
© DZONE, INC. | DZONE.COM

C
O

N
T

E
N

T
S

ABOUT CONTINUOUS INTEGRATION & DEVOPS

Continuous Integration is one of several core concepts
that must be considered when implementing a DevOps
culture within an organization. The core principles of a
DevOps implementation are summarized by what Gene
Kim describes as "The Three Ways". The First way is to
move towards systems thinking—that is, evaluating
the performance of the system as a whole. This usually
involves organizational changes at a cultural level.

The second way, and what we will be focusing on here,
involves amplifying feedback loops.

The Second Way is about creating the right to left feedback
loops. The goal of almost any process improvement
initiative is to shorten and amplify feedback loops so
necessary corrections can be continually made.

The outcomes of the Second Way include understanding
and responding to all customers, internal and external,
shortening and amplifying all feedback loops, and
embedding knowledge where we need it.

— Gene Kim
The Three Ways: The Principles Underpinning DevOps

Continuous integration helps to fulfill this second principle.
The continuous review, build, and inspection of software
allows us to address potential issues as soon as possible.
It also promotes transparency as all team members have
access to the analytical artifacts produced by the system.

CI TOOLING

There are many tools that can be used to implement a
continuous integration system. For the purposes of this
reference card we will be focusing on the following:

G
et

 M
or

e
R

ef
ca

rd
z!

 V
is

it
 D

Zo
ne

.c
om

/R
ef

ca
rd

z
087

C
O

N
T

IN
U

O
U

S
 I

N
T

E
G

R
A

T
IO

N
 S

E
R

V
E

R
S

 &
 T

O
O

L
S

TOOL DESCRIPTION

Apache Maven
3.3.3

Apache Maven is A software project management and
comprehension tool. Based on the concept of a project object
model (POM), Maven can manage a project’s build, reporting
and documentation from a central piece of information.

Git 2.5.5 A version control system that is widely used for software de-
velopment and other version control tasks. It is a distributed
revision control system with an emphasis on speed, data
integrity, and support for distributed, non-linear workflows.

Jenkins 2.0 Jenkins is an open source automation server with an unpar-
alleled plugin ecosystem to support practically every tool
as part of your delivery pipelines. Whether your goal is con-
tinuous integration, continuous delivery or something else
entirely, Jenkins can help automate it. Jenkins 2.0 provides
built-in support for delivery pipelines, improved usability and
full backwards compatibility.

SonarQube
5.5

An open platform for managing code quality, including static
code analysis.

Gerrit 2.12.x Provides web based code review and repository manage-
ment for the Git version control system.

SonaType
Nexus 3.0.x

A repository for Java artifacts (e.g., JAR and WAR files).
Version 3 provides additional support for docker-formatted
container images, NPM (node package manager), Bower
(HTML, CSS, Javascript repository), and NuGet (Microsoft

.NET package manager)

THE DEMO CI PIPELINE
A graphical representation of the CI pipeline is available
at raw.githubusercontent.com/kharyam/dzone-ci-demo-
app/master/images/ci-pipeline-overview.png The pipeline
consists of the following steps:

1.	 Developer clones code from the authoritative Git
repository managed by Gerrit.

2.	 Developer pushes a code change into the pending
changes repository managed by Gerrit.

Continuous Integration
Servers and Tools

UPDATED BY KHARY A. MENDEZ

 About CI and Devops

 CI Tooling

 The Demo CI Pipeline

 The CI Server Docker Image

 Manual Installation...& more!

BROUGHT TO YOU IN PARTNERSHIP WITH

http://www.dzone.com?refcardz
http://www.refcardz.com
https://DZone.com/Refcardz
https://raw.githubusercontent.com/kharyam/dzone-ci-demo-app/master/images/ci-pipeline-overview.png
https://raw.githubusercontent.com/kharyam/dzone-ci-demo-app/master/images/ci-pipeline-overview.png
http://developers.redhat.com?DZone.com

http://developers.redhat.com?DZone.com

3 CONTINUOUS INTEGRATION SERVERS & TOOLS

3.	 The team lead reviews the code change in pending
changes repository.

4.	 The team lead approves the code changes in the pending
changes repository.

5.	 The team lead submits the code changes into the
authoritative Git repository.

6.	 Gerrit triggers the Jenkins CI pipeline via a change-
merged Git hook.

7.	 The Checkout stage of the pipeline is run.

8.	 The Checkout stage clones the source code from the
authoritative git repository.

9.	 The Build stage performs a maven build of the code.

10.	 The Analyze stage calls SonarQube to perform static
code analysis.

11.	 The Archive stage uploads the WAR file into the Nexus
repository. It also archives unit test results within
Jenkins.

12.	 The Deploy to Development stage deploys the WAR
from Nexus into the development servers. *

13.	 Upon authorized approval the Deploy to Test stage
deploys the WAR into the test servers. *

14.	 Upon authorized approval the Deploy to Production
stage deploys the WAR into the production servers. *

*Note that the last three steps are considered part of the Continuous
Deployment (CD) process, however this can also be handled by the
Jenkins pipeline. These steps are simply placeholders that can be
implemented if CD is desired.

There are two options for continuing with this reference card. The tools
can be installed manually following the section Manually Installing the
CI Server Tools or you can use an example docker-formatted container
image, described in the section Using the CI Server docker-formatted
Container Image.

USING THE CI SERVER DOCKER-FORMATTED
CONTAINER IMAGE

A docker-formatted container image was created for the
configuration described in this reference card. See https://hub.
docker.com/r/kharyam/ciserver/.

For more background information on Docker refer to the Getting
Started with Docker Refcard.

Use the following steps to run the container image.

1.	 Pull the container image
docker pull kharyam/ciserver

2.	 Start the container image
$ docker run -d -p 8081-8084:8081-8084 -p
29418:29418 -p 40396:40396 --name=ciserver
kharyam/ciserver:latest

a75ac65d97ad5c.... (1)

(1)	 This is the ID of the container started by the docker engine

3.	 The initial login to Jenkins will require a password
printed when Jenkins initially comes up. You can issue
the following command to obtain this password.
$ docker logs ciserver 2>&1 | grep -A1 "Please
use"

Please use the following password to proceed to
installation:
4a9bb0ea09cb4f21aa8d9fc506661a80 (2)

(2)	 Use this password for the initial Jenkins login described in the section
Install and Configure Jenkins

Continue with the section Manually Installing the CI Server Tools,
skipping the steps noted as unnecessary for container images.

MANUALLY INSTALLING THE CI SERVER TOOLS

Here we describe how to install and configure the above tools
on a linux server. Once completed you will be able to test out a
continuous integration flow. These steps were tested on Fedora
23 but may be easily tweaked for other linux distributions.

Note: The configuration described herein is for demonstration / learning
purposes and not meant for production use. For example, we will be using
embedded databases for Gerrit and SonarQube while in production you
would use a dedicated database such as PostgreSql or MySQL.

Choose a location to install the software and configuration
information for the CI server, for example /opt/ciserver. We
will refer to this location as $CI_HOME.

INSTALL AND CONFIGURE JAVA, MAVEN AND GIT
Note: You can skip this section if using the container image.

Note: If you are using Red Hat Enterprise Linux or CentOS, replace the
dnf command with yum.

1.	 Install Java, maven, and git:
$ sudo dnf install java-1.8.0-openjdk-devel maven
git gitweb

INSTALL AND CONFIGURE NEXUS
Note: You can skip to Step 4 if using the container image. Nexus may
take several minutes to start the first time.

1.	 Download Nexus 3.0.x at sonatype.com/download-oss-
sonatype.

2.	 Extract the archive:
$ tar -xf nexus-3.0.0-03-unix.tar.gz -C $CI_HOME

Note: By default Nexus will run on port 8081. This can be changed by
updating $CI_HOME/nexus-3.0.0-03/etc/org.sonatype.nexus.cfg.

3.	 Start Nexus using the default configuration:
$ cd $CI_HOME/nexus-3.0.0-03/bin
$./nexus start
Starting Nexus

4.	 Open your browser to http://localhost:8081 and you
should see the Nexus welcome screen. Sign in as admin
with the password admin123.

© DZONE, INC. | DZONE.COM

https://hub.docker.com/r/kharyam/ciserver/
https://hub.docker.com/r/kharyam/ciserver/
https://dzone.com/storage/assets/572027-rc221-docker.pdf
https://dzone.com/storage/assets/572027-rc221-docker.pdf
http://www.sonatype.com/download-oss-sonatype
http://www.sonatype.com/download-oss-sonatype

5.	 You can change the admin user password by clicking the
Admin user name in the header menu then selecting Change
password.

Now we will create a new role in Nexus that has the ability to
administer the release and snapshot repositories.

6.	 Click the gear icon then select Roles under the Security
section on the left of the screen and click the Create Role
> Nexus Role button.

7.	 Enter the following values:

FIELD VALUE

Role ID nx-mvn-admin

Role
Name

Nexus Maven Admin

Privileges nx-repository-admin-maven2-maven-releases-* , nx-repository-admin-
maven2-maven-snapshots-*, nx-repository-view-maven2-maven-
releases-*, nx-repository-view-maven2-maven-snapshots-*

8.	 Click the Create Role button.

Next we will create a Jenkins user account that will allow our CI
pipeline to upload artifacts into the Nexus Repository

1.	 Click the gear icon then select Users under the Security
section on the left of the screen and click the Create
User button.

2.	 Enter the following values:

FIELD VALUE

ID jenkins

First Name Jenkins

Last Name Deployer

Email jenkins@nowhere.com

Password jenkins123

Confirm
password

jenkins123

Status Active

Roles Nexus Maven Admin

3.	 Click the Create User button.

INSTALL AND CONFIGURE GERRIT
Note: You can skip this section if using the container image

1.	 Download Gerrit 2.12.x - https://Gerrit-releases.storage.
googleapis.com/index.html.

2.	 Place the WAR file in $CI_HOME.

4 CONTINUOUS INTEGRATION SERVERS & TOOLS

© DZONE, INC. | DZONE.COM

mailto:jenkins@nowhere.com
https://gerrit-releases.storage.googleapis.com/index.html
https://gerrit-releases.storage.googleapis.com/index.html

3.	 Initialize Gerrit:
$ java -jar Gerrit.war init --batch -d $CI_HOME/
Gerrit

4.	 Add the following to the end of $CI_HOME/Gerrit/etc/
Gerrit.config:
[gitweb]
cgi = /var/www/git/gitweb.cgi

5.	 Change the port Gerrit runs on from 8080 to 8082. Edit
$CI_HOME/Gerrit/etc/Gerrit.config and replace all
occurrences of 8080 with 8082.

6.	 Change the authentication type from OPENID to
DEVELOPMENT_BECOME_ANY_ACCOUNT. Edit $CI_HOME/
Gerrit/etc/Gerrit.config and replace all occurrences of
OPENID with DEVELOPMENT_BECOME_ANY_ACCOUNT.

Note: Gerrit supports many authentication schemes including
OPENID and LDAP. For our demonstration purposes we will enable
a simple developmental authentication scheme, not meant for use
in production. Refer to https://Gerrit-review.googlesource.com/
Documentation/config-Gerrit.html#auth for more information on
Gerrit’s authentication support.

7.	 Download the latest bouncy castle security JAR from
here www.bouncycastle.org/latest_releases.html.

8.	 Copy the JAR file to $CI_HOME/Gerrit/lib.

9.	 Restart Gerrit:
$ $CI_HOME/Gerrit/bin/Gerrit.sh restart

10.	 You should now be able to access the Gerrit home page
via http://localhost:8082.

INSTALL AND CONFIGURE SONARQUBE
Note: You can skip this section if using the container image. Just
note the default username is admin, with password admin.

1.	 Download SonarQube - sonarqube.org/downloads.
$ unzip sonarqube-5.5.zip -d $CI_HOMEsonar.web.
port=8084
$ echo "sonar.web.port=8084" >> $CI_HOME/
sonarqube-5.5/conf/sonar.properties
$ cd $CI_HOME/sonarqube-5.5/bin/linux-x86-64
$./sonar.sh start

2.	 You should now be able to log in to the web console by
pointing your browser to http://localhost:8084 Sign in
as admin with the password admin.

INSTALL AND CONFIGURE JENKINS
Note: You can skip to Step 3 if using the container image.

1.	 Download Jenkins - https://Jenkins.io/2.0/
$ mv Jenkins.war $CI_HOME

2.	 Startup Jenkins on port 8083 and make a note of the
admin password:
$ java -jar Jenkins.war --httpPort=8083

...
Jenkins initial setup is required. An admin user
has been created and a password generated.

Please use the following password to proceed to
installation:

112233445566778899aabbccddeeff11 (1)

...

(1)	 The initial Jenkins password

3.	 Log in to Jenkins via http://localhost:8083 using the
password noted above. If you are using the container
image, use the password that was provided via the
docker logs command.

4.	 Select the Install suggested plugins option.

5.	 Complete the requested information to create the admin
account. Use the username admin and password admin.
Click Save and finish then click Start using Jenkins.

6.	 You should now be presented with the main Jenkins page.

You can now proceed to Configuring a CI pipeline.

CONFIGURING A CI PIPELINE

CONFIGURE GERRIT
We are going to create two user accounts in Gerrit. One
representing a development team lead and another representing
a developer.

1.	 Connect to Gerrit via http://localhost:8082/login.

2.	 Select the New Account button under the Register
heading.

3.	 Enter Team Lead for the full name and click the Save
Changes button.

4.	 Enter teamlead for the username and click the Select
Username button (Click ok to confirm).

5 CONTINUOUS INTEGRATION SERVERS & TOOLS

© DZONE, INC. | DZONE.COM

https://gerrit-review.googlesource.com/Documentation/access-control.html
https://gerrit-review.googlesource.com/Documentation/access-control.html
https://www.bouncycastle.org/latest_releases.html
http://www.sonarqube.org/downloads/
https://jenkins.io/2.0/

5.	 Paste the ssh public key that you use for Git (e.g., ~/.ssh/
id_rsa.pub) into the Add SSH Public Key text box and
click the Add button.

a.	If you are using the container image, you can generate an
ssh key pair by following these steps:

i.	 Log in to your container
$ docker exec -it ciserver /bin/bash

ii.	 Generate a key pair
$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/opt/ci-
server/.ssh/id_rsa): (1)
Created directory '/opt/ci-server/.ssh'.
Enter passphrase (empty for no passphrase):
(1)
Enter same passphrase again: (1)
Your identification has been saved in /opt/ci-
server/.ssh/id_rsa.
Your public key has been saved in /opt/ci-
server/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:ApTkVs+jY/N85pLY4WTKOJ1n2SOojs7B8Fi6F4/
wsOg ci-server@2cdd3e3d74de
The keys randomart image is:
+---[RSA 2048]----+
| .o.. |
| o.. |
| + + |
| |
|. . * S |
| |
|+=++ + Xo=o |
| |
|oE+.oo o o.. |
+----[SHA256]-----+

Note: Press enter when prompted.

iii.	 Copy the public key that was created in /opt/ci-
server/.ssh/id_rsa.pub

6.	 Click the Continue link on the bottom of the page. Since
this is the first user we have created in Gerrit, the user is
automatically granted administrator privileges.

7.	 Go back to http://localhost:8082/login and Select the
New Account button under the Register heading again.

8.	 Enter Team Developer for the full name and click the
Save Changes button.

9.	 Enter teamdeveloper for the username and click the
Select Username button (Click ok to confirm).

10.	 Click the Register New Email.. button, enter the email
address that you have (or will have) in your .gitconfig.
Click Register.

11.	 Paste the ssh public key that you use for Git (e.g., ~/.ssh/
id_rsa.pub) into the Add SSH Public Key text box and
click the Add button. Use the same public key as was
used for the team lead user.

12.	 Click the Continue link on the bottom of the page.

CONFIGURE MAVEN FOR SONARQUBE
Note: You can skip this section if using the container image.

Make a backup copy of /usr/share/maven/conf/settings.xml
and use the following instead. If you are using the container
image this file is already in place.

(1)	

<?xml version="1.0" encoding="UTF-8"?>
<settings>

 <servers>
 <server> (1)
 <id>internal.repo</id>
 <username>jenkins</username>
 <password>jenkins123</password>
 </server>
 </servers>

 <pluginGroups> (2)
 <pluginGroup>org.sonarsource.scanner.maven</pluginGroup>
 </pluginGroups>
 <profiles>
 <profile>
 <id>sonar</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <properties>
 <sonar.host.url>
 http://localhost:8084 (3)
 </sonar.host.url>
 </properties>
 </profile>
 </profiles>
</settings>

Credentials for pushing artifacts into Nexus. Note Maven also supports password
encryption - http://maven.apache.org/guides/mini/guide-encryption.html

(2)	 Sonar plugin for static code analysis

(3)	 URL of the sonar server

CONFIGURE JENKINS
Note: You will need to run through these steps even if you are using the
container image.

CONFIGURE MAVEN
1.	 Return to the Jenkins console (http://localhost:8083)

and login as admin.

2.	 Click the Manage Jenkins link on the left.

6 CONTINUOUS INTEGRATION SERVERS & TOOLS

© DZONE, INC. | DZONE.COM

http://maven.apache.org/guides/mini/guide-encryption.html

3.	 Click Global Tool Configuration.

4.	 At the very bottom, click Add Maven. For the name
specify M3. Deselect Install automatically and set the
value of MAVEN_HOME to /usr/share/maven.

5.	 Click the Save button at the bottom of the page.

INSTALL ADDITIONAL PLUGINS
1.	 On the Manage Jenkins page, select Manage Plugins.

2.	 Click the Available tab and type sonarqube in the
search filter.

3.	 Select the check box next to SonarQube Plugin and click
the Install without restart button.

4.	 Repeat the previous steps to install the Sidebar Link
plugin by specifying sidebar link in the search filter.

SET JAVA_HOME
1.	 Navigate to Manage Jenkins > Configure System.

2.	 Under Global Properties select Environment
Variables.

3.	 Enter JAVA_HOME for the name and
/usr/lib/jvm/java-1.8.0 as the value.

4.	 Click the Save button at the bottom of the page.

ADD LINKS TO SONARQUBE, NEXUS AND GERRIT (OPTIONAL)
These steps will create links on the main Jenkins page to the
Nexus, Gerrit, and SonarQube pages.

1.	 Navigate to Manage Jenkins > Configure System

2.	 Under Additional Sidebar Links enter the following
information:

FIELD VALUE

Link URL http://localhost:8084

Link Text SonarQube

Link Icon gear.png

3.	 Click the Add Link button and enter the following values
for Nexus:

FIELD VALUE

Link URL http://localhost:8081

FIELD VALUE

Link Text Nexus

Link Icon gear.png

4.	 Click the Add Link button and enter the following values
for Gerrit:

FIELD VALUE

Link URL http://localhost:8082

Link Text Gerrit

Link Icon gear.png

5.	 Click the Save button at the bottom of the screen.

PUSH CODE TO GERRIT
These directions will refer to $GIT_HOME as the directory where
you store your git projects, for example ~/git. With these steps
we will create a new project in Gerrit, seeding it with source
code from an existing GitHub repository.

Note: If you are using the container image, you can perform these steps
within the container. Log in to the container and create a git directory
within the home directory: mkdir ~/git && cd ~/git.

1.	 Clone the demo application (https://github.com/
kharyam/dzone-ci-demo-app) from GitHub and remove
the .git directory:
$ cd $GIT_HOME
$ git clone https://github.com/kharyam/dzone-ci-
demo-app.git
$ rm -fr $GIT_HOME/dzone-ci-demo-app/.git

2.	 Create a new project named Demo in Gerrit as the
teamlead user:
$ ssh -p 29418 teamlead@localhost gerrit create-
project Demo --empty-commit

3.	 Clone the new project as the teamdeveloper user:
$ cd $GIT_HOME
$ git clone ssh://teamdeveloper@localhost:29418/
Demo.git

4.	 Move the files from the GitHub project into the Gerrit
project:
$ mv $GIT_HOME/dzone-ci-demo-app/* $GIT_HOME/
Demo
$ mv $GIT_HOME/dzone-ci-demo-app/.gitignore $GIT_
HOME/Demo

5.	 Install the Gerrit Git commit hook. This hook will append
a change-id to the commit message, which is required

7 CONTINUOUS INTEGRATION SERVERS & TOOLS

© DZONE, INC. | DZONE.COM

https://github.com/kharyam/dzone-ci-demo-app
https://github.com/kharyam/dzone-ci-demo-app

by Gerrit. For more information see Gerrit-review.
googlesource.com/Documentation/user-changeid.html.
$ cd $GIT_HOME/Demo
$ gitdir=$(git rev-parse --git-dir); scp -p -P
29418
teamdeveloper@localhost:hooks/commit-msg
${gitdir}/hooks/

6.	 Commit and push the code to Gerrit.
Note: If you are running this within the container, run the
following commands first:​
$ git config --global user.name “teamdeveloper”

$ git config --global user.email “email@somewhere.
com” (1)

$ cd $GIT_HOME/Demo
$ git add . (1)
$ git commit -am “Initial commit” (2)
$ git push origin HEAD:refs/for/master (3)

Counting objects: 20, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (11/11), done.
Writing objects: 100% (20/20), 3.32 KiB | 0
bytes/s, done.
Total 20 (delta 0), reused 0 (delta 0)
remote: Processing changes: new: 1, refs: 1, done
remote:
remote: New Changes:
remote: http://localhost:8082/6 Initial commit
remote:
To ssh://teamdeveloper@localhost:29418/Demo.git

(1)	 Recursively stage all files into the local Git repository

(2)	 Commit all newly added / modified files into the local Git repository

(3)	 Push the commit into the remote Gerrit repository. HEAD:refs/for/
master is a special Git reference used by Gerrit to stage changes for review
prior to making them available on the authoritative Git repository.

7.	 Now if you navigate to the Open Reviews in Gerrit
(http://localhost:8082/#/q/status:open) you will see
the pending review for this initial commit.

CREATE THE JENKINS PROJECT
Here we will create a new Jenkins project that will deploy our
Continuous Integration Pipeline. The Pipeline itself is defined in
the Jenkinsfile of our sample project.

1.	 Login to the Jenkins console (http://localhost:8083/) as
the admin user.

2.	 Click the New Item link.

3.	 Enter a project name of CI Demo, Select the Pipeline
option then click the OK button.

4.	 Under Build Triggers select Trigger builds remotely
(e.g., from scripts). For the Authentication Token
enter super_secret_build_token.

Note: This will allow us to trigger a build by performing an HTTP
get on the URL http://localhost:8083/job/CI%20Demo/
build?token=super_secret_build_token. We will use this to
create a Git hook in Gerrit that will trigger a Jenkins build when code
has been successfully peer reviewed.

5.	 In the Pipeline section, set the Definition to Pipeline
script from SCM.

6.	 Set the SCM to Git and enter the URL of the Gerrit
repository - http://localhost:8082/p/Demo.git.

7.	 Click the Save button.

THE PIPELINE DEFINITION
To learn more about the Jenkins Pipeline plugin (formerly
known as the Jenkins Workflow plugin), refer to dzone.com/
refcardz/continuous-delivery-with-Jenkins-workflow.

node { (1)
 // Mark the code checkout 'stage'....
 stage 'Checkout' (2)

 // Get the latest code from Gerrit
 git url: 'http://localhost:8082/p/Demo.git' (3)

 // Get the maven tool.
 def mvnHome = tool 'M3' (4)

 stage 'Build'

 // Update the version in the pom to
 // match the Jenkins build number. (5)
 sh "${mvnHome}/bin/mvn versions:set -DnewVersion=
 ${env.BUILD_NUMBER} -DallowSnapshots=true"

 // Run the maven build
 sh "${mvnHome}/bin/mvn clean package"

 stage 'Analyze'
 sh "${mvnHome}/bin/mvn sonar:sonar" (6)

 stage ‘Archive’

	 // Archive the artifacts in Jenkins (7)
 step([$class: ‘ArtifactArchiver’, artifacts:
 ‘**/target/*.jar,**/target/*.war’, fingerprint: true])

 // Archive the test results. (8)
 step([$class: ‘JUnitResultArchiver’,
 testResults: ‘**/target/surefire-reports/TEST-*.xml’])

 // Deploy the artifacts to Nexus (9)
 sh “${mvnHome}/bin/mvn deploy”

Code continued on next page

8 CONTINUOUS INTEGRATION SERVERS & TOOLS

© DZONE, INC. | DZONE.COM

https://gerrit-review.googlesource.com/Documentation/user-changeid.html
https://gerrit-review.googlesource.com/Documentation/user-changeid.html
https://dzone.com/refcardz/continuous-delivery-with-Jenkins-workflow
https://dzone.com/refcardz/continuous-delivery-with-Jenkins-workflow

(1)	

 stage concurrency:1, name: 'Deploy to Development' (10)
 echo 'Simulating deployment to Development Environment'
 echo "Downloading WAR file from http://localhost:8081/
 repository/maven-releases/org/example/cisampleapp/${env.
 BUILD_NUMBER}/cisampleapp-${env.BUILD_NUMBER}.war"
 echo 'Deploying WAR file to development server(s)'
 sleep 2

 stage concurrency:1, name: 'Deploy to Test'
 timeout(time: 7, unit: 'DAYS') { (11)
 input message: 'Do you want to deploy to Test?',
 submitter: 'admin' (12)
 }
 echo 'Simulating deployment to Test Environment'
 echo "Downloading WAR file from http://localhost:8081/
 repository/maven-releases/org/example/cisampleapp/${env.
 BUILD_NUMBER}/cisampleapp-${env.BUILD_NUMBER}.war"
 echo 'Deploying WAR file to Test server(s)'
 sleep 5

 stage concurrency:1, name: 'Deploy to Production'
 timeout(time: 7, unit: 'DAYS') {
 input message: 'Do you want to deploy to Production?',
 submitter: 'admin'
 }
 echo 'Simulating deployment to Production Environment'
 echo "Downloading WAR file from http://localhost:8081/
 repository/maven-releases/org/example/cisampleapp/${env.
 BUILD_NUMBER}/cisampleapp-${env.BUILD_NUMBER}.war"
 echo 'Deploying WAR file to production server(s)'
 sleep 5
}

 The node specifies that the contained steps will run on a Jenkins node. Optionally
a node label can be specified to restrict the steps to run a specific node.

(2)	 Defining the first stage in the pipeline, named Checkout.

(3)	 Checkout the source code from our Git repository.

(4)	 Define the location of the Maven command line, from our previously configured M3
definition in the Jenkins configuration.

(5)	 Prior to running the build, use the maven set:versions command to update the
version in our POM file with the Jenkins build number. This gives will give us code
traceability back to the Jenkins build.

(6)	 Run the sonar plugin to perform static code analysis.

(7)	 Archive the built JARs and WARs within Jenkins. Record fingerprints for traceability.

(8)	 Archive the unit test results to enable the generation of trends.

(9)	 Issue the Maven deploy command to upload our artifacts (POM and WAR file)
into Nexus. It will be versioned by the Jenkins build number as set by the Maven
set:versions command.

(10)	Simulate an automatic deployment to the development servers. concurrency:1
indicates that if there are multiple instances of this pipeline running only one
may run this stage at a time. The WAR file would be downloaded from Nexus and
deployed to application servers in the development environment.

(11)	 Simulate a deployment to the test environment.

(12)	The input message will prompt before deploying into the specified environment.
The submitter option specifies a user or group allowed to execute the step. In
this case only the admin user can deploy to test or production.

CREATE THE GIT HOOK IN GERRIT
Note: You can skip this section if you are using the container image

We will create a hook in Gerrit that will automatically start
our Jenkins pipeline when code has been successfully peer
reviewed and submitted into the authoritative Git repository

managed by Gerrit. Note that it assumes the Jenkins login is
admin/admin and the project name is CI Demo.

Note: We are using Gerrit to manage code review and promotion
however other techniques and tools can be incorporated as well. An
example would be the use of the Git flow workflow nvie.com/posts/a-
successful-git-branching-model.

For more information on the change-merged Gerrit hook refer
to review.typo3.org/Documentation/config-hooks.html#_
change_merged.

$ mkdir ${CI_HOME}/gerrit/hooks
$ printf '#!/bin/sh
if [$8 == \"Demo\"]; then
 curl -u admin:admin
http://localhost:8083/job/CI%%20Demo/build\?token=super_secret_
build_token > /tmp/results.txt
fi ' > ${CI_HOME}/gerrit/hooks/change-merged

$ chmod 555 ${CI_HOME}/gerrit/hooks/change-merged

TESTING THE CI PIPELINE

APPROVE THE INITIAL CODE CHECKIN WITHIN GERRIT
1.	 Log in to gerrit (http://localhost:8082/login) as the

Team Lead user.

2.	 Select All > Open. There will be a pending peer review
labeled Initial commit.

3.	 Click the Initial commit link.

(1)	 This section lists all files that are modified and need to be removed as part of the
review. Clicking a file in the list will reveal a diff from the previous version of the
file. The diff screen also allows comments to be placed on lines of a file.

(2)	 Reply…​ allows a reviewer to submit overall feedback on a set of changes.

(3)	 The default behavior of Gerrit requires that at least one person of sufficient

9 CONTINUOUS INTEGRATION SERVERS & TOOLS

© DZONE, INC. | DZONE.COM

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
https://review.typo3.org/Documentation/config-hooks.html#_change_merged
https://review.typo3.org/Documentation/config-hooks.html#_change_merged

privilege give a vote of +2 in order for a change to be eligible for submission into
the authoritative Git repository. This button provides a quick means of doing so.

4.	 Select the Reply…​ button

5.	 Enter a textual description and choose the +2 option so
that the code can be submitted into the authoritative
repository. Click the Post button.

6.	 Note that a Submit button is now available. This will
place the change into the authoritative repository. Open
a browser tab to the Jenkins CI Demo project (http://
localhost:8083/job/CI%20Demo/).

7.	 Now click the Submit button in Gerrit and switch back to
the Jenkins tab. A new build should start shortly, since
our change-merged hook will be called by Gerrit.

8.	 If you hover the mouse over the Deploy to Test stage,
you will be prompted to deploy to the test environment.
Since the pipeline only allows the admin user to deploy,
we can click the Proceed button. Repeat for Production.

VIEW THE NEXUS AND SONARQUBE RESULTS
Verify the WAR file was uploaded into Nexus:

1.	 Log in to Nexus via http://localhost:8081/ using
admin/admin123.

2.	 Select Browse > Components > maven-releases.

3.	 cisampleapp should be visible with its corresponding
version number. Click it and you should see the WAR, pom
and their corresponding checksums in the repository.

VIEW THE SONARQUBE ANALYSIS RESULTS
1.	 Login to SonarQube via http://localhost:8084/ using

admin/admin.

2.	 The cisample application should be visible, click it.

3.	 Under Code Smells notice the rating of C.

4.	 Click the C then click the Listener.java source file.

5.	 Expand each item in the source code to reveal the code smells.

6.	 Explore other areas of the SonarQube interface.

UPDATE THE CODE
Here we resolve some of the code smells and exercise the
pipeline once again.

1.	 Update the Listener.java source file located in ${GIT_
HOME}/Demo/src/main/java/org/example/Listener.java

a.	Remove the line public int thisIsBad = 0;.
b.	Add the @Override annotation above each method:
package org.example;

import javax.servlet.ServletContextEvent;

public class Listener implements javax.servlet.
ServletContextListener {

 @Override
 public void
 contextDestroyed(ServletContextEvent arg0) {
 System.out.println("CI/CD Application
 initialized");
 }

 @Override
 public void
 contextInitialized(ServletContextEvent arg0) {
 System.out.println("CI/CD Application
 exiting");
 } ...

2.	 Commit and push the changes to Gerrit:
$ git commit -am "Resolved some SonarQube
issues"
$ git push origin HEAD:refs/for/master

APPROVE THE CODE IN GERRIT
1.	 Log back in to Gerrit as the teamlead user.

2.	 A new open peer review is now listed.

10 CONTINUOUS INTEGRATION SERVERS & TOOLS

© DZONE, INC. | DZONE.COM

3.	 Click the issue then click the file listing to view the diff.

4.	 Comments can be added to the diff by clicking the line
number in one of the margins.

5.	 Click the browser back button to return to the previous
screen.

6.	 Click the Code-Review+2 button to approve the change.

7.	 Click the Submit button to submit the change into the
authoritative Git repository. Verify another build has
started in Jenkins.

Verify SonarQube has fewer issues

8.	 Log in to SonarQube and note the number of Code Smells
has decreased from five to two.

THE THIRD WAY

The Third Way is about creating a culture that fosters two
things: continual experimentation, taking risks and learning
from failure; and understanding that repetition and practice is
the prerequisite to mastery.

— Gene Kim
The Three Ways: The Principles Underpinning DevOps

Developers need to be able to rapidly create production-
like environments to deploy and experiment with code and
application changes. This capability, which enables the third
way, is facilitated through Platform As a Service (PaaS) using
tools such as Red Hat® OpenShift Container Platform (OCP)
openshift.com/container-platform.

TOOLS

The following is a sampling of tools available to support your
continuous integration effort.

TOOL TYPE NAME

CI/CD Server Jenkins/Hudson, Bamboo, TravisCI, GitLab CI

Code Quality Static Analysis Findbugs, PMD, CheckStyle

Automated Testing JUnit, Selenium, Cucumber

Build Tools Maven, Gradle, Ant, Buildr, Rake

Artifact Repository Nexus, Artifactory

Code Quality Reporting and
Aggregation

SonarQube

Version Control Git, Subversion, Mercurial

Code Review Gerrit, Crucible, Git Lab, Phabricator

The Three Ways: The Principles Underpinning DevOps, Gene Kim - itrevolution.com/
the-three-ways-principles-underpinning-devops/

DZONE, INC.

150 PRESTON EXECUTIVE DR.

CARY, NC 27513

888.678.0399

919.678.0300

REFCARDZ FEEDBACK WELCOME
refcardz@dzone.com

SPONSORSHIP OPPORTUNITIES
sales@dzone.com

Copyright © 2017 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

DZone communities deliver over 6 million pages each month to more than 3.3 million software

developers, architects and decision makers. DZone offers something for everyone, including

news, tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

After having worked over ten years as a software engineer, KHARY MENDEZ joined Red Hat North
America Public Sector Consulting in 2011. He has enabled clients in the areas of software development,
CI/CD, DevOps, and business automation.

ABOUT THE AUTHOR

BROUGHT TO YOU IN PARTNERSHIP WITH

11 CONTINUOUS INTEGRATION SERVERS & TOOLS

https://www.openshift.com/container-platform/
http://itrevolution.com/the-three-ways-principles-underpinning-devops/
http://itrevolution.com/the-three-ways-principles-underpinning-devops/
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

