to iden-
tify the release (and thus the changes) that caused the problem. You would be stuck
searching through the code looking for the issue, which can take significantly longer.

As with aggregators, there are a number of choices for storing monitoring and log-
ging data. Many of the storage options run as cloud services. These can be good
options, since they eliminate operations for the storage part of your cluster, but there
are also good reasons for running your own storage, siuch as being able to precisely
control data location and retention. Even in the space of open source storage for log-
ging and monitoring, you have multiple choices. In the interests of time and space,
we discuss two of them here: InfluxDB for maintaining time series data and Elastic-
search for storing log-structured data.

InfluxDB

InfluxDB is a time series database that is capable of storing large amounts of data in a
compact and searchable format. It is an open source project that is freely available for
a variety of operating systems. InfluxDB is distributed as a binary package that can
easily be installed.

A time series is a collection of data pairs, in which one member is a
value and the other is an instant in time. For example, you might
have a time series that represents the CPU usage of a process over
time. Each pair would combine the CPU usage and the instant at
which that CPU usage was observed.

One important question when running InfluxDB is whether to run it as a container
on the Kubernetes cluster itself. In general, this is not a recommended setup. You are

Building a Monitoring Stack | 133


https://portal.influxdata.com/downloads#influxdb

using InfluxDB to monitor the cluster, so you want monitoring data to continue to be
accessible, even if the cluster itself is having problems.

Elasticsearch

Elasticsearch is a system for ingesting and searching log-based data. Unlike InfluxDB,
which is oriented toward storing time series data, Elasticsearch is designed to ingest
large quantities of unstructured or semistructured log files and to make them avail-
able via a search interface. Elasticsearch can be installed from binary packages.

Visualizing and Interacting with Your Data

Of course, storing the information isn't very useful if you can’t then access it in inter-
esting ways to analyze and understand what is going on in your system. To that end,
visualization is a critical component in a complete monitoring stack. Visualization is
different for logging and metric data. Metric monitoring data is generally visualized
as graphs, either as a time series that shows a few metrics over time, or as a histogram
that summarizes the statistics for a value across a time window. Sometimes it is
visualized as an aggregate across a window of time (e.g., the sum of all errors each
hour for a week). One of the most popular interfaces for visualizing metrics is the
open source Grafana dashboard, which can interface with Prometheus and other
metric sources and can enable you to build your own dashboards or to import dash-
boards created by other users.

For logged data, the search interface is more oriented around ad hoc queries and
exploration of the data that has been logged. One of the popular interfaces for view-
ing logging data is the Kibana web frontend, which allows you to search, browse, and
introspect data that has been logged to Elasticsearch.

What to Monitor?

Now that you have assembled your monitoring stack, there are still two important
questions left unanswered: what to monitor and, correspondingly, what to alert on?

When assembling monitoring information, as with nearly all software, it is valuable
to take a layered approach. The layers to monitor are machines, cluster basics, cluster
add-ons, and finally, user applications. In this way, beginning with the basics, each
layer in the monitoring stack builds on top of the layer below it. When built like this,
identifying a problem is an exercise in diving down through the layers until the cause
is identified. However, correspondingly if a healthy layer is reached (e.g., all of the
machines in the cluster appear to be operating correctly), it becomes obvious that the
problem lies in the layer above (e.g., the cluster infrastructure).

The monitoring that was described in the previous paragraph was all whitebox moni-
toring, by which we mean that the monitoring was based upon detailed knowledge of

134 | Chapter 11: Monitoring Kubernetes


https://www.elastic.co/downloads/elasticsearch
https://grafana.com
https://www.elastic.co/products/kibana

the system and how it is assembled. Each part of the system is monitored for devia-
tions from the expected, and such deviations are reported.

The contrast to whitebox monitoring is blackbox or prober-based monitoring. In
blackbox monitoring, you don't assume or know any details of how the system is con-
structed. Instead, you simply consume the external interface, like a customer or user
would, and observe whether your actions have the expected results. For example, a
simple prober for a Kubernetes cluster might schedule a Pod onto the cluster and ver-
ify that the Pod was successfully created and the application running in the Pod (e.g.,
nginx) can be reached via a Kubernetes Service. If a blackbox monitor succeeds, it
can generally be assumed that the system is healthy. If the blackbox fails, the system is
not.

The value of blackbox monitoring is that it gives you a very clear signal about the
health of your system. The downside is that it gives you very little visibility into why
your system has failed. Consequently, it is essential to combine both whitebox and
blackbox monitoring to have a robust, useful monitoring system.

Monitoring Machines

The machines (physical or virtual) that make up your cluster are the foundation of
your Kubernetes cluster. If the machines in your cluster are overloaded or mis-
behaving, all other operations within the cluster are suspect. Monitoring the
machines is essential to understanding whether your basic infrastructure is operating
correctly.

Fortunately, monitoring machine metrics with Prometheus is quite straightforward.
The Prometheus project has a node exporter daemon, which can run on each
machine and which exposes basic information gathered from the kernel and other
system sources so that Prometheus can scrape. This data includes:

o CPU usage
+ Network usage
o Disk usage and free space available
» Memory usage
« ...and much more
You can download the node exporter from GitHub, or build it yourself. When you

have the node exporter binary in your system, you can set it to run automatically as a
daemon using this simple systemd unit file:

[Unit]
Description=Node Exporter

[Service]

What to Monitor? | 135


https://github.com/prometheus/node_exporter

User=node_exporter
EnvironmentFile=/etc/sysconfig/node_exporter
ExecStart=/usr/sbin/node_exporter $OPTIONS

[Install]
WantedBy=multi-user.target

After you have the node exporter up and running, you can configure Prometheus to
scrape metrics from each machine in your cluster, using the following scrape configu-
ration in Prometheus:

- job_name: "node"
scrape_interval: "60s"
static_configs:

- targets:
- 'server.1:9100'
- 'server.2:9100'

- 'server.N:9100'

Monitoring Kubernetes

Fortunately, all of the pieces of the Kubernetes infrastructure expose metrics using the
Prometheus API, and there is also a Kubernetes Service discovery that you can use
to automatically discover and monitor the Kubernetes components in your cluster:

- job_name: 'kubernetes-apiservers'
kubernetes_sd_configs:
- role: endpoints

You can reuse this Service discovery implementation to add scraping for multiple
different components in the cluster, like the API servers and the kubelets.

Monitoring Applications

Finally, you can also use the Kubernetes Service discovery to find and scrape metrics
from Pods themselves. This means that you automatically scrape metrics from pieces
of the Kubernetes cluster designed to run as Pods (e.g., the kube-dns servers), and
you automatically scrape all metrics from Pods that are run by users, assuming, that
is, that the users integrate and expose Prometheus-compatible metrics. However, after
your users see how easy it is to get automated metric monitoring via Prometheus,
they are unlikely to use any other monitoring.

Blackbox Monitoring

As mentioned earlier, blackbox monitoring probes the external API of the system,
ensuring that it responds correctly. In this case, the external API of the system is the
Kubernetes API. Probing of the system can be performed by an agent that makes calls

136 | Chapter 11: Monitoring Kubernetes



against the Kubernetes API. It is a challenge to determine whether this agent runs
inside the Kubernetes cluster. Running it inside the cluster makes it significantly eas-
ier to manage, but it also makes it vulnerable to cluster failures. If you choose to
monitor the cluster from within the cluster, it is essential to also have a “watchdog
alert” that fires if a prober hasn’t been run to completion in the previous N minutes.
There are many different blackbox tests you can design for the Kubernetes API.

As a simple example, you can imagine writing a small script:

#!/bin/bash

# exit on all failures
set -e

NAMESPACE=blackbox

# tear down the namespace no matter what
function teardown {
kubectl delete namespace ${NAMESPACE}

}
trap teardown ERR

# Create a probe namespace
kubectl create namespace ${NAMESPACE}
kubectl create -f my-deployment-spec.yaml

# Test connectivity to your app here, wget etc.

teardown

You could run this script every five minutes (or some other interval) to validate that
the cluster was working properly. A more complete example might be to write an
application that continuously tests the Kubernetes API, similar to the previous script,
but also export Prometheus metrics so you can scrape the blackbox monitoring data
into Prometheus.

Ultimately, the limits of what you blackbox test are really the limits of your imagina-
tion and your willingness to design and build tests. As of this writing, there are no
good off-the-shelf blackbox probers for the Kubernetes API. It's up to you to design
and build such tests.

Streaming Logs

In addition to all of the metric monitoring data, it's also important to get the logs
from your cluster. This includes things like the kubelet logs from each node, as well as
the API server, scheduler, and controller manager logs from the master. These are
generally located in /var/log/kube-*.log. You can set them up for export with a simple
Fluentd configuration like:

What to Monitor? | 137



<source>
@type tail
path /var/log/kube-apiserver.log
pos_file /var/log/fluentd-kube-apiserver.log.pos
tag kube-apiserver

</source>
It is also useful to log anything that a container running in the cluster writes to
stdout. By default, Docker writes all of the logs from the containers to /var/log/

containers/*.log, and thus you can use that expression in a similar Fluentd configura-
tion to also export log data for all containers that run in the cluster.

Alerting

After you have monitoring working correctly, it’s time to add alerts. Defining and
implementing alerts in Prometheus or other systems is beyond the scope of this book.
If you have never done monitoring before, we strongly recommend obtaining a book
dedicated to the subject.

However, when it comes to which alerts to define, there are two philosophies to con-
sider. The first, similar to whitebox monitoring, is to alert when signals stop being
nominal. For example, to understand how much CPU an API server normally con-
sumes, and alert if the CPU usage of an API server goes out of that range.

The benefits of this approach to monitoring are that you frequently notice problems
before they are user impacting. Systems start to behave strangely or poorly often long
before they have catastrophic failures.

The downside of this alerting strategy is that it can be quite noisy. Signals, like CPU
usage, can be quite varied, and alerting when things change—even though there may
not necessarily be a real problem—can lead to tired, frustrated operators, who ignore
pages when there are real alerts.

The alternate monitoring strategy, more similar to blackbox monitoring, is to alert on
the signals that your user sees. For example, the latency of a request to the API server
or the number of 403 (Unauthorized) responses that your API server is returning.
The benefit of this alerting is that, by definition, there can’t be a noisy alert. Every
time such an alert fires, there is a real problem. The downside of such alerting is that
you do not notice problems until they are customer facing.

Like everything, the best path for alerting lies with a balance of each. For signals that
you understand very well, which have stable values, whitebox alerting offers a critical
heads-up before significant problems occur. Blackbox alerting, on the other hand,
gives you high-quality alerts caused by real, user-facing problems. A successful alert-
ing strategy combines both styles of alerts (and, perhaps more critically, adapts these
alerts) as your understanding of your particular clusters grows.

138 | Chapter 11: Monitoring Kubernetes



Summary

Logging and monitoring are critical components of understanding how your cluster
and your applications are performing, and/or where they are having problems. Con-
structing a high-quality alerting and monitoring stack should be one of the very first
priorities after a cluster is successfully set up. Done correctly, a logging and monitor-
ing stack that is automatically available to the users of a Kubernetes cluster is a key
differentiator that makes it feasible for developers to deploy and manage reliable
applications at scale.

What to Monitor? | 139






CHAPTER 12
Disaster Recovery

If you're like most users, you have probably looked to Kubernetes, at least in part, for
its ability to automatically recover from failure. And, of course, Kubernetes does a
great job of keeping your workloads up and running. However, as with any complex
system, there is always room for failure. Whether that failure is due to something like
hardware fault on a node, or even data loss on the etcd cluster, we want to have sys-
tems in place to ensure that we can recover in a timely and reliable fashion.

High Availability

A first principle in any disaster recovery strategy is to design your systems to mini-
mize the possibility of failure in the first place. Naturally, designing a foolproof sys-
tem is an impossibility, but we should always build with the worst-case scenarios in
mind.

When building production-grade Kubernetes clusters, best practices always dictate
that critical components are highly available. In some cases, as with the API server,
these may have an active-active configuration, whereas with items like the scheduler
and controller manager, these operate in an active-passive manner. When these con-
trol plane surfaces are deployed properly, a user should not notice that a failure has
even occurred.

Similarly, we recommend that your etcd backing store is deployed in a three- or five-
node cluster configuration. You may certainly deploy larger clusters (always with an
odd number of members), but clusters of this size should suffice for the vast majority
of use cases. The failure tolerance of the etcd cluster increases with the number of
members that are present: one-node failure tolerance for a three-node cluster, and a
two-node tolerance for a five-node cluster. However, as the size of the etcd cluster

141



increases, the performance of the cluster may slowly degrade. When choosing your
cluster size, always be sure that you are well within your expected etcd load.

Understand that a failure of the Kubernetes control plane typically
does not affect the data plane. In other words, if your API server,
controller manager, or scheduler fails, your Pods will often con-
tinue to operate as they are. In most scenarios, you simply are not
able to effect change on the cluster until the control plane is
brought back online.

State

The question at the center of every disaster recovery solution is, “How do I restore to
a well-defined previous state?” We want to be sure that, when disaster strikes, we have
copies of all of the data that we need to return to an operational state.

Fortunately, with Kubernetes, most of the cluster’s operational state is centrally loca-
ted in the etcd cluster. Therefore, we spend a good deal of time ensuring that we can
reconstitute its contents, should a failure occur.

But etcd is not the only state that we care about. We also need to be sure that we have
backups of some of the static assets created (or, in some cases, provided) during
deployment. The following are the items that should be safely tucked away:

All PKI assets used by the Kubernetes API server
These are typically located in the /etc/kubernetes/pki directory.

Any Secret encryption keys
These keys are stored in a static file that is specified with the - -experimental-
encryption-provider-config in the API server parameter. If these keys are lost,
any Secret data is not recoverable.

Any administrator credentials
Most deployment tools (including kubeadm) create static administrator creden-
tials and provide them in a kubeconfig file. Although these may be recreated,
securely storing them off-cluster might reduce recovery time.

Application Data

In addition to all of the state necessary to reconstitute Kubernetes itself, recovering
stateful Pods would be useless unless we also recovered any persistent data associated
with those Pods.

142 | Chapter12: Disaster Recovery



Persistent Volumes

There are a variety of ways that a user may persist data from within Kubernetes. How
you back this data up is contingent on your environment.

For instance, in a cloud provider, it may be as simple as reattaching any persistent
volumes to their respective Pods, with the working assumption that your Kubernetes
failure is unrelated to the availability of persistent volumes. You might also rely on the
underlying architecture backing the volumes themselves. For instance, with Ceph-
based volumes, having multiple replicas of your data may be enough.

The way that you implement the backup of application data depends heavily on the
implementation that you have chosen for how volumes are presented to Kubernetes.
Keep this in mind, as you develop a wider disaster recovery strategy.

Kubernetes does not currently have a mechanism for defining vol-
ume snapshots, but this is a feature that seems to be getting trac-
tion in recent community conversations.

Local Data

One often-overlooked aspect of data backup is that users sometimes unknowingly
persist critical data to a node’s local disk. This is particularly common in on-premises
environments, where network-attached storage may not always be present. Without
appropriate guardrails in place (e.g., PodSecurityPolicys and/or more generic
admission controllers), users might make use of emptyDir or hostPath volumes, pos-
sibly holding incorrect assumptions about the longevity of this data.

Recall our discussion about admission control in Chapter 7. If you
would like to enforce restrictions on local disk access, these may be
implemented with PodSecurityPolicys, primarily with the vol
umes and allowedHostPaths controls.

It may not even be a failure scenario where this issue is encountered. Because worker
nodes are widely considered to be ephemeral in nature, even a planned maintenance
or retirement of a node may yield a poor experience for your users. Always be sure to
have the appropriate controls in place.

Worker Nodes

We can think of worker nodes as being replaceable. When designing our disaster
recovery strategy for worker nodes, we simply need to have a process in place

Worker Nodes | 143



whereby we can reliably recreate a worker node. If you have deployed Kubernetes to a
cloud provider, the task is often as simple as launching a new instance and joining
that worker to the control plane. In bare-metal environments (or those without API-
directed infrastructure), this process may be a bit more onerous, but it will be mostly
identical.

In the event that you are able to identify that a node is approaching failure, or in cases
where you need to perform maintenance, Kubernetes offers two commands that may
be of assistance.

First, and particularly important in high-churn clusters, kubectl cordon renders a
node unschedulable. This can help stem the tide of new Pods affecting our ability to
perform a recovery action on a worker node. Second, the kubectl drain command
allows us to remove and reschedule all running Pods from a target node. This is use-
ful in scenarios where we intend to remove a node from the cluster.

etcd

Because an etcd cluster retains multiple replicas of its dataset, complete failure is rela-
tively rare. However, backing up etcd is always considered a best practice for produc-
tion clusters.

Just as with any other database, etcd stores its data on disk, and with that comes a
variety of ways that we can back up that data. At the lowest levels, we can use block
and filesystem snapshots, and this might work well. However, there is a significant
amount of coordination that needs to take place when attempting the backup. In both
cases, you need to be sure that etcd has been quiesced, typically by stopping the etcd
process on the etcd member where you intend to perform the backup. Further, to
ensure that all in-flight data has been saved, you need to be sure to first freeze the
underlying filesystem. As you can see, this can become pretty cumbersome.

This technique may start to make sense with network-attached block devices that are
backing etcd. Many clusters that are built in public cloud environments choose to use
this technique because it shortens the time to recovery. Instead of replacing the data
on disk with a backup, these users simply reattach the existing etcd data volumes to
the new etcd member nodes, and, fingers crossed, are back in business. While this
solution may work, there are a number of reasons why it may be less than ideal. Chief
among them are concerns surrounding data consistency, since this approach is rela-
tively difficult to perform correctly.

The most common approach, albeit resulting in slightly longer recovery times, is to
utilize the native etcd command-line tools:

ETCDCTL_API=3 etcdctl --endpoints $ENDPOINT snapshot save etcd- ‘date +%Y%m%d' .db

144 | Chapter 12: Disaster Recovery



This can be run against an active etcd member, and the resulting file should be offloa-
ded from the cluster and stored in a reliable location, such as an object store.

In the event that you need to restore, you simply need to execute the aptly named
restore command:

ETCDCTL_API=3 etcdctl snapshot restore etcd-$DATE.db --name SMEMBERNAME

Do this against each of the replacement members of a new cluster.

Although all of these backup strategies are viable, there are important caveats to con-
sider.

First, when backing up by either method, be cognizant of the fact that you are back-
ing up the entire etcd keyspace. It is a complete copy of the state of etcd at the time of
backup. Although our goal is typically to create a carbon copy, there may be scenarios
in which we may not actually want the entire backup. Perhaps we simply want to
bring the production Namespace up in an expeditious manner. With this type of
recovery, we are restoring indiscriminately.

Second, just as with any type of database backup, if the consuming application (in our
case, Kubernetes itself) is not quiesced during backup, there may be transient state
that has not been consistently applied to the backing store. The likelihood of this
being highly problematic is small but is present nonetheless.

And finally, if you have enabled any Kubernetes Aggregate API servers or have used
an etcd-backed Calico implementation (both of which use their own etcd instances),
these would not be backed up if you have only targeted the cluster’s primary etcd
endpoints. You would need to develop additional strategies to capture and restore
that data.

If you are using a managed Kubernetes offering, you may not have
direct access to etcd or even to the disks that are backing etcd. In
this case, you need to utilize a different backup and restore meth-
odology.

Ark

A purpose-built tool that is widely used for backup and recovery of Kubernetes clus-
ters is Ark, from Heptio. This tool is not only concerned with the management of
Kubernetes resource data but also serves as a framework for managing application
data.

What makes Ark different from the methods we have already described is that it is
Kubernetes aware. Instead of blindly backing up etcd data, Ark performs backups by

Ak | 145


https://github.com/heptio/ark

way of the Kubernetes API itself. This ensures that the data is always consistent, and it
allows for more selective backup strategies. Let’s consider a few examples.

Partial backup and restore
Because Ark is Kubernetes-aware, it is able to facilitate more advanced backup
strategies. For instance, if you were interested in backing up only production
workloads, you could use a simple label selector:

ark backup create prod-backup --selector env=prod

This would back up all resources with the label env=prod.

Restoration to a new environment
Ark is capable of restoring backup to an entirely new cluster or even to a new
Namespace within an existing cluster. Beyond the topic of disaster recovery, this
may also be used to facilitate interesting testing scenarios.

Partial restoration
In the midst of downtime, it is often preferable to restore the most critical sys-
tems first. With partial restoration, Ark allows you to prioritize which resources
are restored.

Persistent data backup
Ark is able to integrate with a variety of cloud providers to automatically snap-
shot persistent volumes. Additionally, it includes a hook mechanism for perform-
ing actions, such as filesystem freezing prior to and after the snapshot has been
taken.

Scheduled backups
With an on-cluster service managing state, Ark is capable of scheduling backups.
This can be particularly useful for ensuring that backups are taken regularly.

Off-cluster backups
Ark integrates with various S3-compatible object storage solutions. Although
these solutions may be run on a cluster, it is advisable to offload these backups so
that they are available in the event of failure.

You likely will not need all of these features, but with the wide degree of freedom that
Ark offers, you can choose the pieces that make sense for your backup solution.

Summary

When devising a disaster recovery strategy for your Kubernetes cluster, there are
many areas to consider. How you design this strategy depends on your selections for
complementary technologies, as well as the details of your particular use case. As you
build this muscle, be sure to regularly exercise your ability to completely restore your
production systems with fully automated solutions. This not only prepares you for

146 | Chapter 12: Disaster Recovery



failure but also helps you think about your deployment strategy more holistically. Of
course, we hope you never need to use the techniques just outlined. But should the
need arise, you will be better off for having considered these cases upfront.

Summary | 147






CHAPTER 13
Extending Kubernetes

Kubernetes has a rich API that provides much of the functionality that you might
need to build and operate a distributed system. However, the API is purposefully
generic, aimed at the 80% use cases. Taking advantage of the rich ecosystem of add-
ons and extensions that exist for Kubernetes can add significant new functionality
and enable new experiences for users of your cluster. You may even choose to imple-
ment your own custom add-ons and extensions that are suited to the particular needs
of your company or environment.

Kubernetes Extension Points

There are a number of different ways to extend a Kubernetes cluster, and each offers a
different set of capabilities and additional operational complexity. The following sec-
tions describe these various extension points in detail and provide insight into how
they can extend the functionality of a cluster and into the additional operational
requirements of these extensions.

The four types of extensibility are:

e Cluster daemons for automation
o Cluster assistants for extended functionality
« Extending the life cycle of the API server
+ Adding more APIs
The truth, of course, about some of these classifications is that they are somewhat

arbitrary, and there are different extensions that can combine multiple kinds of
extensibility to provide additional functionality for a cluster. The categories described

149



here are intended to help guide your discussion and planning for extending a Kuber-
netes cluster. They are guidelines—not hard and fast rules.

Cluster Daemons

The simplest and most common form of cluster extensibility is the cluster daemon.
Just like a daemon or agent running on a single machine adds automation (e.g., log
rolling) to a single machine, a cluster daemon adds automation functionality to a
cluster. Cluster daemons have two definiing characteristics. The agent needs to run
on the Kubernetes cluster itself, and the agent needs to add functionality to the clus-
ter that is automatically provided to all users of the cluster without any action on
their part.

To be able to deploy a cluster daemon onto the Kubernetes cluster it helps manage,
the cluster daemon itself is packaged as a container image. It is then configured via
Kubernetes configuration objects and run on the cluster either via a DaemonSet or a
Deployment. Typically, these cluster daemons run in a dedicated Namespace so that
they are not accessible to users of the cluster, though, in some cases, users may install
cluster daemons into their own Namespaces. When it comes time to monitor,
upgrade, or otherwise maintain these daemons, they are maintained exactly like any
other application running on the Kubernetes cluster. Running agents in this manner
is more reliable, since they inherit all of the same capabilities that make running any
other application in Kubernetes easier. It is also more consistent, since both agents
and applications are monitored and maintained using the same tools.

In the following sections, we explore additional ways in which programs running on
a Kubernetes cluster can extend or enhance that cluster. However, what distinguishes
cluster agents or daemons from other extensions is that the capabilities they provide
apply to all objects within a cluster or within a Namespace, without additional user
interaction to enable them. They are enabled automatically and users often gain the
functionality without even being aware that they are present.

Use Cases for Cluster Daemons

There are many different sorts of functionality that you might want to provide to a
user automatically. A great example is automatic metrics collection from servers that
expose Prometheus. When you run Prometheus within a Kubernetes cluster and con-
figure it to do Kubernetes-based Service discovery, it operates as a cluster daemon
and automatically scans all Pods in the cluster for metrics that it should ingest. It does
this by watching the Kubernetes API server to discover any new Pods as they come
and go. Thus, any application that is run within a Kubernetes cluster with a Prome-
theus cluster agent automatically has metrics collected without any configuration or
enablement by the developer.

150 | Chapter 13: Extending Kubernetes



Another example of a cluster daemon is an agent that scans services deployed in the
cluster for cross-site scripting (XSS) vulnerabilities. This cluster daemon again
watches the Kubernetes API server for when new Ingress (HTTP load balancer) serv-
ices are created. When such services are created, it automatically scans all paths in the
service for XSS vulnerable web pages and sends a report to the user. Again, because it
is provided by a cluster daemon, this functionality is inherited by developers who use
the cluster without any requirement that they even know what XSS is or that the
scanning is occuring until they deploy a service that has a vulnerability. We see how
to build this example at the end of the section.

Cluster daemons are powerful, because they add automatic functionality. The less
developers have to learn but can instead inherit automatically from their environ-
ment, the more likely their applications are to be reliable and secure.

Installing a Cluster Daemon

Installation of a cluster daemon is done via container images and Kubernetes config-
uration files. These configurations may be developed by the cluster administrator,
provided by a package manager (like Helm), or supplied by the developer of the ser-
vice (e.g., an open source project or independent software vendor). Typically, the
cluster administrator uses the kubectl tool to install the cluster daemon on the clus-
ter, possibly with some additional configuration information, such as a license key or
Namespaces to scan. After it is installed, the daemon immediately starts operation on
the cluster, and any subsequent upgrades, repair, or removal of the daemon are per-
formed via Kubernetes configuration objects, just like any other application.

Operational Considerations for Cluster Daemons

Although the installation of a cluster daemon is generally trivial—often just a single
command-line call—the operational complexity incurred by adding such a daemon
can be quite significant. The automatic nature of cluster add-ons is a double-edged
sword. Users will quickly come to rely on them, and thus the operational importance
of cluster daemon add-ons can be significant. That is, while some of cluster daemons’
value is derived from their transparent nature, users are unlikely to notice them fail-
ing. Imagine, for example, that your security regime is based on automated XSS scan-
ning via a cluster daemon, and that daemon gets silently stuck. Suddenly, all XSS
detection for your entire cluster may be disabled. Installation of a cluster daemon
shifts the responsibility for the reliability of these systems from the developer to the
cluster administrator. Generally, this is the right thing to do, since it centralizes
knowledge of these extensions, and it allows for a single team to build services shared
by a large number of other teams. But it is critical that cluster administrators know
what they are signing up for. You cannot just install a cluster daemon on a whim or

Cluster Daemons | 151



because of a user’s request. You must be fully committed to operational management
and support of that cluster daemon for the lifetime of the cluster.

Hands-On: Example of Creating a Cluster Daemon

Creating a cluster daemon doesn't need to be hard. In fact, a simple bash script that
you might run from a single machine can easily be transformed into a cluster dae-
mon. Consider, for example, the following script:

#!/bin/bash

for service in $(kubectl --all-namespaces get services | awk '{print $0}'); do
python XssPy.py -u S${service} -e

done

This script lists all services in a cluster and then uses an open source XSS scanning
script to scan each service and print out the report.

To turn this into a cluster daemon, we simply need to place this script in a loop (with
some delays, of course) and give it a way to report:

#!/bin/bash

# Start a simple web server

mkdir -p www

cd www

python -m SimpleHTTPServer 8080 &
cd ..

# Scan every service and write a report.
while true; do
for service in $(kubectl --all-namespaces get services | awk '{print $0}'); do
python XssPy.py -u ${service} -e > www/${service}-$(date).txt
done
# Sleep ten minutes between runs
sleep 600
done

If you package this script up in a Pod and run it in your cluster, you will have a collec-
tion of XSS reports available from the Pod. Of course, to really productionize this,
there are many other things that you might need, including uploading files to a cen-
tral repository, or monitoring/alerting. But this example shows that building a cluster
daemon does not have to be a complicated task for Kubernetes experts. A little shell
script and a Pod are all you need.

Cluster Assistants

Cluster assistants are quite similar to cluster daemons, but unlike cluster daemons, in
which functionality is automatically enabled for all users of the cluster, a cluster assis-
tant requires the user to provide some configuration or other gesture to opt in to the
functionality provided by the assistant. Rather than providing automatic experiences,

152 | Chapter 13: Extending Kubernetes


http://bit.ly/2P4XuH0
http://bit.ly/2P4XuH0

cluster assistants provide enriched, yet easily accessible, functionality to users of the
cluster, but it is functionality that the user must be aware of and must provide appro-
priate information to enable.

Use Cases for Cluster Assistants

The uses cases for cluster assistants are generally those in which a user wants to
enable some functionality, but the work to enable the capabilities is significantly
harder, slower, or more complicated and error prone than necessary. Given such a sit-
uation, it is the job of the assistant to help automate this process to make it easier,
more automatic, and less likely to suffer from “cut and paste” or other configuration
errors. Assistants simplify tedious or rote tasks in a cluster to make them easier to
consume concepts.

As a concrete example of such a process, consider what is necessary to add an SSL
certificate to an HTTP service in a Kubernetes cluster. First, a user must obtain a cer-
tificate. Although APIs, like Let's Encrypt, have made this significantly easier, it is still
a nontrivial task, requiring a user to install tooling, set up a server, and claim a
domain. However, after the certificate is obtained, you still aren’t done. You need to
figure out how to deploy it into your web server. Some developers may follow best
practices and, knowing about Kubernetes Ingress, make a Kubernetes Secret, associat-
ing the certificate with the HTTP load balancer. But other developers may take the
easy (and dramatically less secure) route and bake the certificate directly into their
container image. Still others may balk at the complexity and decide that SSL isn’t
actually required for their use case.

Regardless of the outcome, the extra work by developers—and the different imple-
mentations of SSL—are unnecessary risks. Instead, the addition of a cluster assistant
to automate the process of provisioning and deploying SSL certificates can reduce
developer complexity and can ensure that all certificates in the cluster are obtained,
deployed, and rotated in a manner that follows best practices. However, to operate
correctly, the cluster assistant requires the knowlege and engagement of the end user
of the cluster, in this case, the domain name for the certificate, and an explicit request
for SSL to be attached to the load balancer via the cluster assistant. Such an assistant
is implemented by the open source cert-manager project.

For a cluster administrator, cluster assistants centralize knowledge and best practices,
reduce questions from users by simplifying complex cluster configurations, and
ensure that all services deployed to a cluster have a common look and feel.

Installing a Cluster Assistant

Because the difference between cluster assistants and cluster daemons comes from
the pattern of interaction—not the implementation—the installation of a cluster
assistant is more or less identical to the installation of a cluster daemon. The cluster

Cluster Assistants | 153


https://github.com/jetstack/cert-manager

assistant is packaged as a container image and deployed via standard Kubernetes API
objects, like Deployments and Pods. Like cluster daemons, maintenance, operations,
and removal of the cluster assistants are managed via the Kubernetes API.

Operational Considerations for Cluster Assistants

Like cluster daemons, cluster assistants need the cluster administrator to take on
operational responsibility. Because the assistants hide complexity from the end user,
meaning that the end user is ultimately unaware of the details of how a task like
installing a certificate is actually implemented, it is critical that the assistants function
correctly. The end user is unlikely to be able to achieve similar tasks on their own,
due to lack of experience and knowledge. However, because the functionality is opt-
in, a user is far more likely to notice that something isn't working. For example, the
user requested an SSL certificate and it didn’t arrive. However, this doesn’t mean that
the cluster administrator has less operational burden. You still should be proactively
monitoring and repairing cluster assistant infrastructure, but someone is more likely
to notice when things go wrong.

Hands-On: Example of Cluster Assistants

To make this a little bit more concrete, let’s build an example cluster assistant that
automatically adds authentication to a Kubernetes Service. The basic operation of
this assistant is that it continuously scans the list of Service objects in your cluster
looking for objects with a specific annotation key: managing-k8s.io/
authentication-secret. It is expected that the value for this key points to a Kuber-
netes Secret that contains a .htpasswd file. For example:

kind: Service

metadata:

name: my-service

annotations:
managing-k8s.io/authentication-secret: my-httpasswd-secret

When the cluster assistant finds such an annotation, it creates two new Kubernetes
objects. First, it creates a Deployment, which contains a replicated nginx web server
Pod. These Pods take the .httpasswd file that was referenced by the Secret in the anno-
tation, and configure nginx as a reverse proxy, which forwards traffic on to my-
service but requires a user and password as specified in the .htpasswd file. The
cluster assistant also creates a Kubernetes Service named authenticated-my-
service that directs traffic to this authentication layer. That way, a user can expose
this authenticated service to the external world and have authentication without hav-
ing to worry about how to configure nginx. Of course, basic authentication is a pretty
simple example. You can easily imagine extending it to cover OAuth or other, more
sophisticated, authentication endpoints.

154 | Chapter 13: Extending Kubernetes



Extending the Life Cycle of the API Server

The previous examples were applications that run on top of your cluster, but there are
limits to what is possible with such cluster extensions. A deeper sort of extensibility
comes from extending the behavior of the API server itself. These extensions can be
applied to all API requests directly, as they are processed by the API server itself. This
enables additional extensibility for your cluster.

Use Cases for Extending the API Life Cycle

Because API life cycle extensions exist in the path of the API server, you can use them
to enforce requirements on all API objects that are created by the service. For exam-
ple, suppose that you want to ensure that all container images that run in the cluster
come from your company’s private registry and that a naming convention is main-
tained. You might, for example, want all images to be of the form registry.my-co.com/
<team-name>/<server-name>:<git-hash> where registry.my-co.com is a private image
registry run by your company, <team-name> and <server-name> are well-known
teams and applications built by those teams, and finally, <git-hash> is a source-
control commit hash indicating the revision from which the image was built. Requir-
ing such an image name ensures that developers don't store their production images
on public (unauthenticated) image repositories, and the naming conventions ensure
that any application (e.g., the XSS scanner we described earlier) has access to meta-
data that is needed to send notifications. Requiring the git-hash ensures that devel-
opers only build images from checked in (and therefore code-reviewed) source code
and that it is easy to go from a running image to the source code that it is running.

To implement this functionality, we can register a custom admission controller.
Admission controllers were described in “Life of a Request” on page 39. They are
responsible for determining whether an API request is accepted (or admitted) into
the API server. In this case, we can register an admission controller that is run for all
API objects that contain an image field (Pods, Deployments, DaemonSets, Replica
Sets, and StatefulSets). The admission controller introspects the image field in
these objects and validates that they match the naming pattern just described and that
the various components of the image name are valid (e.g., the team-name is associated
with a known team, and the git-hash is one in a release branch of the team’s reposi-
tory).

Installing API Life Cycle Extensions

There are two parts to installing API life cycle extensions. The first is creating a Ser
vice to handle the webhook calls, and the second is creating a new Kubernetes API
object that adds the extension. To create the Service that handles the webhook calls
from the API server, you need to create a web service that can respond appropriately.

Extending the Life Cycle of the APl Server | 155



There are many ways to do this, from functions as a service (FaaS) from a cloud pro-
vider, to FaaS implementations on the cluster itself (e.g., OpenFaaS), to a standard
web application implemented in your favorite programming language. Depending on
the requirements for the webhook handler and the operations/cost requirements, you
can make different decisions. For example, using a cloud-based FaaS might be the
easiest in terms of setup and operations, but each invocation will cost some money.
On the other hand, if you already have an open source FaaS implementation running
on your cluster, that is a logical place to run your webhooks. But installing and main-
taining an operational support system (OSS) FaaS might be more work than its
worth, if you have only a few webhooks, and running a simple web server might be
the right choice. You need to make such choices, as your situations warrant.

Operational Considerations for Life Cycle Extensions

From an operational standpoint, there are two operational complexities to consider.
The first and more obvious complexity comes from having to run a Service to han-
dle the webhook. The operational responsibility here varies, as described earlier,
depending on where you run the particular webhook. Regardless, you need to moni-
tor your webhooks for at least application-level reliability (e.g., not returning 500s)
and perhaps more. The second operational complexity is more subtle, and it comes
from having your own code injected into the critical path for the API server. If you
implement a custom admission controller and it starts crashing and returning 500s,
all requests to the API server that use this admission controller will start failing. Such
an event could have significant impact on the correct operation of your cluster, and it
could cause a wide variety of failures that could affect the correct operation of appli-
cations deployed on top of the controller. In a less extreme case, your code could add
extra latency to the API calls that it affects. This added latency could cause bottle-
necks in other parts of the Kubernetes cluster (e.g., the controller manager or schedu-
ler), or it might just make your cluster seem flaky or slow if your extension
occasionally runs slowly or fails. Whatever the case, placing code in the API server
call path should be done carefully and with monitoring, thought, and planning to
ensure that there are not any unanticipated consequences.

Hands-On: Example of Life Cycle Extensions

To implement an admission controller you need to implement the admission control
webhook. The admission control webhook receives an HTTP POST with a JSON body
that contains an AdmissionReview. You may find it helpful to explore type definitions
in more detail.

Let’s implement a simple JavaScript service that admits Pods.
const http = require('http');

const isValid = (pod) => {

156 | Chapter 13: Extending Kubernetes


http://bit.ly/2QmE7ti
http://bit.ly/2QmE7ti

// validate pod here
b

const server = http.createServer((request, response) => {
var json = '';
request.on('data', (data) => {
json += data;
s
request.on('end', () => {
var admissionReview = JSON.parse(json);
var pod = admissionReview.request.object;

var review = {
kind: 'AdmissionReview',
apiVersion: 'admission/vibetal',
response: {
allowed: isValid(pod)
}
IH
response.end(JSON.stringify(review));
b
s

server.listen(8080, (err) => {
if (err) {
return console.log('admission controller failed to start', err);

}

console.log( 'admission controller up and running.');

s

You can see that we take an AdmissionReview object, extract the Pod from the review,
validate it, and then return an AdmissionReview object with a response filled in.

You can then register this dynamic admission controller with Kubernetes by creating
the registration:

apiVersion: admissionregistration.k8s.io/vibetal
kind: ValidatingWebhookConfiguration
metadata:
name: my-admission-controller
webhooks:
- name: my-web-hook
rules:
# register for create of vi/pod
- apiGroups:
apiVersions:
- vl
operations:
- CREATE
resources:
- pods

Extending the Life Cycle of the APl Server | 157



clientConfig:
service:
# Send requests to a Service named 'my-admission-controller-service'
# in the kube-system namespace
namespace: kube-system
name: my-admission-controller-service

As with all Kubernetes objects, you can instantiate this dynamic admission controller
registration with kubectl create -f <web-hook-yaml-file>. But make sure that
the right Service is up and running before you do so, or subsequent Pod creations
may fail.

Adding Custom APIs to Kubernetes

Though we’ve shown you how to extend existing APIs, these modifications are limi-
ted to the set of APIs compiled into the API server. Sometimes, you want to add
entirely new API resource types to your cluster. In particular, although Kubernetes
comes with a rich set of API types that you can use to implement your application,
sometimes you want to add new API types to the Kubernetes API. This dynamic type
capability in Kubernetes allows you to take an existing cluster, with a collection of
built-in API types, like Pods, Services, and Deployments, and add new types that
largely look and feel exactly as if they had been built in. This sort of extensibility is
quite flexible and powerful, but it is also the most abstract and complicated to under-
stand. At the highest level, you can think of this sort of extension as adding new API
objects to the Kubernetes API server—API objects that look as if they have been com-
piled into Kubernetes. All of the tooling for handling existing Kubernetes objects
applies natively to these extensions.

Use Cases for Adding New APIs

Because custom API types are so flexible that they can literally represent any object,
there are a large number of potential use cases. The following examples only just
scratch the surface of these possibilities. In earlier sections, we discussed open source
implementations of FaaS that run on top of Kubernetes. When a FaaS$ is installed on
top of Kubernetes, it adds new functionality to the cluster. With this new functional-
ity, you need an API to create, update, and delete functions in the FaaS. Although you
could implement your own new API for this FaaS, you would have to implement
many of the things (authorization, authentication, error handling, and more) that the
Kubernetes API server already has implemented for you. Consequently, it is far easier
to model the functions provided by the FaaS as Kubernetes API extensions. Indeed,
this is what many of the popular open source FaaS do. When you install one on
Kubernetes, it turns around and registers new types with the Kubernetes API. After
these new types have been registered, all of the existing Kubernetes tools (e.g.,
kubectl) apply directly to these new function objects. This familiarity means that, in

158 | Chapter 13: Extending Kubernetes



many cases, users of extended clusters may not even notice that they are using API
extensions.

Another popular use case for API extensions is the operator pattern championed by
CoreOS. With an operator, a new API object is introduced into the cluster to repre-
sent the (formerly human) “operator” of a piece of software (e.g., a database adminis-
trator). To achieve this, a new API object is added to the Kubernetes API server that
represents this “operated” piece of software. For example, you might add a MySQLData
base object to Kubernetes via API extensions. When a user creates a new instance of
a MySQLDatabase, the operator then uses this API object to instantiate a new MySQLDa
tabase, including appropriate monitoring and online supervision to automatically
keep the database running correctly. Thus, through operators and API extensibility,
users of your cluster can directly instantiate databases instead of Pods that happen to
run databases.

Custom Resource Definitions and Aggregated API Servers

Because both the API life cycle and the process of extending the API is technically
complicated, Kubernetes actually implements two separate mechanisms for adding
new types to the Kubernetes API. The first is known as CustomResourceDefinitions ,
and it involves using the Kubernetes API itself to add new types to Kubernetes. All of
the storage and API serving associated with the new custom type are handled by
Kubernetes itself. Because of this, custom resource definitions are by far a simpler
way to extend the Kubernetes API server. On the other hand, because Kubernetes
handles all of the extensibility, there are several limitations to these APIs. For exam-
ple, it is difficult to perform validation and defaulting for APIs added by custom
resource definitions; however, it is possible by combining custom resource defini-
tions with a custom admission controller.

Because of these limitations, Kubernetes also supports API delegation, in which the
complete API call, including the storage, of the resources is delegated to an alternate
server. This enables the extension to implement an arbitrarily complex API, but it
also comes with significant operational complexity, especially the need to manage
your own storage. Because of this complexity, most API extensions use custom
resource definitions. Describing how to implement delegated API servers is beyond
the scope of this book, and the remainder of this section describes how to use Custom
ResourceDefinitions to extend the Kubernetes API.

Architecture for Custom Resource Definitions

There are several different steps to implementing a custom resource definition. The
first is the creation of the CustomResourceDefinition object itself. Custom resources
are built-in Kubernetes objects with the new type definition. After a CustomResource
Definition is created, the Kubernetes API server programs itself with a new API

Adding Custom APIs to Kubernetes | 159



group and resource path in the API web server, as well as new handlers that know
how to serialize and deserialize these new custom resources from Kubernetes storage.
If all you want is a simple CRUD API, this may be sufficient. But in most cases, you
want to actually do something when a user creates a new instance of your custom
object. To do this, you need to combine the Kubernetes CustomResourceDefinition
with a controller application that watches these custom definitions and then takes
action based on resources that the user creates, updates, or destroys. In many cases,
this application server is also the application that registers the new custom resource
definition. Figure 13-1 diagrams this flow.

. Create controller pod
Step1 P-4 P »| Kubernetes APl server
Create custom
Step 2 Custom resource — »| Kubernetes APl server
controller resource definition
Monitor custom
Step3 Custom resource »| Kubernetes APl server
controller resources

Figure 13-1. A diagram of the three steps in custom resource definition

The combination of a custom resource and a controller application is generally suffi-
cient for most applications, but you may want to add even more functionality to your
API (e.g., precreate validation or defaulting). To do this, you can also add an admis-
sion controller for your newly defined custom resources that inserts itself in the API
life cycle, as described in the Chapter 4, and adds these capabilities to your custom
resource.

Installing Custom Resource Definitions

Like all of the extensions, the code needed to manage these custom resources is run
on the Kubernetes cluster itself. The custom resource controller is packaged as a con-
tainer image and installed on the cluster using Kubernetes API objects. Because a cus-
tom resource is a more complicated extension, generally speaking, the Kubernetes
configuration consists of multiple objects packaged into a single YAML file. In many
cases, these files can be obtained from the open source project or software vendor
supplying the extension. Alternately they can be installed via a package manager, like
Helm. As with all of the other extensions, monitoring, maintenance, and deletion of
the custom resource API extensions occur using the Kubernetes API.

160 | Chapter 13: Extending Kubernetes



When a CustomResourceDefinition is deleted, all of the corre-
sponding resources are also deleted from the cluster’s data store.
They cannot be recovered. So, when deleting a custom resource, be
\ \ careful and make sure to communicate with all end users of that
resource before you delete the CustomResourceDefinition.

Operational Considerations for Custom Resources

The operational considerations of a custom resource are generally the same as for
other extensions. You are adding an application to your cluster that users will rely on
and that needs to be monitored and managed. Furthermore, if your extension also
uses an admission controller, the same operational concerns for admission controllers
apply, as well. However, in addition to the complexities described earlier, there is sig-
nificant additional complexity for custom resource definitions—they use the same
storage associated with all of the built-in Kubernetes API objects. As a result, it is pos-
sible to impact your API server and cluster operation by storing objects too large
and/or numerous in the API server using custom resources. In general, API objects
in Kubernetes are intended to be simple configuration objects. They’re not intended
to represent large data files. If you find yourself storing large amounts of data in cus-
tom API types, you should probably consider installing some sort of dedicated key-
value store or other storage API.

Summary

Kubernetes is great—not just because of the value of the core APIs it provides, but
also because of all of the dynamic extension points that allow users to customize their
clusters to suit their needs. Whether it is via dynamic admission controllers to vali-
date API objects, or new custom resource definitions, there is a rich ecosystem of
external add-ons that you can use to build a customized experience that fits your
users’ needs perfectly. And, if a necessary extension doesn't exist, the details in this
chapter should help you design and build one.

Summary | 161






CHAPTER 14
Conclusions

Kubernetes is a powerful tool that enables users to decouple from operating machines
and focus on the core operations of their applications. This enables users to build,
deploy, and manage applications at scale significantly more easily and efficiently. Of
course, to achieve this, someone has to actually deploy and manage the Kubernetes
cluster itself; the Kubernetes application is their focus.

We hope that this overview of the Kubernetes API and architecture and topics like
RBAC, upgrades, monitoring, and extending Kubernetes give you the knowledge nec-
essary to successfully deploy and operate Kubernetes so that your users don’t have to.

163






A
ABAC (attribute-based access control) module,
98
add-ons, installation of, 69
admission control, 101-113
common controllers, 102-106
configuration, 102
dynamic controllers, 107-113
in request processing, 40
LimitRange controller, 106
PodSecurityPolicies controller, 102-104
ResourceQuota controller, 104-106
validating admission controllers, 108-110
alerts, 138
alpha API, 37
annotations, 15, 24
antiaffinity, 54
API access, ServiceAccount resource, 87-89
API delegation, 159
API discovery, 33-36
APT life cycle extensions, 155-158
installation, 155
operational considerations, 156
use cases, 155
API management, 32-38
API discovery, 33-36
API translation, 37
HTTP paths, 32
OpenAPI spec serving, 36
API requests
admission control, 101-113
authentication, 75-89
authorization, 91-99
API server, 27, 31-48

Index

API management, 32-38
audit logs, 47
basic characteristics for manageability, 31
basic logs, 47
CRD control loop, 46
debugging, 46-48
debugging kubectl requests, 48
internal services, 46
life cycle extensions (see API life cycle
extensions)
request management, 38-45
streaming protocols, 41
API, Kubernetes, 10-18
annotations, 15
batch workloads, 18
cluster organization, 14
ConfigMaps, 13
custom types, 158-161
DaemonSets, 18
Deployments, 15
design principles, 25
Ingress API, 16
labels, 15
Namespaces (Namespace object), 14
Pods, 10
replica sets, 11
Secret type, 13
tools for extending/enhancing, 5
application data recovery, 142
application metrics, 4
Ark, 145
attribute-based access control (ABAC) module,
98
audit logs, 47

165




authentication, 75-89
authorization and, 92
Basic Authentication plug-in, 78
dex, 84
in request processing, 39
kubeconfig file, 85-87
kubeconfig files, 67
OpenlD Connect, 80-82
ServiceAccount resource, 87-89
strategies for, 77-85
Webhook, 82-84
X.509 client certificates, 78-80
authorization, 91-99
authentication and, 92
basics, 92
in request processing, 40
modules, 93
RESTful APIs and, 91
Role and ClusterRole, 94-96
role-based access control, 93-98
RoleBinding and ClusterRoleBinding, 96
testing, 98

B

backups, 4

Basic Authentication plug-in, 78

batch workloads, 18

bearer tokens, Webhook authentication and,
82-84

beta API, 37

blackbox monitoring, 128, 135, 136

C
certificate authority (CA), 65
claims, 81
cluster
basics, 2
DaemonSets and, 18
defined, 2
life cycle, 3
Namespaces, 14
organizing, 14
security, 3
cluster assistants, 152-154
creating, 154
installation, 153
operational considerations, 154
use cases for, 153
cluster daemons, 150-152

creating, 152

installation, 151

operation considerations, 151

use cases for, 150
ClusterRole resource type, 94-96
ClusterRoleBinding resource, 96

CNI plug-in (see Container Network Interface

plug-in)
compare and swap, 27
components, Kubernetes, 26-30
add-ons, 30
components present on all nodes, 28
head node components, 26
scheduled components, 29
ConfigMaps, 13
conflicts, scheduling, 52
container image, 8
Container Network Interface (CNI) plug-in
about, 115-117
choosing a plug-in, 117
installation, 69
Container Runtime Interface (CRI), 60
containers
basics, 7-9
disaster recovery and monitoring, 3
orchestration, 9
control loops, 22
control plane
certificate generation, 65
etcd server, 65-67
high availability, 70
installation, 62-68
kubeadm configuration, 63
kubeconfig files, 67
nodes, 26
preflight checks, 64
Secret data, 66
taints, 68
controller manager, 28
CRI (Container Runtime Interface), 60
custom API types, 158-161, 158

Custom Resource Definitions (CRDs), 159-161

architecture for, 159

control loop, 46

installation, 160

operational considerations, 161

D

DaemonSet API, 18

166 | Index



data storage (see storage)
debugging
API server, 46-48
audit logs, 47
basic logs, 47
ClusterRole resource type, 95
kubectl requests, 48
decentralized system design, 22
declarative configuration, 21
Deployments (Deployment objects), 15
design principles, Kubernetes
API-driven interactions, 25
Unix modularity philosophy, 25
dex, 84
disaster recovery, 141-147
application data recovery, 142
Ark for, 145
etcd backup, 144
high availability and, 141
Kubernetes architecture and, 3
local data, 143
state restoration, 142
worker nodes, 143
DNS
KubeDNS server, 29
namespaces and, 14
Service discovery and, 119
Service object and, 12
dynamic admission controllers, 107-113
about, 107-110
mutating controllers, 110-113
validating controllers, 108-110
dynamic/implicit grouping, 23

E
Elasticsearch, 134
encryption, Secret data and, 66
environment variables, 120
eted, 27
backup, 144
cluster size and performance, 141
kubeadm and, 65-67
Secret data, 66
extending Kubernetes, 4, 149-161
cluster assistants, 152-154
cluster daemons, 150-152
custom APIs, 158-161
Custom Resource Definitions and aggrega-
ted API servers, 159-161

external representation, 37

F

fluentd daemon, 132

G

general availability, 37
grouping, implicit/dynamic, 23

H
head nodes
about, 26
API server, 27
components, 26
controller manager, 28
etcd system, 27
scheduler, 27
high availability
control plane and, 70
disaster recovery and, 141
HTTP load balancing, 16
HTTP paths, 32

image registry, 9
imperative configuration, 21
implicit/dynamic grouping, 23
independent reconciliation loops, 22
InfluxDB, 133
Ingress API, 16
installation
add-ons, 69
API life cycle extensions, 155
certificate generation, 65
cluster assistants, 153
cluster daemons, 151
CNI plug-in, 69
control plane, 62-68
kubeadm, 59-62
kubeadm phases feature, 70
Kubernetes, 59-73
preflight checks, 64
upgrades, 71-73
worker nodes, 68
internal representation, 38
isolation, in Kubernetes context, 8

Index

167




J
Job object, 18
job scheduling (see scheduling)

K
kube-proxy, 28, 117-119
kubeadm, 59-62
and highly available control plane, 70
certificate generation, 65
configuration, 63
etcd, 65-67
kubeconfig file generation, 67
kubelet and, 60-62
phases feature, 70
preflight checks, 64
requirements, 60
upgrade installation, 71-73
kubeadm API, 63
kubeconfig files, 67, 85-87
kubectl command-line tool
API discovery, 33
debugging API server with, 48
KubeDNS server, 29
kubelet, 28, 60-62
Kubernetes (generally)
API, 10-18
architecture, 21-30
containers, 7-9
design concepts, 21-24
design principles, 25
extending (see extending Kubernetes)
overview, 7-19
Services, 12
storage, 12-14
Volumes, 13

L

label queries, 15

label selectors, 53

labels
annotations vs., 24
basics, 15

LimitRange controller, 106

liveness checks, 10

load balancing, 10
Ingress API, 16
Service, 12

logging

API server, 46-48

audit logs, 47

basic logs, 47

monitoring vs., 129
streaming logs, 137

verbosity level adjustment, 47

M

metrics, for disaster recovery and monitoring, 3
modularity (Unix philosophy), 25
monitoring, 127-139

aggregating metrics and logs from multiple

sources, 131

alerting and, 138

blackbox, 136

getting data from cluster and applications,

129-131

goals for, 127-129

layered approach to, 134-136

logging vs., 129

of applications, 136

of Kubernetes components in cluster, 136

of machines, 135

stack construction, 129-134

storing data for retrieval and querying, 133

streaming logs, 137

visualizing/interacting with data, 134

whitebox vs. blackbox, 128, 134
monolithic system design, 22
mutating admission controllers, 107, 110-113

N

Namespaces (Namespace object), 8, 14, 32
networking, 115-125
Container Network Interface, 115-117
kube-proxy, 117-119
policy enforcement, 121-123
Service discovery, 119-121
service mesh, 123
NetworkPolicy resource, 121-123
node affinity, 54-56
node selectors, 53
and node affinity, 54-56
labels and, 15
node taints (see taints)

0

one-time (batch) workloads, 18

168 | Index



open container initiative (OCI) standard, 8
OpenAPI, 36

OpenID Connect (OIDC), 80-82, 84
optimistic concurrency, 27

optimistically concurrent updates, 43
orchestration system, 9

P

pause containers, 116
persistent volumes, 143
phases (kubeadm feature), 70
Pod selectors, 15
Pod, as basic object, 10
PodSecurityPolicies controller, 102-104
policy enforcement
networking and, 121-123
RoleBinding and ClusterRoleBinding, 96
predicates, 50
priorities (priority functions), 50
private registries, 9
probe monitoring (see blackbox monitoring)
Prometheus, 4
and off-the-shelf software, 132
as pull-based aggregator, 131
integrating new application metrics with,
130
machine metrics monitoring with, 135
operating as cluster daemon, 150
Protocol Buffers, 45
public registries, 9
pull aggregation, 131
push-based monitoring system, 131

Q

quotas, ResourceQuota controller and, 104-106

R

RBAC (see role-based access control)

readiness checks, 10

reconciliation loops, 22

replica sets, 11

request management, API server, 38-45
admission control, 40
alternate encodings, 44
authentication, 39
HTTP response codes, 45
optimistically concurrent updates, 43
RBAC/authorization, 40

specialized requests, 41
stages of a request, 39-45
types of requests, 38
validation, 40
watch operations, 43
request validation, 40
ResourceQuota controller, 104-106
REST, semantics of, 91
RESTful APIs, 91
Role resource type, 94-96
role-based access control (RBAC)
authorization and, 93-98
in request processing, 40
Role and ClusterRole, 94-96
RoleBinding and ClusterRoleBinding, 96
testing authorization, 98
RoleBinding resource, 96

S

sandbox interfaces, 116
scheduled components, 29
Heapster, 29
KubeDNS server, 29
ScheduledJob object, 18
scheduler, 27
scheduling, 49-57
algorithm for, 51
conflicts, 52
node selectors, 53
overview, 49
predicates, 50
priority functions, 50
process, 50-53
taints and tolerations, 56
tools for customizing, 53-57
Secret data, 66
Secret type, 13
security, 3
(see also authentication, authorization)
clusters and, 3
Service discovery, 119-121
DNS and, 119
environment variables, 120
monitoring applications with, 136
service mesh, 117, 123
ServiceAccount, 87-89, 97
Services
and Pod selectors, 15
basics, 12

Index |

169




sets, implicit/dynamic grouping, 23
state restoration and disaster recovery, 142
StatefulSets, 17
storage

basics, 12-14

ConfigMaps, 13

Elasticsearch, 134

for retrieval and querying, 133

InfluxDB, 133

Secret type, 13

Volumes, 13
storage representation, 38
streaming logs, 137

T

taints (node taints), 56
control plane nodes and, 68
toleration and, 56

time series, 133

toleration, 56

translation, API, 37

Unix, 25
upgrades, installation of, 71-73
user management, 75-89, 76

(see also authentication)
users, in Kubernetes context, 76

v

validating admission controllers, 107-108
validation, in request processing, 40
version skew, 25

w
watch API, 43
watch protocol, 27
Webhook authentication, 82-84
webhooks (see dynamic admission controllers)
whitebox monitoring, 128, 134
worker nodes
about, 26
disaster recovery, 143
installation, 68

X

X.509 client certificates, 78-80

Y

YAML encoding, 45

170 | Index



About the Authors

Brendan Burns is a cofounder of the Kubernetes open source container management
platform. He is currently a distinguished engineer at Microsoft, running the Azure
Resource Manager and Azure Container Service teams. Before Microsoft, he was a
senior staff engineer on the Google Cloud Platform. Prior to working in cloud, he
developed web search backends that helped power Google Search. He is also a former
professor of computer science at Union College in Schenectady, New York. Brendan
received a PhD in computer science from the University of Massachusetts Amherst
and a BA from Williams College.

Craig Tracey has helped build the infrastructure that powers the internet every day
for the past 20 years. In this time, he has had the opportunity to develop everything
from kernel device drivers to massive-scale cloud storage services and even a few dis-
tributed compute platforms. Now as a software engineer turned field engineer at
Heptio, by teaching the principles of cloud-native architectures through code, he
helps organizations accelerate their adoption of Kubernetes.

Based in Boston, Massachusetts, Craig loves playing hockey in his free time and
enjoys exploring Europe. Craig holds a BS in computer science from Providence Col-
lege.

Colophon

The animal on the cover of Managing Kubernetes is the violet crossfish (Uraster viola-
cea). Found on the coasts of Great Britain, it can range in color from bright orange to
deep red, with blue spots that blend with the warmer colors toward its extremities,
culminating in a brilliant purple at the end of each ray. Generally, it has been
observed to four to five inches in length, and like the common starfish, has a broad,
omnivorous diet, including algae, sponges, snails, bivalves, and other small plants and
creatures.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Edward Forbes’ A History of British Starfish and other Ani-
mals of the Class Echinodermata. The cover fonts are URW Typewriter and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con-
densed; and the code font is Dalton Maag’s Ubuntu Mono.


http://animals.oreilly.com

	Cover
	Heptio
	Copyright
	Table of Contents
	Preface
	Who should read This Book
	Why we wrote This Book
	Navigating This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	How the Cluster Operates
	Adjust, Secure, and Tune the Cluster
	Responding When Things Go Wrong
	Extending the System with New and Custom Functionality
	Summary

	Chapter 2. An Overview of Kubernetes
	Containers
	Container Orchestration
	The Kubernetes API
	Basic Objects: Pods, ReplicaSets, and Services
	Organizing Your Cluster with Namespaces, Labels, and Annotations
	Advanced Concepts: Deployments, Ingress, and StatefulSets
	Batch Workloads: Job and ScheduledJob
	Cluster Agents and Utilities: DaemonSets

	Summary

	Chapter 3. Kubernetes Architecture
	Concepts
	Declarative Configuration
	Reconciliation or Controllers
	Implicit or Dynamic Grouping

	Structure
	Unix Philosophy of Many Components
	API-Driven Interactions

	Components
	Head Node Components
	Components On All Nodes
	Scheduled Components

	Summary

	Chapter 4. The Kubernetes API Server
	Basic Characteristics for Manageability
	Pieces of the API Server
	API Management
	API Paths
	API Discovery
	OpenAPI Spec Serving
	API Translation

	Request Management
	Types of Requests
	Life of a Request

	API Server Internals
	CRD Control Loop

	Debugging the API Server
	Basic Logs
	Audit Logs
	Activating Additional Logs
	Debugging kubectl Requests

	Summary

	Chapter 5. Scheduler
	An Overview of Scheduling
	Scheduling Process
	Predicates
	Priorities
	High-Level Algorithm
	Conflicts

	Controlling Scheduling with Labels, Affinity, Taints, and Tolerations
	Node Selectors
	Node Affinity
	Taints and Tolerations

	Summary

	Chapter 6. Installing Kubernetes
	kubeadm
	Requirements
	kubelet

	Installing the Control Plane
	kubeadm Configuration
	Preflight Checks
	Certificates
	etcd
	kubeconfig
	Taints

	Installing Worker Nodes
	Add-Ons
	Phases
	High Availability
	Upgrades
	Summary

	Chapter 7. Authentication and User Management
	Users
	Authentication
	kubeconfig
	Service Accounts
	Summary

	Chapter 8. Authorization
	REST
	Authorization
	Role-Based Access Control
	Role and ClusterRole
	RoleBinding and ClusterRoleBinding
	Testing Authorization

	Summary

	Chapter 9. Admission Control
	Configuration
	Common Controllers
	PodSecurityPolicies
	ResourceQuota
	LimitRange

	Dynamic Admission Controllers
	Validating Admission Controllers
	Mutating Admission Controllers

	Summary

	Chapter 10. Networking
	Container Network Interface
	Choosing a Plug-in

	kube-proxy
	Service Discovery
	DNS
	Environment Variables

	Network Policy
	Service Mesh
	Summary

	Chapter 11. Monitoring Kubernetes
	Goals for Monitoring
	Differences Between Logging and Monitoring
	Building a Monitoring Stack
	Getting Data from Your Cluster and Applications
	Aggregating Metrics and Logs from Multiple Sources
	Storing Data for Retrieval and Querying
	Visualizing and Interacting with Your Data

	What to Monitor?
	Monitoring Machines
	Monitoring Kubernetes
	Monitoring Applications
	Blackbox Monitoring
	Streaming Logs
	Alerting
	Summary


	Chapter 12. Disaster Recovery
	High Availability
	State
	Application Data
	Persistent Volumes
	Local Data

	Worker Nodes
	etcd
	Ark
	Summary

	Chapter 13. Extending Kubernetes
	Kubernetes Extension Points
	Cluster Daemons
	Use Cases for Cluster Daemons
	Installing a Cluster Daemon
	Operational Considerations for Cluster Daemons
	Hands-On: Example of Creating a Cluster Daemon

	Cluster Assistants
	Use Cases for Cluster Assistants
	Installing a Cluster Assistant
	Operational Considerations for Cluster Assistants
	Hands-On: Example of Cluster Assistants

	Extending the Life Cycle of the API Server
	Use Cases for Extending the API Life Cycle
	Installing API Life Cycle Extensions
	Operational Considerations for Life Cycle Extensions
	Hands-On: Example of Life Cycle Extensions

	Adding Custom APIs to Kubernetes
	Use Cases for Adding New APIs
	Custom Resource Definitions and Aggregated API Servers
	Architecture for Custom Resource Definitions
	Installing Custom Resource Definitions
	Operational Considerations for Custom Resources

	Summary

	Chapter 14. Conclusions
	Index
	About the Authors
	Colophon



