
DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

1

BROUGHT TO YOU IN PARTNERSHIP WITH

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

2

3	 EXECUTIVE SUMMARY
BY MATT WERNER

4	 KEY RESEARCH FINDINGS
BY G. RYAN SPAIN

6	 CONTINUOUS DELIVERY ANTI-PATTERNS
BY MANUEL PAIS AND MATTHEW SKELTON

9	 CHECKLIST: KEY FUNCTIONALITIES OF CI TOOLS
BY MANUEL MOREJON

12	 9 BENEFITS OF CONTINUOUS INTEGRATION
BY JOB VAN DER VOORT

16	 INFOGRAPHIC: HOW TO AVOID DEAD-END DELIVERY

18	 BETTER CODE FOR BETTER REQUIREMENTS
BY ALEX MARTINS

22	 WHY MICROSERVICES SHOULD BE EVENT DRIVEN
BY CHRISTIAN POSTA

26	 EXECUTIVE INSIGHTS ON THE STATE OF DEVOPS
BY TOM SMITH

30	 BRANCHING CONSIDERED HARMFUL! (FOR C.I.)
BY ANDREW PHILLIPS

34	 MICROSERVICES AND DOCKER AT SCALE
BY ANDERS WALLGREN

37	 DIVING DEEPER INTO DEVOPS

40	 WHAT THE MILITARY TAUGHT ME ABOUT DEVOPS
BY CHRIS SHORT

44	 DEVOPS SOLUTIONS DIRECTORY

48	 GLOSSARY

DEAR READER,
Ever since the publication of Continuous Delivery and The Phoenix

Project, there’s been a noticeable surge of hype around DevOps

in the development world, prompting many to automate their

deployments and improve collaboration between development and

operations. Since then, startups offering a new automation, pipeline,

communication, or monitoring tool have risen, fallen, been bought

out, or become juggernauts in a very competitive field, all while

educating developers on the benefits of Continuous Delivery and

introducing a whole language’s worth of jargon to the world.

As we take our first steps into 2017, we can see that, finally, the

benefits of Continuous Delivery have really taken root in the

employees and managers of today’s business. Our audience

has reported that more projects have implemented Continuous

Delivery, more organizations have dedicated DevOps teams,

and barriers to adopting these practices are being overcome. It’s

evident that we’re moving to a more clear sense of understanding

around DevOps.

 However, the understanding around how to use technology

to reach these goals is not quite there. For example, our

analysis found that teams using container technology, such as

Docker, experienced a 20% faster mean time to recovery than

teams that do not. Yet only 25% of DZone members are using

containers, while another 25% are still evaluating the technology.

Microservices in particular have started coming into their own.

The benefits of modular architecture to quickly push or roll back

changes to an application are in clear alignment with Continuous

Delivery, and audience members using microservices recover from

failure after 7 hours on average instead of 29 for those who don’t.

We can see a thirst for specific knowledge and case studies

across over two dozen planned DevOps Days in 2017, the DevOps

Enterprise Summit (organized by Phoenix Project author Gene

Kim), future Velocity conferences from O’Reilly, product-specific

conferences, and of course from DZone readers like you who visit

our DevOps zone every day.

 Of course, understanding is only the first step, but actually

implementing Continuous Delivery across the entire enterprise

is another undertaking altogether, and we’ve worked to address

these issues in DZone’s Guide to DevOps: Continuous Delivery and

Automation, from the benefits of automation, to the pitfalls of

delayed branch merges, and the folly of “one-stop-shop” DevOps

solutions. Most will agree that the technology you use is not

as important as the company culture or processes to facilitate

DevOps, but using that technology incorrectly will severely limit

your efforts.

 So while most of us understand what Continuous Delivery is, and

what the benefits are, there is still a lot of work to do to get DevOps

working for the entire enterprise. Let’s get started.

BY MATT WERNER
CONTENT AND COMMUNITY MANAGER

RESEARCH@DZONE.COM

PRODUCTION
CHRIS SMITH
DIRECTOR OF PRODUCTION

ANDRE POWELL
SR. PRODUCTION COORDINATOR

G. RYAN SPAIN
PRODUCTION PUBLICATIONS EDITOR

ASHLEY SLATE
DESIGN DIRECTOR

MARKETING
KELLET ATKINSON
DIRECTOR OF MARKETING

LAUREN CURATOLA
MARKETING SPECIALIST

KRISTEN PAGÀN
MARKETING SPECIALIST

NATALIE IANNELLO
MARKETING SPECIALIST

EDITORIAL
CAITLIN CANDELMO
DIRECTOR OF CONTENT +
COMMUNITY

MATT WERNER
CONTENT + COMMUNITY MANAGER

MICHAEL THARRINGTON
CONTENT + COMMUNITY MANAGER

MIKE GATES
CONTENT COORDINATOR

SARAH DAVIS
CONTENT COORDINATOR

TOM SMITH
RESEARCH ANALYST

BUSINESS
RICK ROSS
CEO

MATT SCHMIDT
PRESIDENT & CTO

JESSE DAVIS
EVP & COO

MATT O’BRIAN
DIRECTOR OF BUSINESS
DEVELOPMENT
sales@dzone.com

ALEX CRAFTS
DIRECTOR OF MAJOR ACCOUNTS

JIM HOWARD
SR ACCOUNT EXECUTIVE

JIM DYER
ACCOUNT EXECUTIVE

ANDREW BARKER
ACCOUNT EXECUTIVE

CHRIS BRUMFIELD
ACCOUNT MANAGER

ANA JONES
ACCOUNT MANAGER

SPECIAL THANKS

to our topic experts,
Zone Leaders, trusted
DZone Most Valuable
Bloggers, and dedicated
users for all their
help and feedback in
making this guide a
great success.

TABLE OF CONTENTS

WANT YOUR SOLUTION TO BE FEATURED IN
COMING GUIDES?
Please contact research@dzone.com for submission
information.

LIKE TO CONTRIBUTE CONTENT TO COMING GUIDES?
Please contact research@dzone.com for consideration.

INTERESTED IN BECOMING A DZONE RESEARCH
PARTNER?
Please contact sales@dzone.com for information.

https://www.devopsdays.org/events/
http://events.itrevolution.com/
http://events.itrevolution.com/
http://www.oreilly.com/conferences/
https://dzone.com/devops-tutorials-tools-news
mailto:research%40dzone.com?subject=
mailto:research%40dzone.com?subject=
mailto:sales%40dzone.com?subject=

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

3

BY MATT WERNER
CONTENT AND COMMUNIT Y MANAGER, DZONE

Ever since DevOps became a permanent topic of

discussion in the world of software development,

there’s been a push from thought leaders, developers,

and businesses to adopt the tools and methodologies to

achieving Continuous Delivery. The benefits are obvious:

with increased collaboration between development and

operations teams, automated testing and deployments,

and a supportive culture, bottlenecks can be eliminated,

code changes can be deployed faster, and applications

can recover from downtime much quicker. This year, it

seems that understanding around the processes, and

benfits is starting to make a substantial difference in

organizations and their employees, compared to previous

years. For DZone’s 2017 Guide to DevOps: Continuous Delivery

and Automation, we surveyed almost 500 DZone members

about how their organizations have adopted DevOps, what

their pain points are, what tools they use, and how they’ve

finally made real headway to implementing Continuous

Delivery throughout their organizations.

PROGRESS IS BEING MADE TO ACHIEVE CONTINUOUS
DELIVERY
DATA 41% of survey respondents reported that their organization

had a DevOps team, compared to 34% in 2016. Between 2017 and

2016, there was a 9% increase in those who felt they had adopted

CD for some projects, while respondents who felt Continuous

Delivery was a focus of their organization increased by 8%.

IMPLICATIONS Based on the growth in those who are doing

continuous delivery for some projects, or have made it a focus

for their team, it’s clear that more developers and managers

have been able to at least start their journey towards Continuous

Delivery. There’s also been an increase in education around

what constitutes Continuous Delivery. These huge gains reflect

organizations who recognize they haven’t fully implemented

Continuous Delivery yet, which means they understand what full

Continuous Delivery means across the whole organization.

RECOMMENDATIONS For all the progress in partially adopting

Continuous Delivery, there still seems to be a lack of knowledge

around Mean Time to Recovery and Mean Time Between Failures,

so developers need to communicate more with their ops teams to

figure out how long their services are down, then come together

and figure out a solution to the problem. While the increase in

DevOps teams can be a step in the right direction, some experts

feel that the existence of a “DevOps team” is not the same as

practicing DevOps. In their quest to achieve Continuous Delivery,

organizations and teams should continue to automate whatever

processes they can.

TECHNOLOGY MATTERS FOR RECOVERY RATES
DATA Organizations that use push-button or automated

deployments recover from failure twice as fast on average,

compared to organizations that do not have such tools (12 hours

vs 24). Container users found that, on average, it took 20% less

time to recover than organizations that do not use containers.

Those who have adopted microservices architectures for their

applications have a 7-hour Mean Time to Recover (MTTR),

compared to a 29-hour MTTR for those who don’t.

IMPLICATIONS Continuous Delivery may not always be about

tooling, but it is clear that tools help achieve the goals of

CD. Modular, scalable technology, in addition to automated

deployments, are key to reducing application downtime. In

particular, the data suggests there is substance to the well-

known hype around container technology, such as Docker,

and microservices architectures. As mentioned in the

“recommendations” in the previous sections, automation is

incredibly important to quickly push changes to production and

to get applications back online as soon as possible.

RECOMMENDATIONS If your organization or team can implement

microservices or containers into a new or existing application,

the data suggest that it’s worth it to give them a try. MTTR is a

very important metric to track and decrease, as large-scale, long-

term failures will only produce angry users, and ultimately less

revenue for your organization.

TEARING DOWN THE WALLS
DATA Compared to last year’s list of barriers to adopting

Continuous Delivery, survey respondents noted there were

significantly fewer blockers. In particular, 7% fewer DZone

members reported that there was no support from management,

and 5% fewer respondents believed that engineers did not possess

the skills to implement Continuous Delivery. All other barriers

decreased 2-4% between last year and this year.

IMPLICATIONS There seems to have been a major shift in company

culture, and while management is still identified as the greatest

blocker to adopting DevOps, more managers have learned about the

benefits of CD and have encouraged their teams to pursue it. This

can also be reflected in the increase in DevOps adoption for some

projects. In addition, with all the open source tools available, such as

Jenkins, and wealth of knowledge on the topic available online, more

developers are learning the right skills.

RECOMMENDATIONS Developers and managers who understand

the benefits of DevOps need to educate both their managers

and employees on the economic and engineering benefits of

Continuous Delivery. Continuous Delivery needs a supportive

culture to thrive in, and those supportive cultures come from

a mix of enthusiasm from both management and employees,

which helps to create an understanding of shared goals. See

our infographic on page 16 for more information on how these

barriers, and others, can block DevOps adoption.

Executive
Summary

https://theagileadmin.com/what-is-devops/
https://theagileadmin.com/what-is-devops/
http://www.devopsdigest.com/devops-is-not-about-the-tools
http://www.devopsdigest.com/devops-is-not-about-the-tools
https://dzone.com/devops-tutorials-tools-news

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

4

BY G . RYAN SPAIN
PRODUCTION COORDINATOR, DZONE

497 respondents completed our 2017 Continuous Delivery

survey. The demographics of the respondents include:

•	 19% of respondents work at organizations with

over 10,000 employees; 20% at organizations

between 1,000 and 10,000 employees; and 26% at

organizations between 100 and 1,000 employees.

•	 45% of respondents work for organizations

headquartered in Europe, and 30% for organizations

based in the US.

•	 On average, respondents had 15 years of experience

as IT professionals; 27% had 20 years or more of

experience.

•	 42% of respondents identified as developers/

engineers, and 27% identified as developer team leads.

•	 82% of respondents work at companies using the Java

ecosystem, and 70% at companies using client-side

JavaScript.

TIME TO FACE THE STRANGE
DevOps has had some steady growth over the past year, as
more and more developers and organizations work towards
automation and cross-departmental collaboration. 41% of
respondents said their organization has a dedicated DevOps
team, up 7% over last year’s statistic (which had not changed
from the year before). Performance issue detection in the
software delivery process increased 5% year over year, while
automated performance testing increased 6% and automated
feature validation increased 4%. The number of respondents
who said they believe their organization has achieved
Continuous Delivery “for some projects” increased 9%
from 2016, and there was an 8% swing in respondents who
said that CD is a focus for their organization. Microservice
architectures are used 7% more compared to last year, and
container adoption is up 8%. The use of version control tools
reported in QA and Production have increased 15% and 18%
respectively, and the use of CI tools in those departments
increased 17% and 13%.

Despite this growth, there are some areas of stagnation in
CD results. From 2016, there was no statistically significant
change in respondents’ estimate of their mean time to
recovery (between hours and days) or mean time between
failures (between hours, days, and months). Most CD pipeline
pain points also remained the same from last year, with the
exception of automated testing, which dropped 7% as a pain
point, and the deployment process and regression testing,

which each dropped 4%.

SIZE MATTERS
With regards to having Continuous Delivery implemented
in an organization, and having Continuous Delivery
implementation be a focus for an organization, company size
plays a sizable role. Respondents’ belief that their company
has achieved Continuous Delivery trends upwards as the size
of their organizations increase. 51% of respondents working
at companies under 100 employees think their company
has either fully or partially achieved Continuous Delivery,
versus 60% of respondents who work at companies larger

HAVE YOU OR YOUR ORGANIZATION ADOPTED CONTAINER
TECHNOLOGY (E.G. DOCKER)

HAS YOUR ORGANIZATION MOVED TOWARDS A MICROSERVICE
ARCHITECTURE?

Key
Research
Findings

29%

26%

13%

27%

5%

NO, AND NO PLANS
TO DO SO

YES, FOR THE WHOLE
BUSINESS

YES, FOR SELECT
APPLICATIONS

CURRENTLY
TRANSITIONING

NO, BUT CONSIDERING
DOING SO

YES

STILL EVALUATING

NO, BUT CONSIDERING
DOING SO

NO, AND NO PLANS
TO DO SO

25%25%

26%24%

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

5

than 10,000 employees. And only 41% of respondents working
at sub-100 employee organizations say that CD is a focus for
their company, 15% less than those who work at companies
between 100 and 9,999 employees and 30% less than those
who work at 10,000+ organizations.

This goes hand-in-hand with larger companies’ ability, and
likely need, to have dedicated DevOps teams. Only about one
in four respondents (27%) at an organization with fewer than
100 employees said their company had a dedicated DevOps
team, compared to almost half (45%) of respondents between
100 and 9,999 employees and 62% over 10,000.

STOP... RECOVERY TIME
Overall, respondents’ estimated an average mean time to
recovery of just under 19 hours, with estimates ranging from
just minutes to 40 days, but with most estimates falling
somewhere between 2 and 24 hours. Several factors come
into play here, which can drastically change the mean-time-
to-recovery estimates. Respondents whose organizations
have push-button/automated deployment estimated
recoveries happen twice as fast as organizations that don’t
(12 hours versus 24 hours). Those respondents using or
evaluating container technologies estimated about 20% less
time to recover than non-container users (17 hours versus 21
hours). Microservice usage greatly affected these estimates.
Respondents who said their organization has not moved to
microservice architectures estimated, on average, a 29-
hour mean time to recovery; respondents at organizations
currently transitioning estimated 12 hours; and respondents

at organizations using microservices for some or all of their
applications estimated a 7 hour mean time to recovery.

BRING THE PAIN POINTS
We asked our survey-takers who said they believed their
organization had implemented Continuous Delivery in
some capacity what their biggest pain points were in the
CD pipeline, and likewise asked those respondents who
did not think their organization had achieved CD status
what they thought were the main barriers to adopting CD.
As mentioned earlier, most pain points appeared to be
just as painful this year as they were last year. The most
common pain points were environment config and setup
(56%), coordination of team members and resources (34%),
and regression testing (32%). Most other pain points were
experienced by roughly a quarter of respondents, with
the exceptions of build and compile (8%) and supply chain
management (7%).

Regarding barriers to adoption, this year’s respondents
again answered similarly to last year’s results, though all
barriers did drop somewhat. The biggest changes here were
“no support from management,” which dropped 7% from
last year, and “Engineers/Ops don’t have the right skill sets,”
which dropped 5%. All others dropped between 2 and 4
percent from last year. So, while progress is being made to
make CD easier to adopt and manage, there is still certainly

plenty of room for improvement.

WHAT ARE YOUR MAIN BARRIERS TO ADOPTING CONTINUOUS
DELIVERY?

WHAT ARE YOUR BIGGEST PAIN POINTS IN THE CONTINUOUS
DELIVERY PIPELINE?

0

10

20

30

40

50

60

E
nvironm

ent con�guration and
set-up

C
oordination of team

 m
em

bers
and resources

R
egression Testing

U
ser A

cceptance Testing

D
eploym

ent P
rocess

A
utom

ated Testing

P
erform

ance Testing

S
oftw

are C
hange M

anagem
ent

(S
C

M
)

R
equirem

ents Issues

D
elivery and R

ollout

B
uild and C

om
pile

S
upply C

hain M
anagem

ent

O
ther

56

34
32 31

29 29
27

25
23 22

8 7
3

C
orporate C

ulture - not enough
collaboration/D

evO
ps practices

Lack of tim
e

E
ngineers/O

ps don’t have the
right skill sets

N
o support from

 m
anagem

ent

N
ot enough budget

Integrating autom
ation

technologies

D
on’t have the best release

or C
I technology

C
onstrained by regulations

or legal requirem
ents

O
ther

0

10

20

30

40

50

60

53

47
43

30
27 26

15 15

6

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

6

Continuous Delivery
Anti-Patterns

An anti-pattern is typically a behavior that
hinders or at least negatively influences a target
objective. There are many anti-patterns for
Continuous Delivery documented by people like
Jez Humble, Steve Smith, and ourselves.

Some CD anti-patterns arise not from an existing behavior,

but by trying to actually implement the practices without

understanding their goals first. That is especially frequent

when adopting integrated tools that are supposed to support

a full set of CD practices out-of-the-box. The idea that you

can “just plug in a deployment pipeline” and get the benefits

of CD is a common anti-pattern.

In the following sections we will look into some of these

“unintentional” and often hard-to-notice anti-patterns

that might emerge when adopting a “DevOps one-stop

shop” solution.

ANTI-PATTERN #1:
AVOIDING TOOL INTEGRATION LIKE THE PLAGUE
There is a prevalent notion, especially in larger enterprises,

that integrating disparate tools is extremely expensive. That

you’ll be locked for eternity maintaining glue code with high

technical debt. That might have been true in the 2000s, but

surely not today.

As long as you are integrating tools with clear and

standard APIs, the orchestration code can be minimal and

understandable by anyone familiar with API development

(which all developers should be in 2017!).

Tooling integration cost is not zero, but it’s negligible when

compared to the potential cost of not integrating. One-stop

solutions might embed erroneous concepts. Any tool might.

The problem is that the former will propagate them across

the entire lifecycle.

ONE-STOP SHOP SOLUTION

PACKAGE DEPLOYBUILD

Anti-pattern: Single tool without standard APIs, or only for some components.

Instead, single-purpose, focused tools with a well-defined

API help reduce the blast radius of bad practices. And you can

swap them easily when they don’t match your requirements

anymore. A flexible toolchain standardizes practices, not

tools. It supports certain capabilities, which are easy to locate

and expand on, replacing particular components (tools) when

required.

APIAPI API

PACKAGE

ORCHESTRATE
PIPELINE

DEPLOYBUILD

Pattern: Single-purpose tools with clear APIs/boundaries that can be replaced
more easily.

BY MANUEL PAIS AND MATTHEW SKELTON
SKELTON THATCHER CONSULTING

Single vendor “DevOps one-stop shop”
solutions trade ownership of your
toolchain for ease of setup and slow you
down over time.

Cost of lack of evolvability is often
underplayed, while cost of individual
tool integration is overrated.

Out-of-the-box tools also fail. A
combination of poor error messages
and lack of access to logs leads to
massive waste of time.

Tools that equal a stage to an
environment deployment miss out on
the real power of deployment pipelines.

Out-of-the-box solutions propagate
vendors’ misunderstandings of
principles and practices.

01

02

03

04

05

Q U I C K V I E W

https://continuousdelivery.com/2010/09/deployment-pipeline-anti-patterns/
http://www.alwaysagileconsulting.com/articles/tag/antipattern/
http://www.slideshare.net/SkeltonThatcher/continuous-delivery-antipatterns-from-the-wild-matthew-skelton-ipexpo-europe
http://www.slideshare.net/SkeltonThatcher/continuous-delivery-antipatterns-from-the-wild-matthew-skelton-ipexpo-europe/63

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

7

Another gain with individual tools: you can actually expect an

answer from the vendor when you ask for a feature, since they

have a reduced feature set and faster change cycles. A vendor

of a one-stop solution has a lot more requests in its backlog.

Chances are, if you’re not a major client, your requests will get

buried for months or even years.

ANTI-PATTERN #2:
ERROR HANDLING & LOGGING BEHIND CLOSED DOORS
Another hidden time-consuming anti-pattern in one-

stop solutions derives from generic error messages or

inaccessible logging. This tends to be especially painful

with SaaS solutions.

Unfortunately our industry is still plagued with the

“abstraction everywhere bias”: a tendency to favor generic

error messages (“VM could not be started” or “Deployment

failed”) instead of spelling out what was the expected input or

output and the difference to the actual result. Now add to the

mix inaccessible logs for those failed operations, a common

situation in one-stop solutions that provide only UI access to

certain features or only let you access logs via queries.

The problem is these tools assume they have all the use

cases and all the failure scenarios covered. That is untrue

for any tool, or any software in fact. We will always need

access to information to troubleshoot issues. The more

information we have, the more likely we can correlate

events and find the causes.

Pattern: Centralizing logs from individual tools and correlating messages.

Think of all the time spent deciphering error messages,

trying to guess what went wrong, or waiting for a vendor’s

support to get back to you (if you hit the jackpot with a

technical issue deep in the tool’s gut, good luck waiting

for the support-to-engineering return trip time). That time

alone is an order of magnitude higher than any individual

tool integration time you’d have spent.

ANTI-PATTERN #3:
ENVIRONMENT-DRIVEN PIPELINES
This one is pretty self-explanatory. Tools that assume your

pipeline is nothing but a sequence of environments where

you deploy your system and run some tests.

A pipeline stage represents an activity in the delivery chain.

It might require:

•	 One environment: typical for acceptance tests

•	 Zero environments: typical for manual checks/analysis

or approval requests

•	 Multiple environments: typical for performance tests

Thus pipeline stages should not be tightly coupled to

environments. Assuming only the first option above leads

to pipelines that contemplate only automatable activities,

hiding other (often non-technical) activities that are part

of delivery as well. In turn, this leads to lack of visibility on

(real) bottlenecks and local optimization (technical steps)

instead of global (cycle time).

Int-Tests-Env

Release-42
13 hours ago

�

Acceptance-QA-Env

� Release-42
13 hours ago

Perf-Instance1-Env

� Release-42
13 hours ago

� Release-42
13 hours ago

Perf-Instance2-Env

Anti-pattern: Pipeline stages = Environment deploys

https://github.com/S...

trigger new build

 ...

Integration

3

�

Acceptance

3

�

Production

No instance of this
pipeline has run for any of
the direct upstream
dependency revision

Performance User_Acceptance

No instance of this
pipeline has run for any of
the direct upstream
dependency revision

No instance of this
pipeline has run for any of
the direct upstream
dependency revision

Security Staging

No instance of this
pipeline has run for any of
the direct upstream
dependency revision

No instance of this
pipeline has run for any of
the direct upstream
dependency revision

Pattern: Pipeline stages represent activities, which might require 0 to many
environments.

ANTI-PATTERN #4
FLEXING IS FOR FITNESS, NOT FOR PRINCIPLES
Adopting core Continuous Delivery principles is hard and

often requires mental and cultural shifts. Without them the

“The idea that you can ‘just

plug in a deployment pipeline’

and get the benefits of CD is a

common anti-pattern.​​​”

https://continuousdelivery.com/principles/
http://www.slideshare.net/SkeltonThatcher/continuous-delivery-antipatterns-from-the-wild-matthew-skelton-ipexpo-europe/63
http://www.slideshare.net/SkeltonThatcher/continuous-delivery-antipatterns-from-the-wild-matthew-skelton-ipexpo-europe/63

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

8

underlying practices become ceremonies, instead of actual

improvements in delivery. Flexibility is fine for the gym, but

not for core principles required for a (often radical) new way

of working.

If the tools supporting the practices do not align with

the principles, they end up unintentionally undermining

the whole endeavor. In contrast, working with a set of

single-purpose tools helps identify and address erroneous

assumptions by any one tool.

Below are a couple of examples of misalignment between

implementation and principles that we’ve seen in some out-

of-the-box integrated tools.

STATUS: ???
A pipeline status should be binary. Red or green. Not orange.

Not grey. Not blue. Recurring ambiguities in status inevitably

lead to disengagement by development teams. This is the

CD equivalent to warnings at compilation time. If the first

warnings are ignored by developer A, then developer B and

developer C will ignore them as well. Soon everyone just

assumes having 372 warnings is ok.

Having an uncontested pipeline status is a prerequisite to

the Continuous Delivery principle of “stopping the line”

when a pipeline fails (then either fix it quickly or revert the

changes that broke it). Interestingly, this is also a prerequi-

site to get rid of those nasty compilation warnings (try mak-

ing the pipeline go red if there are compilation warnings).

Anti-pattern: Non-binary status: once upon a time there was a green build...

TERMINOLOGY FAIL
Another plague in our industry is the proliferation of

terminology. We have enough confusion as it is and quite

frankly one-stop tool vendors are not helping. They, above

all, should strive to align on common terminology, as they

are informing their clients on the entire lifecycle. So it better

be correct. This is clearly complicated as those vendors have

many different teams working on the integrated tools. But it

is needed.

One puzzling example we have come across of terminology

failures is calling a pipeline trigger from a successful build a

“continuous deployment.”

Anti-pattern: Using common terminology to represent something
totally unrelated.

Another example are “release definitions” instead of

“pipeline definitions” (the image above is a release definition

configuration). Legacy terminology leads to legacy behaviors,

thinking of releases and work batches instead of pipelines

and frequent delivery of small, low-risk changes in

production.

This might seem like just nitpicking, but the accumulation

of all these misunderstandings leads to unknowingly

misinformed organizations and teams.

SUMMARY
We want to go faster and faster delivering products. To do so

we should also be able to go faster and faster in adapting our

pipeline to support that goal.

But one-stop tooling solutions often bring along several anti-

patterns that slow us down or misguide us, as explored in

this article.

We’re not advocating for always integrating your own tool

chains. Your organization might have good reasons to go for a

one-stop solution in terms of DevOps and Continuous Delivery.

We just recommend being extremely conscious of the trade-off

you’re making. And we hope the anti-patterns highlighted in

this article help guide some of that thinking process.

MATTHEW SKELTON has been building, deploying, and
operating commercial software systems since 1998. Co- founder
and Principal Consultant at Skelton Thatcher Consulting, he
specializes in helping organizations to adopt and sustain good
practices for building and operating software systems: Continuous
Delivery, DevOps, aspects of ITIL, and software operability.

MANUEL PAIS is a people-friendly technologist at
@SkeltonThatcher. He’s a Continuous Delivery and DevOps
advocate, with a diverse background as developer, build manager
and QA lead. Also @InfoQ DevOps lead editor, co-organizer of
@DevOpsLisbon meetup.

https://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment/
https://twitter.com/SkeltonThatcher
https://www.twitter.com/InfoQ
https://www.twitter.com/DevOpsLisbon

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV9

1. PIPELINE
Continuous Integration systems should have an

interface showing the current process state and all

task transitions during the deployment process. These

systems should manage tasks in both the sequential

and parallel. They also should give the option for the

DevOps team to handle manual actions in order to

specify when they need something to be deployed.

2. BUILD AS CODE
Writing the workflow in a file permit executes the same

workflow every time you need it. This method is the

philosophy of “write once and run forever,” but applied

to the Continuous Integration process. Now, you don’t

have to remember or record each step you do during

the system configuration. The human error is reduced

to zero. These files are included in a version control

system and all changes can be tracked over time.

3. WORK WITH CONTAINERS
Containers have proven to be of great importance

in system development. Docker is a primary tool in

the development process. Continuous Integration

systems have been adding functionalities to manage

containers and images as part of daily routines.

4. MULTI-PLATFORM
You should be able to execute constructions in Unix,

Windows, and Mac OS X, allowing your team to

develop from any operating system.

5. ACTIVE SUPPORT
Concepts like continuous integration and continuous

deployment should be taken into account during the

infrastructure tools selection. The systems selected

should have short deployment cycles in order to

guarantee quick bug fixes and new features from

the team.

6. INTEGRATION WITH THIRD-PARTY
RESOURCES
Allowing the integration between the system and

external services is vital to the organization. The

system itself doesn’t need to have all functionalities,

but it must have an architecture to allow increased

benefit through third-party resources. Allowing

support from the community has been demonstrated

to be crucial in the improvement of the system.

Desirable Traits of
Local CI Tools
Identifying the best tools for your organization must

start from examining the needs of your development

group. Below are some desirable traits to keep in

mind when making your selection:

1. FREE UNLIMITED USERS
Allowing multiple users access to the systems and

the use of role-based management for users.

2. FREE UNLIMITED PROJECTS AND BUILDS
Allowing management of multiple projects and

unlimited execution of builds.

3. FREE UNLIMITED AGENTS
Allowing build executions on multiple machines.

Local CI Tools Analyzed
Each one of the tools listed here includes the

features mentioned above.

1. GITLAB CE
GitLab CI is a part of GitLab that allows you to

manage jobs with tasks through the .gitlab-ci.yml file.

This file is used to describe all tasks in a single file

with the YAML format.

GitLab CI allows for the use of Docker to build and

deploy projects, and they offer a Private Docker

Registry to store your own images. GitLab Runner

can be installed cross-platform and is responsible

for running jobs on external machines. GitLab CE

updates its products the 22nd of every month.

2. JENKINS
Jenkins uses the Pipeline Plugin to manage and

describe the deployment process. This plugin uses

a Jenkinsfile to register all steps that should be

executed by the Pipeline Plugin. Jenkins also has the

Blue Ocean Plugin to improve user experience during

the use of the Pipeline Plugin.

The Docker Plugin allows Jenkins users to manage

topics related to containers and images. Jenkins uses

node philosophy to run jobs on external machines.

These machines can have different operating systems,

allowing them to run cross-platform functionalities.

Jenkins updates its products each month.

3. CONCOURSE CI
Concourse is a Continuous Integration tool created

with the pipeline as a first-class citizen. The system

shows us a new way to manage jobs in the server.

Concourse uses files with the YAML format to

describe jobs and tasks.

In Concourse, every process runs inside a container.

Concourse workers can be installed cross-platform

and they are responsible for running the jobs

described in the YAML format inside containers.

Concourse CI update its products each month.

Advantages of Using
Local CI Tools
The advantages obtained when using a local CI

system include:

1. THE CODE INTEGRATION IS CONSTANT
The development group is not as likely to be affected

by any unplanned interruptions during integration of

the code as they might if using an outsourced cloud-

hosted system.

2. SYSTEM UPDATES ARE CONTROLLED
Updates sometimes involve making adjustments to

project settings. An unwanted update may cause

errors in code integration—stay in control of updates

by using a local tool.

3. GREATER PRIVACY OF WORK GROUP
PRODUCTS
Although there are security and privacy policies when

using paid cloud services, it is always best to leave

the code at home behind a firewall.

Disadvantages of Using
Local CI Tools
The tools analyzed in this article can be acquired

without any cost, but this does not mean that the

installation and the maintenance are totally free for

the development team. The team must invest in:

1. HARDWARE INFRASTRUCTURE
Physical or virtual machines with medium or

high profile.

2. SPECIALISTS IN THE AREA
Engineers and Specialists with the correct

knowledge.

MANUEL MOREJON is a Master in

Applied Software, a DevOps Engineer, and

a Configuration Manager. Manuel has both

the technical and communication skills

to help teams improve their workflows and reduce

deployment times, the goal always being to maximize

productivity by minimizing errors. Enthusiastic about

teaching and sharing knowledge with the community,

Manuel writes at mmorejon.github.io/en/blog.

Key
Functionalities
of CI Tools
BY MANUEL MOREJON

DevOps teams should strive to create

and support workflows that best fit the

entire team. During workflow creation, it is

important to evaluate your team’s needs and

think ahead when selecting a continuous

integration tool. Sometimes, selecting a

local CI solution is a necessary or a political

requirement in teams or enterprises, so the

installation and configuration of the system

must be set up within the organization’s own

infrastructure. There are many CI systems

that offer the ability to tie directly to local

infrastructure, but not all do — for this

checklist, we’ll focus on the ones that do.

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

https://www.docker.com/
https://docs.gitlab.com/ce/README.html
https://docs.gitlab.com/ce/ci/README.html
https://docs.gitlab.com/ce/user/project/container_registry.html#gitlab-container-registry
https://docs.gitlab.com/ce/user/project/container_registry.html#gitlab-container-registry
https://docs.gitlab.com/runner/
https://jenkins.io/
https://wiki.jenkins-ci.org/display/JENKINS/Pipeline+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Blue+Ocean+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Docker+Plugin
http://concourse.ci/
http://mmorejon.github.io/en/
http://mmorejon.github.io/en/blog

Accelerate Dev. Simplify Ops.

Deliver Faster.

• Plug-in all point-tools, stacks and processes to
orchestrate pipelines from check-in to Production

• Deploy to any cloud or container environment
without heavy scripting or learning new APIs

• Powerful DSL, CLI and APIs provide
programmatic access to all UI functionality

ElectricFlow: The Most Advanced
DevOps Release Automation Solution

USE IT FREE: electric-cloud.com/electricflow

FREE!

SPONSORED OP IN ION

http://electric-cloud.com/products/electricflow?utm_medium=pdf&utm_source=dzone-devops-research-guide-2017-01&utm_campaign-electricflow-dzone

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

1 1

For over a decade, Electric Cloud has been helping

organizations automate and accelerate their software

delivery. ElectricFlow, the company’s end-to-end DevOps

Release Automation platform, has recently been named

the leader in Gartner’s Magic Quadrant for Application

Release Automation—getting the highest scores for both

vision and execution.

ElectricFlow orchestrates and automates the entire software

delivery pipeline. By allowing customers to plug in all the

point-tools, environments, and processes involved in their

delivery process, ElectricFlow enables organizations to

orchestrate the end-to-end pipeline and achieve visibility,

compliance, and control over the entire release process.

With ElectricFlow, enterprises can model their application

delivery pipelines, to normalize their “Pathways to

Production” as much as possible to allow faster feedback

loops and reusability across the organization, while

supporting the specific needs of different teams or variants

of the application. The ability to have consistent build, test,

and deployment processes that everyone benefits from is the

“Holy Grail” for enterprises as they take the next steps in their

DevOps adoption towards scaling DevOps in the organization.

By standardizing on ElectricFlow to manage their tools and

processes across the organization, customers eliminate

configuration drift, bottlenecks in the pipeline, and save

on operational cost and management overhead. The tight

integration between the various processes and tools

eliminates manual handoffs or silos of automation to speed

up cycle times, provide better product quality, and improve

resource utilization.

WRITTEN BY ANDERS WALLGREN
CTO, ELECTRIC CLOUD, INC.

Accelerate Dev. Simplify Ops. Deliver Faster.

BLOG electric-cloud.com/blog WEBSITE electric-cloud.comTWITTER @electriccloud

ElectricFlow By Electric Cloud

CASE STUDY
Companies like E-Trade, HPE, Gap, and Huawei trust Electric

Cloud with their DevOps Release Automation for faster releases,

fewer process errors, better visibility, and better software quality.

For Huawei, ElectricFlow is part of a comprehensive solution,

supporting more than 2000 releases per year, 50K compile &

builds per day, 100 million test cases run per day including more

than 30 million LOC for a very complex product. They completed

more than 480K code reviews/analyses per year and more than

170K system integration tests per year. E-Trade uses ElectricFlow

for faster build, test, and deploy cycles for their website, mobile

clients, trading engine, and settling systems. Since using

ElectricFlow, they’ve experienced 12x faster delivery.

STRENGTHS
•	Automating and accelerating software delivery

since 2002

•	Broadly recognized by leading analyst as DevOps

Release Automation Leader

•	Single, scalable DevOps Release Automation platform

that shrinks cycle times

•	Automate and orchestrate your entire end-to-end

pipeline—plug in all your tools, stacks & processes

•	Deploy to any cloud/container environment without

heavy scripting or learning new APIs

CATEGORY
DevOps Release
Automation

NEW RELEASES
Every 60 days

OPEN SOURCE
No, but we offer a free
community edition

NOTABLE CUSTOMERS

•	E-TRADE

•	Gap

•	GE

•	HPE

•	Intel

•	Lockheed Martin

The Most Advanced
DevOps Release
Automation Solution

SPONSORED OP IN ION

http://electric-cloud.com/
http://electric-cloud.com/blog
http://electric-cloud.com/
http://electric-cloud.com/
https://twitter.com/electriccloud
http://www.twitter.com/nginx
http://electric-cloud.com/
http://electric-cloud.com/

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

1 2

9 Benefits of
Continuous Integration:
Why Modern Development Teams Should

Automate Testing

Across almost every industry, the best

companies are increasingly becoming those

who make great software. As a result,

software development teams are transforming

their software operations to optimize for

efficiency, quality, and reliability. Continuous

Integration, Continuous Deployment, and

Continuous Delivery are increasingly popular

topics among modern development teams.

Together they enable a team to safely build,

test, and deploy their code. These modern

development practices help teams release

quality code faster and continuously.

CONTINUOUS INTEGRATION, DELIVERY, AND
DEPLOYMENT DEFINED
Continuous Integration is a software development

practice in which you build and test software every time a

developer pushes code to the application.

For example, let’s say developers push code to improve

their software projects every day, multiple times per day.

For every commit, they use a CI tool to test and build

their software. The CI tool will run unit tests to make

sure their changes didn’t break any other parts of the

software. Every push automatically triggers multiple

tests. Then if one fails it’s much easier to identify where

the error is and start working to fix it. But for this team,

they do not deploy to production, so this is considered

Continuous Integration only.

Continuous Delivery is a software engineering approach

in which continuous integration, automated testing, and

automated deployment capabilities allow software to be

developed and deployed rapidly, reliably, and repeatedly

with minimal human intervention. Still, the deployment to
production is defined strategically and triggered manually.

Mozilla is a good example of an organization using

Continuous Delivery. Mozilla says that for many of their

web projects “once a code change lands on a master

branch it is shepherded to production with little-to-no

human intervention.”

Continuous Deployment is a software development

practice in which every code change goes through the

entire pipeline and is put into production automatically,

resulting in many production deployments every day. It

does everything that Continuous Delivery does, but the

process is fully automated; there’s no human intervention
at all.

Hubspot, Etsy, and Wealthfront all use continuous

deployment to deploy multiple times a day. In 2013,

Hubspot reported that they deploy 200-300 times day.

People often assume that continuous deployment only

works for web-based software companies, so I’d like to

offer another example in a completely different industry:

Tesla. Tesla Model S is using continuous deployment to

ship updates to the firmware on a regular basis. These

changes don’t simply change the dashboard UI or offer

Continuous Integration,
Continuous Deployment, and
Continuous Delivery together
enable a team to safely build,
test, and deploy code.

Automating testing through
Continuous Integration is a
way to increase code quality.

9 benefits of Continuous
Integration are listed,
explained, and help shed
light on why teams should
adopt these practices.

01

02

03

Q U I C K V I E W

BY JOB VAN DER VOORT
VP OF PRODUCT AT GITLAB

https://quality.mozilla.org/2014/10/continuous-delivery-a-generic-plan/
http://product.hubspot.com/blog/how-we-deploy-300-times-a-day
http://www.forbes.com/forbes/welcome/?toURL=http://www.forbes.com/sites/steveblank/2014/01/03/tesla-and-adobe-why-continuous-deployment-may-mean-continuous-customer-disappointment/&refURL=&referrer=#5ee9ae8d364f

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

1 3

new ways to change console settings in your car, they
improve key elements of the car, like acceleration and
suspension. Tesla proves that continuous delivery can
work for any team committed to the practice.

9 BENEFITS OF CONTINUOUS INTEGRATION
The benefits of Continuous Integration, Delivery, and
Deployment are clear. However, the process to building
the pipeline to do Continuous Delivery or Deployment
isn’t always easy. But that doesn’t mean you shouldn’t
do it. We believe that modern development teams are
working their way up to Continuous Deployment. That’s
why we suggest getting started with automated testing
through Continuous Integration today. With automated
tests on each new commit, Continuous Integration is a
great way to increase code quality. Here are our top nine
reasons why we think every development team should be
doing Continuous Integration.

1. MANUAL TESTS ARE ONLY A SNAPSHOT
How many times have you heard a team member say “it
worked locally.” In their defense, it likely did work locally.
However, when they tested it locally they were testing on
a snapshot of your code base and by the time they pushed,
things changed. Continuous Integration tests your code
against the current state of your code base and always in
the same (production-like) environment, so you can spot
any integration challenges right away.

2. INCREASE YOUR CODE COVERAGE
Think your tests cover most of your code? Well think
again. A CI server can check your code for test coverage.
Now, every time you commit something new without any
tests, you will feel the shame that comes with having your
coverage percentage go down because of your changes.
Seeing code coverage increase over time is a motivator for
the team to write tests.

3. INCREASE VISIBILITY ACROSS THE TEAM
Continuous Integration inspires transparency and
accountability across your team. The results of your
tests should be displayed on your build pipeline. If a
build passes, that increases the confidence of the team.
If it fails, you can easily ask team members to help you
determine what may have gone wrong. Just like code
review, testing should be a transparent process amongst
team members.

4. DEPLOY YOUR CODE TO PRODUCTION
A CI system can automatically deploy your code to staging
or even production if all the tests within a specific branch
are green. This is what is formally known as Continuous
Deployment. Changes before being merged can be made
visible in a dynamic staging environment, and once they
are merged these can be deployed directly to a central
staging, pre-production, or production environment.

5. BUILD STUFF NOW
All your tests are green and the coverage is good, but you

don’t handle code that needs to be deployed? No worries!

CI servers can also trigger build and compilation processes

that will take care of your needs in no time. No more

having to sit in front of your terminal waiting for the build

to finish, only to have it fail at the last second. You can run

any long-running processes as a part of your CI builds and

the CI system will notify you if anything goes wrong, even

restarting or triggering certain processes if needed.

6. BUILD STUFF FASTER
With parallel build support, you can split your tests and

build processes over different machines (VMs/containers),

so the total build time will be much shorter than if you

ran it locally. This also means you’ll consume fewer local

resources, so you can continue working on something else

while the builds run.

7. NEVER SHIP BROKEN CODE
Using continuous integration means that all code is tested

and only merged when all tests pass. Therefore, it’s much

less likely that your master builds are broken and broken

code is shipped to production. In the unlikely event that

your master build is broken, let your CI system trigger a

warning to all developers: some companies install a little

warning light in the office that lights up if this happens!

8. DECREASE CODE REVIEW TIME
You can have your CI and Version Control System

communicate with each other and tell you when a merge

request is good to merge: the tests have passed and it

meets all requirements. In addition, even the difference in

code coverage can be reported right in the merge request.

This can dramatically reduce the time it takes to review a

merge request.

9. BUILD REPEATABLE PROCESSES
Today’s pace of innovation requires development

teams to deliver high-quality software faster than their

competition. Modern development teams are building

efficient software delivery engines by creating repeatable

processes that standardize development best practices.

With automated testing, your code is tested in the same

way for every change, so you can trust that every change

is tested before it goes to production.

JOB VAN DER VOORT discovered his love for building
software while working in neuroscience and quickly left
academia for GitLab. As the VP of Product at GitLab, Job is
responsible for building software that helps anyone go faster
from idea to production. In his free time, Job likes to build apps, play
board and video games, and explore new tech.

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

1 4

Automic, the leader in Business Automation, helps enterprises drive competitive advantage by automating their IT and

business systems - from on-premise to the Cloud, Big Data and the Internet of Things. With offices worldwide, Automic

powers over 2,700 customers including Bosch, Netflix, eBay, AMC Theatres, Carphone Warehouse, ExxonMobil, Voda-

fone, Société Générale, NHS SBS, General Electric and Swisscom. More information can be found at www.automic.com.

SPONSORED OP IN ION

http://www.twitter.com/automic
http://www.automic.com
http://www.automic.com

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

1 5

Automic is the largest global pure-play automation

solution provider. With a focus on customer

satisfaction, continuous innovation, dedicated specialized

teams and partnerships, we lead the business automation

scene. We help over 2,700 companies - from start-ups to

global brands - grow their business by taking away the

stress of the every day so they can focus on innovation.

Automic has mastered the art of connecting islands

of automation. We have proven this over and over

again - significantly reducing complexity by orchestrating

business processes with the broadest range of

integrations.

We believe in building long lasting relationships with our

customers and going the extra mile. To be our client’s

trusted partner requires interacting with clients on their

most critical automation challenges. It’s not just our

differentiated product features that make the difference,

but also our dedicated automation specialists located in

each region, as close as possible to our clients. We focus

on Business Automation.

We have over 20 years of experience in this field.

That’s how we do business - we empower business

through automation.

WRITTEN BY LUCAS CARLSON
 SENIOR VICE PRESIDENT (SVP) OF STRATEGY, AUTOMIC SOFTWARE

Automic V12 is a unified suite of business automation products which drive agility across

Enterprise Operations and empower your DevOps initiatives.

Automic v12 By Automic

CASE STUDY
Working closely with Automic, an international wholesaler

and retailer of jewelry transformed a department of project

managers, developers and operations, responsible for all of

the customer-facing websites, into a DevOps organization. As

a result, project delivery was completed with 90 percent fewer

delays, and first customer-facing releases of projects could be

delivered in less than half the time. The usability of its websites

increased significantly; resulting in more customer traffic,

longer average time spent on the sites and increased revenue.

STREAMLINING DEV AND OPS PRODUCTIVITY BY:
•	 Switching the development from a project to a product mode

(cross-project development teams based on capabilities rather than

assignment of individual developers to projects).

•	 Moving project managers from development micromanagement to focus

on major milestones and deliverables to the business.

•	 Enabling some project managers as product owners (project

management remained necessary).

•	 Providing developers with agile methodologies through initial training

plus ongoing coaching (six to 12 months).

•	 Providing ops with an agile methodology.

•	 Organizing both dev and ops into multi-skilled teams focused on

individual products rather than technologies.

•	 Aligning ops into delivery teams, initially part-time and later full-time.

•	 Giving delivery teams the end-to-end responsibility for their products,

including their operations.

•	 Standardizing the technology stacks within teams (but not across them)

over time.

•	 Delivering projects into production (or alpha, beta) in slices (releases)

instead of just once to get early feedback and improve.

CATEGORY
Release Automation /

Workload Automation /

Service Orchestration /

DevOps, AgileOps

NEW
RELEASES
Bi-annually

OPEN
SOURCE
Yes

NOTABLE CUSTOMERS

SPONSORED OP IN ION

•	 ExxonMobil

•	 Vodafone

•	 NHS SBS

•	 General Electric•	 Bosch

•	 Netflix

•	 AMC Theatres

BLOG automic.com/blog WEBSITE automic.comTWITTER @automic

We help companies grow their business by

taking away the stress of the every day so

they can focus on innovation.

http://www.automic.com/blog
https://www.automic.com
https://www.automic.com
https://twitter.com/automic
http://www.twitter.com/nginx

While the bene�ts of Continuous
Delivery are well-documented, the
initial investment into tooling and training
can put a lot of managers off the concept. For
successful Continuous Delivery, it takes both management and

frontline developers to believe in the bene�ts and be
devoted to working towards them.

NO SUPPORT FROM
MANAGEMENT

Jamie Zawinski once famously said,
"Linux is only free if your time has no
value." Unfortunately, in the Enterprise,
whether you go for an open source or
proprietary tool, implementing DevOps
tools and processes take a lot of time that
you may not have, especially if you have delivery
dates looming.

LACK OF TIME

 The knowledge to put the pieces of your build pipeline
together may not exist in your organization, and even if it

does it could take a lot of work to integrate these tools,
especially if those tools are open source and you don't have

budget to spring for a proprietary product.

LACK OF BUDGET
If your organization doesn't have time to
go the open source route, you'll need to
use proprietary solutions, which you may
not have the budget for, especially if
you're a startup without VC or time to

spare. No money, mo' problems.

Company culture can be dif�cult to
establish, and even more dif�cult
to change. If a culture has built

silos that separate teams from each
other, it's going to be very dif�cult

to foster the collaboration, �exibility, and
speed that Continuous Delivery demands.

CD

Continuous Delivery is very dif�cult
without adopting several new tools,
and impossible without changing

processes. Learning all these new
technologies can be incredibly
dif�cult, especially if there's no prior
knowledge on your team.

LACK OF SKILL

30%

In this year's survey of DZone's audience, 48% of respondents believe they
have not adopted Continuous Delivery, and 38% believe they have adopted
Continuous Delivery only for some projects. Just over half of respondents
(54%) are currently focused on implementing Continuous Delivery in their
companies, so what's keeping them from reaching that goal, and what's
keeping the other 46% from trying to implement it? Turns out, there are a
lot of obstacles that can prevent developers or managers from making

headway in their adoption efforts. To learn more about them, we're going
to play a little game...

Imagine you're a plucky young startup with everything to prove, or perhaps
part of a seasoned corporation that's been around the block and is ready for
a transition to more modern methodologies. Can you achieve Continuous
Delivery without running into any of these barriers? A-maze us!

INTEGRATING AUTOMATION
 TECHNOLOGY

45%

53%

47%

27%27%

CORPORATE CULTURE

COPYRIGHT DZONE.COM 2017

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

1 8

Better Code for
Better Requirements

Quality is a very hot topic in the DevOps and
Continuous Delivery era. “Quality with speed” is
the theme of the hour. But most development and
testing teams have different views on what quality
means to them.

Looking back at my days as a professional
developer, I remember being tasked to follow the
company coding style guide. This described the
design principles and the code convention all
the developers should follow so that we wrote
consistent code. Thus when a change request came
in, anyone could read the code and make the edits,
and we could minimize maintenance.

Then there were the weekly reviews where we would get together

with a peer and go through the code to ensure we understood it

and were following the style guide. If the code checked out, we

then thought we had quality code.

But did that mean the applications we built were high quality? No!

SETUP
I’ve worked with plenty of agile dev teams that have adopted

DevOps and achieved Continuous Delivery. These teams typically

create basic, sometimes throwaway code just so they can

quickly push a build out to users to get feedback and make quick

adjustments. Of course this approach generates technical debt;

however, at this stage, speed is more valued than code that is

perfectly written according to any style guide.

Upon seeing positive feedback from users, these teams start

constantly refactoring the code to keep technical debt at

manageable levels. Otherwise, all the speed they’ve gained to

roll out the first builds is lost as the code grows and becomes

hard to change due to the technical debt accrued. The ultimate
consequence: team capacity and velocity for future iterations is
decreased, taking everyone back to square one – with not only less-
than-adequate code, but also an application that users don’t like.

So to keep improving their code in such a mature environment,
these teams use code quality tools to profile the code and
determine where to focus refactoring efforts first. This helps
them build things right. But no matter how good the code gets,
the user may still think the application sucks, simply because
they were not building the right things in the eyes of the user.
There is a difference between the two, and in my experience,
this is a huge gap in most Continuous Delivery initiatives.

So what’s the missing link? Requirements. The code may be of
the highest quality, but if it’s not reflecting what was specified in
the requirements, you may have built perfectly useless code.

Louis Srygley has an apt description for this:

“Without requirements and design, programming is the art of adding bugs

to an empty text file.”

BUILDING THINGS RIGHT VS. BUILDING THE RIGHT THINGS
The use of diagrams such as visual flowcharts to represent
requirements is something that helps analysts, product
owners, developers, testers, and op engineers. Diagrams are a
great communication tool to remove ambiguities and prevent
misinterpretations by each of these stakeholders – ultimately
leading to fewer defects in the code, as the visual flowcharts enable
all stakeholders to have a common understanding from the get-go.

The key is to change our mindset of using “testing” as the only
means to achieve application quality.

With Continuous Delivery we’re realizing that although we can run
unlimited automated tests at all levels to find defects, this approach
will always be reactive and more costly than tests that always pass

because there were no defects. That means we have prevented

Code may be of the highest
quality, but if it’s not reflecting
what was specified in the
requirements, you may have
built perfectly useless code.

By preventing defects from
being written into the code,
quality is thus built into the
application from the onset.

The use of a CAD-like tool
in software engineering not
only accelerates the software
lifecycle, but also ensures
developers are building the
right things.

01

02

03

Q U I C K V I E W

BY ALEX MARTINS
CTO/ADVISOR - CONTINUOUS QUALITY AT CA TECHNOLOGIES

https://www.linkedin.com/pulse/continuous-delivery-youre-doing-wrong-alex-martins
https://dzone.com/articles/the-solid-principles-in-real-life
http://www.makeuseof.com/tag/10-tips-writing-cleaner-better-code/
https://www.linkedin.com/pulse/death-star-ambiguous-requirements-issue-alex-martins?trk=mp-author-card
https://www.linkedin.com/pulse/death-star-ambiguous-requirements-issue-alex-martins?trk=mp-author-card

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

1 9

defects from being written into the code, which consequently

means we have built quality into the application itself.

Martin Thompson says it best:
“It took us centuries to reach our current capabilities in civil engineering,

so we should not be surprised by our current struggles with software.”

We are on the right track. Tools have evolved and continue to
evolve at a never-before-seen pace. The area that has been lagging
in terms of advanced and easy-to-use tooling is the requirements-
gathering and definition process. Martin Thompson also has a
good quote on that:

“If we look to other engineering [disciplines], we can see the use of tooling
to support the process of delivery rather than imposing a process on it.”

Look at civil engineering. CAD (computer-aided design) software
revolutionized the designing of buildings and structures. We’ve
been missing a CAD-like tool for software engineering, but now
we are at a point where we have highly advanced and easy-to-use
solutions to fill that gap.

BUILDING QUALITY INTO THE CODE = APPLICATION
QUALITY
It is very common today for a product owner to draw an initial

sketch on a whiteboard describing what she wants built. That

sketch is then further refined through multiple iterations until the

product owner is satisfied and accepts it.

That initial sketch for a simple Flight Booking Path example could

look something like this:

SEARCH

US1 US2 US3 US4

SELECT
FLIGHTS

ENTER
PAX INFO

REVIEW
AND PAY

Then, through multiple conversations with the product owner,
developers, testers, and other stakeholders, the person assigned to
formally model the Epic could come up with the following model
shown at the top of the page.

As you can see, those conversations caused a few additional
process steps to be added as the model was formalized. We
now know that the product owner wants the user to select the
departure flight first and then select the return flight. It is also
clear that before going to the passenger information step, the user
must be prompted to log in. Lastly, it was clarified that the seats
must be chosen only after the passenger information has been
entered in the application.

Through the mere representation of the Epic in a visual model, ambiguities

are removed and defects are prevented from entering the application code.

Which means testing is truly “shifting left” in the lifecycle. And we’re

already starting to “build quality in” the application.

The visual model of the Flight Booking Path Epic becomes the

foundational layer for other stakeholders in the lifecycle.

A CAD-like tool in software engineering helps us build a

multilayered visual model of the requirements. These layers are

tied together, and just like the CAD tools in civil engineering, the

tool maintains full traceability across all layers as shown below.

So if there is a change to any of those layers, the impact is

automatically identified and communicated to the owner of each

impacted layer, prompting the owner for a decision to address

that impact.

From that visual model, the tool can then automatically:

1.	 Generate manual test cases.

2.	 Find, copy, mask, or synthetically generate the test data

required for each test case.

3.	 Generate request/response pairs as well as provision virtual

services for test cases to be able to run.

4.	 Generate test automation scripts in any language according

to the test automation tools being used by the team.

So while developers must continue to invest in increasing code

quality to build things right, the use of a CAD-like tool in software

engineering not only accelerates the software lifecycle (i.e.,

speed), but it also ensures developers are building the right things

(i.e., quality) from the beginning by providing unambiguous

requirements to all stakeholders across the SDLC.

ALEX MARTINS has more than 18 years of experience in largescale
application design, development and testing. For the last 13 years Alex has
been focused on software quality engineering and testing discipline as the
pillars for DevOps transformations. Going through all levels, from Tester to
Practice Leader in various technology companies such as EDS, IBM, HP and
Cognizant Technology Solutions, Alex built and ran several Enterprise
Testing Organizations in Latin America and the US for multiple clients. Alex now works as
a client advisor in the Continuous Delivery BU at CA Technologies and is also responsible
for the Continuous Quality Center of Excellence. When not talking tech, you will either
find Alex enjoying time with his family or on a beach somewhere surfing or kitesurfing.

FINISH

USER STORY 3

Enter search
parameters
and click on

search

Select
Departure

Flight

Select
Return
Flight

Login
Validate

parameters

Parameters
ok?

User
logged

on

Enter
Passenger

Info

Choose
Seats

USER STORY 4

Review
and
Pay

Payment
SuccessfulTRUE TRUE

FALSE

USER STORY 1 USER STORY 2FIG. 2

FALSE

TRUE

Validate
Payment

Info

FALSE

START

MODEL

TEST DATA

SERVICES

TEST AUTOMATION

PERFORMANCE
TESTING

Modeler
(PO/BA/Tester)

• Draws and maintains business process �ows
• Baselines understanding across the team
• Removes all ambiguities

• Performance SLAs
• Load Testing
• Scenarios
• User Pro�les

Test Data
Engineer

• Find and reserve data automatically
• Match test data to each test case

Services
Engineer

• No dependency on external interfaces
• Accelerate code development

Test Automation
Engineer

• Automatic creation of scripts
• Automatic impact analysis

Performance
Engineer

• Automatic generation of load scenarios
• Automatic creation of scripts

LAYERED APPROACH TO CONTINUOUS DELIVERY

https://www.infoq.com/news/2016/06/programmers-write-better-code

Software at the
speed of ideas.

THE HUB OF ENTERPRISE JENKINS AND DEVOPS

Try CloudBees Jenkins Solutions for free: www.cloudbees.com/get-started

Continually build, deliver and improve the software that
fuels your business with CloudBees Jenkins Enterprise.

Your business has amazing, world-changing ideas - the only thing standing in your way is the
time, energy and processes it takes to turn code into finished product, to transform ideas into
impact. CloudBees - the only secure, scalable and supported Jenkins-based DevOps platform -
lets you focus on the ideas you want to bring to life, not the challenge of building, testing
and deploying them, so you can start making an impact sooner.

CloudBees Jenkins Team:
is a verified distribution of the Jenkins core and community
plugins, along with 24/7 expert support.

CloudBees Jenkins Enterprise:
offers all the features of CloudBees Jenkins Team, and includes
the following enterprise features; security, scalability, manageability
and resiliency.

https://azure.microsoft.com/en-us/marketplace/partners/cloudbees/
https://www.cloudbees.com/get-started
https://www.cloudbees.com/get-started?DZone.com

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

2 1

Software at the
speed of ideas.

THE HUB OF ENTERPRISE JENKINS AND DEVOPS

Try the CloudBees Jenkins Platform for free: www.cloudbees.com/get-started

Continually build, deliver and improve the software that
fuels your business with the CloudBees Jenkins Platform.

Your business has amazing, world-changing ideas – the only thing standing in your way is the
time, energy and hassle it takes to turn code into finished product, to transform ideas into
impact. CloudBees – the only secure, scalable and supported Jenkins-based DevOps platform
– lets you focus on the ideas you want to bring to life, not the hassle of building, testing and
deploying them, so you can start making an impact sooner.

CloudBees Jenkins Enterprise:
the enterprise Jenkins standard

CloudBees Jenkins Platform:
providing scalability, manageability, security, resililency

CloudBees Jenkins Platform – Private SaaS Edition:
adding elastic cloud capabilities

•	 Allianz

•	 Netflix

•	 Adobe

•	 Thomson Reuters

•	 Hyatt Corporation

•	 Mozilla Corporation

DevOps is becoming the de facto standard for software
development. Companies that have adopted DevOps principles
are disrupting industries, innovating faster, and leaving
competitors behind. These companies have aligned internal
stakeholders around the common objective of delivering quality
software rapidly, frequently, and reliably.

Yet, despite the benefits DevOps provides, many organizations
are reluctant to embrace it. Several factors underpin this
reluctance, including resistance to change. There is also
widespread misunderstanding of what DevOps is—a
misunderstanding amplified by vendors who say DevOps is all
about tooling.

There are also organizations that dismiss DevOps as a passing
fad, or simply don’t think that DevOps applies to them because

they are not software companies. The facts, however, support
the growing consensus that DevOps is here to stay, and that
the benefits of DevOps extend to organizations in any industry.
An increasing number of organizations are realizing that today
they are a software company, that talented developers want to
work for companies where they can innovate instead of fight
fires all day, and that DevOps is a common-sense way to gain a
sustainable, competitive business advantage.

Any company that needs to deliver quality software faster needs
to care about DevOps and the supporting practice of continuous
delivery (CD), which enable continuously building, testing, and
deploying software in frequent, incremental releases.

The rapidly mounting evidence strongly suggests that
organizations that transition to DevOps get new innovations to
market more quickly and sustain or gain competitive advantage.

WRITTEN BY BRIAN DAWSON
DEVOPS EVANGELIST AT CLOUDBEES

“With the CloudBees Jenkins Platform we are delivering more complex, larger projects
more quickly.” - ADAM RATES, HEAD OF STRATEGY AND ARCHITECTURE, ALLIANZ INSURANCE

BLOG cloudbees.com/blog WEBSITE cloudbees.comTWITTER @cloudbees

CloudBees Jenkins Solutions By CloudBees, Inc.

CASE STUDY
Challenge: Allianz needed to respond to changes in the insurance

market faster by shortening software delivery schedules.

Solution: Standardize on CI and CD with the CloudBees Jenkins

Platform to minimize project startup times, automate development

and testing tasks, and complete large, complex projects faster.

Industry Benefits: Project startup times were cut from days to

minutes; reliable development and build environments were

established; and staffing flexibility and scalability improved.

STRENGTHS

•	Enterprise Distribution of Jenkins -
Built on Proven CI/CD Platform

•	Expert Support -
Technical Assistance Available 24/7

•	Verified Integrations -
Ensure Plugin Quality and Interoperability

CATEGORY
Continuous

Deployment and

CI Platform

NEW RELEASES
Continuously

OPEN SOURCE
No

NOTABLE CUSTOMERS

Why You Must
Care about
DevOps

SPONSORED OP IN ION

Companies that have adopted DevOps

principles are disrupting industries, innovating

faster, and leaving competitors behind.

http://cloudbees.com/blog
https://www.cloudbees.com
https://www.cloudbees.com
https://twitter.com/cloudbees
http://www.twitter.com/nginx

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

2 2

Autonomy or Authority:

Why Microservices

Should Be Event Driven

We’ve been discussing microservices in the

mainstream for over two years now. We’ve

heard many a blog or conference talk about

what microservices are, what benefits they

bring, and the success stories for some of the

companies that have been at the vanguard of

this movement. Each of those success stories

center around the capacity for these companies

to innovate, disrupt, and use software systems

to bring value to their respective customers.

Each story is slightly different but some

common themes emerge:

•	 Microservices helped them scale their organization.

•	 Microservices allowed them to move faster to try

new things (experiment).

•	 The cloud allowed them to keep the cost of these

experiments down.

The question then becomes, “how does one get their

hands on some microservices?”

We’re told our microservices should be independently

deployable. They should be autonomous. They should

have explicit boundaries. They should have their own

databases. They should communicate over lightweight

transports like HTTP. Nevertheless, these things don’t

seem to fit our mental model very well. When we hear

“have their own databases,” this shatters our comfortable

safety guarantees we know and love. No matter how
many times we hear it, or even if we carved these
postulates into stone, they’re not going to be any more
helpful. What might be helpful is trying to understand
some of this from a different mental model. Let’s explore.

In many ways, IT and other parts of the business have
been built for efficiencies and cost savings. Scientific
management has been the prevailing management
wisdom for decades and our organizations closely reflect
this (see Conway’s law). To use a metaphor as a mental
model: our organizations have been built like machines.
We’ve removed the need for anyone to know anything
about the purpose of the organization or their specific
roles within that purpose and have built processes,
bureaucracies, and punishments to keep things in
order. We’ve squeezed away every bit of inefficiency
and removed all variability in the name of repeatable
processes and known outcomes. We are able to take
the sum of the parts and do the one thing for which the
machine was designed.

How does all this translate to our technology
implementations? We see our teams organized into
silos of development, testing, database administration,
security, etc. Making changes to this machine requires
careful coordination, months of planning and meetings.
We attempt to change the machine while it’s running
full steam ahead. Our distributed systems reflect our
organization: we have layers that correspond to the way
we work together. We have the UI layer. The process
management layer. The middleware, data access, and data

layers. We’ve even been told to squeeze variability and

Some of the
recommendations we hear
for building a microservices
architecture goes against
our sensibilities.

In this article we explore
a different model to
help guide us on our
microservices journey and
see why autonomy, not
authority, is a key piece to
the puzzle.

01

02

Q U I C K V I E W

BY CHRISTIAN POSTA
PRINCIPAL ARCHITECT AT RED HAT

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

2 3

variety out of our services. Highly normalized databases.

Anything that looks like duplication should be avoided.

Build everything for reuse so we can drive costs down.

I’m not advocating for doing the opposite per-se, but there

are problems with this model in our new, fast-changing

competitive landscape. The model of a machine works

great if we’re building physical products: a car, a phone,

or a microwave. If we already know what the outcome

should be, this model has shown to be amazingly

successful (see industrial revolution). However, this has

existentially changed. Companies are building value these

days through services, not through product alone. Service

design is key. This model of a purpose-built machine is

not a good model for building a service organization. Let’s

look at a different model.

What we really want is to find new ways to bring value

to our customers through service and stay ahead of

our competitors. To do that, we need to listen to our

customers. To be able to react and fulfill their needs, we

need to deal with the fact that customers don’t know

what they want. We need to explicitly deal with variety

(law of requisite variety) and variability. We need to build

“slack” into our systems to account for the “I don’t know”

factor. In many ways, innovation is about admitting “I

don’t know” and continually figuring out the right set of

experiments to ask the right questions and then learn

from the outcomes. Since software has eaten the world,

this translates into building systems that have variability,

feedback loops, and speed of change built into them. This

looks very different from a machine. The model I like to

use is a city.

Cities have many types of systems that co-exist, co-

evolve, and exhibit a lot of the same behaviors we

want. Emergent innovation through experimentation.

There isn’t top-down central control and planning and

highly optimized silos. We have lots of independent,

autonomous “agents” (people, families, businesses, etc.)

and the operating environment (laws, physical geography,

weather, and basic city services like roads, power, water,

waste disposal, etc.). These agents interact in cooperative

and also competitive ways. They interact with each

other by asking each other to do things or responding

to events to which they’re exposed. These agents are

driven by purpose (survival, personal/spiritual/monetary

fulfillment, curiosity, etc.), and what emerges through

these simple elements is an amazingly rich, resilient, and

innovative ecosystem. Cities scale amazingly (see NYC).

They innovate (see San Francisco, Seattle, etc.). There are

no single points of failure. They recover from catastrophic

failures (see natural or human-made catastrophes). And

out of all of this, there is no single authoritative figure or

set of figures that dictate how all of this happens.

This model of a city fits our microservices description
a little better. Now let’s start to translate to distributed
systems. First, each agent (service) has its own
understanding of the world. It has a history (series of
events) that gives its current frame of reference from
which it makes decisions. In a service, this frame of
reference is implemented in its own database potentially.
Services interact by asking each other to do something
(commands) or responding to some given fact (events).
It may observe an event and update its current
understanding of the world (its history or its state). In this
world, time and unreliability should be modeled explicitly.

A good way to do this is through passing messages.
Things may not show up on time. Things might get
lost. You may not be available to take commands. Other
services may not be around to help you. You may favor
autonomy (doing things yourself with the state you have)
versus authority (asking someone else who may have
the authoritative answer). To implement this, you may
have to distribute knowledge about events and state
through replication (in cities, we do this with broadcast
mechanisms like newspapers, the internet, social
networks, etc.).

When you do this, you may have to consider different
state consistency models. Starbucks doesn’t do two-phase
commits. Not everything can/should expect a two-phase
commit, consensus-approved consistency. You may need
something more relaxed like sequential/causal/eventual
consistency. You’ve got to make decisions with the
state you have and potentially be in charge or resolving
conflicts. You’ve got to equip your service to deal with
these scenarios. If you cannot deal with them you need
to learn from them. This requires changing behavior. In
a microservices world this translates to quickly making
changes to your service and getting them back out there
via a CI/CD pipeline.

Microservices architectures are a type of complex-
adaptive system. We need new models to reason about
this. Thankfully a lot of the distributed system theory,
research, and practices have been around for 40+ years
and innately take this type of system into account (as a
distributed system is itself a complex-adaptive system!).
We don’t have to reinvent the wheel to do microservices,
just re-orient our mental model and be a catalyst for
change throughout our organizations.

CHRISTIAN POSTA (@christianposta) is a Principal
Architect at Red Hat and well known for being an author
(Microservices for Java Developers, O’Reilly 2016), frequent
blogger, speaker, open-source enthusiast, and committer on
Apache ActiveMQ, Apache Camel, Fabric8, and others. Christian has spent
time at web-scale companies and now helps companies creating and
deploying large-scale distributed architectures - many of what are now
called Microservices based. He enjoys mentoring, training, and leading
teams to be successful with distributed systems concepts, microservices,
DevOps, and cloud-native application design.

http://www.twitter.com/christianposta

SPONSORED OP IN ION

https://travis-ci.com/?utm_source=dzone&utm_campaign=devops_guide2017&utm_medium=ad

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

2 5

Some consider microservices a technology du jour, another
fad that’s due to pass; others (including myself) argue that
instead they’re the missing piece for truly enabling teams to
adopt Continuous Delivery.

HIGHER VELOCITY
With microservices focusing on small pieces of functionality
of a larger application, it’s become much easier to iterate
around single pieces, getting new features and bug fixes
in front of customers faster, shortening the feedback cycle
significantly.

FEWER DEPENDENCIES
Smaller services have a key benefit that primes them
for Continuous Delivery. Their sharp focus on a specific
application concern keeps their dependencies small,

isolating them from variances and changes while making
it easier to standardize on build environments. Most
importantly, fewer dependencies help keep the build fast.

MANAGING COMPLEXITY
In return, communication between teams working on
different microservices has become more important
than ever. An increasing number of services talking to
each other consequently increases the complexity in
interactions, both between the services themselves and the
teams working on them.

WORKING AT (TEAM) SCALE
Microservices scale well across teams, allowing new
services and teams to come and go as needed. In turn, an
organization needs a delivery tool that can adopt to those
ever-changing needs quickly and seamlessly.

Microservices enable the fast feedback cycles that
Continuous Delivery promotes, but teams adopting them
need to make sure that their tool of choice can support the
benefits that microservices bring while also enabling them
to scale up to new services and new teams easily.

WRITTEN BY MATHIAS MEYER
CO-FOUNDER AND CEO AT TRAVIS CI

The continuous integration and delivery platform your developers love, trusted by
hundreds of thousands of open-source projects, teams, and developers.

BLOG blog.travis-ci.com  WEBSITE travis-ci.comTWITTER @travisci

Travis CI By Travis CI

TRAVIS CI ENTERPRISE
Travis CI Enterprise brings all the features that developers know and

love, running on your own infrastructure.

Integrating deeply with GitHub Enterprise, it covers all the security and

regulatory requirements, protecting your data, using your infrastructure

and secure login via SAML or LDAP.

Running Travis CI Enterprise on your own infrastructure gives you full

control over your build resources as well as the build environment.

Adding more is as easy as provisioning a new machine with just a few

commands that can be fully automated.

Whether you’re using EC2, OpenStack, Azure, Google Compute Engine, or

your own hardware, Travis CI runs anywhere.

Find out more: enterprise.travis-ci.com

STRENGTHS
•	Easy configuration, stored and versioned alongside your

project’s code.  

•	Scales with your team, the workflow ready for companies

large and small.  

•	No more “works on my machine” thanks to isolated build

environments.  

•	Trusted by hundreds of thousands of open-source

projects, developers, and teams.  

•	Seamless integration with GitHub, first-class support for

pull request workflows.  

•	Available hosted, and on-premises for use with GitHub

Enterprise.

CATEGORY
Continuous Delivery
and Integration 

NEW RELEASES
Continuous

OPEN SOURCE
Mostly

NOTABLE CUSTOMERS

SAP

NASDAQ

Zendesk

Airbnb

Fastly

Microservices Are
a Keystone of
Continuous Delivery

SPONSORED OP IN ION

https://blog.travis-ci.com
https://travis-ci.com
https://travis-ci.com
https://twitter.com/travisci
http://www.twitter.com/nginx
https://enterprise.travis-ci.com

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

2 6

Executive Insights
on the State of
DevOps

To gather insights on the state of the DevOps
movement in 2017, we talked to 16 executives from 14
companies who are implementing DevOps in their own
organization and/or providing DevOps solutions to other
organizations. Specifically, we spoke to:

MICHAEL SCHMIDT, Senior Director, Automic

AMIT ASHBEL, Director of Product Marketing & Cyber Security
Evangelist, Checkmarx

SACHA LABOUREY, CEO and Founder, CloudBees

SAMER FALLOUH, V.P. Engineering and

ANDREW TURNER, Senior Solution Engineer, Dialexa

ANDREAS GRABNER, Technology Strategist, Dynatrace

ANDERS WALLGREN, CTO, Electric Cloud

JOB VAN DER VOORT, V.P. of Product, GitLab

CHARLES KENDRICK, CTO, Isomorphic Software

CRAIG LUREY, CTO and Co-Founder, Keeper Security

JOSH ATWELL, Developer Advocate, NetApp SolidFire

JOAN WRABETZ, CTO, Quali

JOE ALFARO, V.P. of Engineering, Sauce Labs

NIKHIL KAUL, Product Marketing Manager Testing and

HARSH UPRETI, Product Marketing Manager API, SmartBear Software

ANDI MANN, Chief Technology Advocate, splunk

KEY FINDINGS
 01 The most important elements of DevOps are 1) people; 2)

process; and, 3) technology. People are the most important since

they need to change the culture and the mindset. Process involves

tearing down walls between all departments, defining the process,

and creating controls that cannot be violated – by anyone. Optimize

the use of third-party technology to automate everything you

possibly can. This is necessary to be able to scale and to make

the feedback loop smaller, to release faster, to increase quality,

and to reuse assets across development, testing, and monitoring.

While these changes are not easy, they will ultimately improve the

quality of life for everyone in development, operations, security,

testing, and sales, as well as the end-user experience (UX).

 02 The biggest change to DevOps has been its acceptance.

DevOps has gone from being new and different to the “new

normal.” DevOps outperforms any other method by a significant

margin, is causing significant disruption in the industry - even

in enterprise companies with legacy systems that are willing

to make the change. It has moved from just being a bottom-up

implementation to top-down since senior management can see the

results it achieves.

The next biggest changes identified are the increase in automation

and collaboration. More automation and less operations solves

problems faster. Automation is built in up front to optimize build

time versus set-up and onboarding. More focus on containers and

replicable builds assist with scaling, sharing, and collaboration.

We’re not only breaking down walls between developers and

operations but also with support, sales, and marketing to meet the

needs of all departments. It’s still about people collaborating and

finding a better way to get something developed.

 03 The greatest value delivered by DevOps is improved speed

to market with a quality product that meets or exceeds customer

expectations. Fast iteration gets new features out faster at higher

quality, delivering value more quickly. You’re faster because you’re

focusing on the business value and building what the customer

wants rather than some shiny new technology. Continuous

deployment enables features and fixes to be rolled out more

quickly and enhances customer engagement. This reduces

The most important elements
of DevOps are: 1) people, 2)
process, and 3) technology.

The biggest change being
seen in DevOps is its
transition from a “new and
different” way of working to
“the new normal.”

The greatest value of DevOps
is improved speed to market
with a quality product that
meets or exceeds customer
expectations.

01

02

03

Q U I C K V I E W

BY TOM SMITH
RESEARCH ANALYST AT DZONE

http://www.automic.com/
http://www.checkmarx.com/
http://www.cloudbees.com/
http://www.dialexa.com/
http://www.dynatrace.com/
http://www.electriccloud.com/
http://www.gitlab.com/
http://www.isomorphic.com/
http://www.keepersecurity.com/
http://www.netapp.com/us/products/storage-systems/solidfire/index.aspx
http://www.quali.com/
http://www.saucelabs.com/
http://www.smartbear.com/
http://www.splunk.com

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

2 7

wasteful development. We’ve seen a 30% improvement in customer

satisfaction, a 10x increase in innovation velocity, and a 2x

increase in efficiency.

DevOps is a repeatable process where every member of the team

knows where everything is in the process, and each team member

knows their role. This results in a more reliable path, faster and

more stable releases. Better teamwork equals better products.

 04 Most respondents are using their own solutions to

implement DevOps. In addition, the most frequently used tools are

Confluence, Jenkins, JIRA, Team City, and Travis, with 14 others

being mentioned.

 05 Real-world problems being solved by DevOps revolve

around improving quality, speed to market, and reducing cycle

times with automation. An online trading company went from

deployments that took weeks to deployments in under a minute.

The ability for any company to test on all operating systems,

browsers, and devices, thereby removing testing from the chain

of development, lets developers focus on building business

value. DevOps provides the ability to receive a bug report and

turn around a fix the same day with confidence the fix has

not introduced any subtle regressions. Big companies with

geographically distributed developers have the ability to check

in source code to expedite the development process. Replacing

manual testing with automated can save hundreds of thousands

of dollars or reduce headcount by 35%. A gaming company with a

complex application portfolio can make several thousand updates

every day, while a telecommunications company with more than

100 apps can combine their business and operations systems on

the same platform.

 06 The obstacles to success revolve around people. People

in power can be slow to change. Kingdoms may go away, and

this results in power battles. People in management are too

comfortable in their current jobs and don’t want to change. There’s

a fear of having greater responsibility for the code running in

production. However, this gives the engineering team a lot of

freedom to try new things and deploy as they wish with almost

instant gratification by seeing the impact code has on end users.

Everything is mental – the “not built here mentality,” especially

with start-ups. Remove this mentality and focus on where your

company adds value. Don’t worry about your kingdom, worry about

the needs of your customers.

DevOps is a process of incremental improvement that takes time.

It’s an evolutionary method, not a quick fix. Netflix and Google

took seven years. It may be painful getting started, but once you

get past the initial start-up issues and address them, the tools and

the automation reduce the number of incidents, and, consequently,

the amount of pain felt by the organization. Resist the urge to go

backwards in the process for sake of urgency. Do the hard work,

put the processes, tools, and automation in place, and you will reap

the benefits.

 07 The greatest concern regarding DevOps goes back to people

not being willing to change or not being fully committed to the

change. You must change to produce value and velocity. If you don’t

change, you’ll lose people and be replaced by your competitors who

have embraced change to develop quality code more quickly.

Early in the adoption and implementation, people will blame tools

for finding the errors in the code. However, root-cause analysis will

help uncover the source of the problem.

Help people collaborate, communicate, and integrate to deliver

better software. Build security and testing into automated

processes from the beginning and see the benefits of the journey

rather than looking for a perfect end state (hint: it doesn’t exist).

 08 The greatest opportunities for the future of DevOps are: 1)

continued growth of the cloud; 2) tools facilitating automation; 3)

containers; and 4) company-wide collaboration. There’s a healthy

symbiosis between DevOps and the cloud. As AWS, Red Hat, and

Azure grow, DevOps will grow exponentially. AWS is providing

more tools to facilitate automation, and there is consolidation

of tools so you don’t have to custom build deployments. We

will see greater adoption of the public cloud by regulated

industry. Containers will become more important automating

the flow through the cloud. DevOps will affect all aspects of the

organization fostering communication and collaboration among

developers, operations, QA, security, testing, deployment, business

planning, and BPO to provide a better user experience.

There’s only a two percent adoption of DevOps practices around

the world. We will move from early adoption to general adoption by

sharing stories about what we’ve done and how tools can remove

fear and pain with ongoing monitoring.

 09 One consistent theme about what developers need to keep in

mind with regards to DevOps and Continuous Delivery is the need

to be flexible and collaborative. Be open to collaboration, sharing,

and gaining empathy for those you are working with – operations,

as well as the end user. In addition, don’t boil the ocean. Find a

problem and fix a problem. Fail fast, cheap, and small. Don’t be

tempted to move backward in the DevOps process. Everything has a

tax associated with it. Keep this in mind and commit to the DevOps

process. The more you know about testing, writing code for testing,

and writing automation, the more valuable you will be as DevOps

becomes more ingrained.

 10 A couple of themes surfaced when we asked respondents what

else we needed to consider with regards to DevOps for this research

guide. We learned it’s important to understand that DevOps is not

a product, it’s an implementation of a manufacturing process that

relates to technology. DevOps principles are applicable throughout

the industry, reducing uncertainly and improving the efficiency of

process management. Furthermore, there is the need for operations

and developers to be using the same set of tools to solve common

problems whereby the tools are facilitating communication,

collaboration, and problem solving.

TOM SMITH is a Research Analyst at DZone who excels at
gathering insights from analytics—both quantitative and qualitative—
to drive business results. His passion is sharing information of value
to help people succeed. In his spare time, you can find him either
eating at Chipotle or working out at the gym.

SPONSORED OP IN ION

https://www.weave.works/solution/cloud/?utm_source=Dzone&utm_campaign=Dzone-ads&utm_medium=January-ad&utm_content=weave-cloud
https://www.weave.works/blog/
http://www.facebook.com/WeaveworksInc
http://www.twitter.com/weaveworks

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

2 9

Achieving continuous delivery improves deployment time and

reliability. Yet only 40% of developers doing CI are doing CD. With

Weave Flux, adding CD to your CI pipeline is simple. Kubernetes is

a powerful platform for running Docker containers. You’ll write a

“manifest,” which is a YAML file that describes which containers to

run as part of the app.

An example manifest (from https://git.io/vMd2M) looks like:

 containers:

 - name: front-end

 image: weaveworksdemos/front-end:0.3.1

The version tag is ‘0.3.1’, best practice being that you version

control your manifests and tag all of your Docker images. It’s bad

news if you use ‘latest’ and then can’t control which version of your

Docker image is running in production!

But how can you automatically update the version tag in your

version controlled manifest?

You could write a script to clone your config repo, parse the YAML,

automatically replace the version string in your manifests, push

the change to your config repo, and deploy it to Kubernetes. But

that’s a lot of work—and then you have to maintain it. Then what

happens if you want to rollback a release to a previous version? Or

have different policies for prod and staging?

Weave Flux solves these problems; is an open source project, and

available as part of the Weave Cloud service. Weave Cloud also

provides tools to operate containers such as Prometheus monitoring,

real time exploration in a troubleshooting dashboard.

Join our user group and attend one of our free online trainings about

Kubernetes, Weave Cloud, and more here.

WRITTEN BY LUKE MARSDEN
HEAD OF DEVELOPER EXPERIENCE AT WEAVEWORKS

Weave Cloud makes it simple for DevOps team to operationalize containers,
while using their choice of orchestration platform

BLOG weave.works/blog WEBSITE weave.worksTWITTER @weaveworks

Weave Cloud By Weaveworks

CASE STUDY
Adopting containers and microservices can be challenging. Big platforms

add complexity that give development teams headaches. Convenient,

flexible, and open source, Weave Cloud simplifies delivery for cloud-native

development.

Weave Cloud is a SaaS offering that lets Dev/DevOps operationalize

containers via extensions to their choice of orchestration platform.

Weave Cloud accelerates development, replacing manual configuration

and scripting with automation, and provides all of the container and

orchestrator-level information needed to manage. It delivers features like

Prometheus monitoring, continuous deployment, firewall management,

and troubleshooting.

STRENGTHS
•	 Deploy, troubleshoot, monitor, and secure

containers across hosts.

•	 Setup security policy and firewalls.

•	 Troubleshoot and explore your app topology in

real-time.

•	 Deploy and upgrade apps safely to the cloud

continuously.

•	 Monitor your app and infrastructure with

Prometheus monitoring.

CATEGORY
Containers and

Microservices /

SaaS

NEW RELEASES
Continuously

Updated

OPEN SOURCE
Yes

SUPPORTED INTEGRATIONS

•	 Kubernetes

•	 Docker

•	 AWS

•	 Microsoft Azure

•	 Mesosphere

Ship features & fix issues
faster with Continuous
Delivery to Kubernetes

SPONSORED OP IN ION

Automatically enable continuous delivery to

Kubernetes while maintaining best practice of

storing config in version control.

https://git.io/vMd2M
https://www.weave.works/solution/cloud/?utm_source=Dzone&utm_campaign=Dzone-ads&utm_medium=January-ad&utm_content=weave-cloud
https://www.weave.works/solution/cloud/?utm_source=Dzone&utm_campaign=Dzone-ads&utm_medium=January-ad&utm_content=weave-cloud
https://www.meetup.com/Weave-User-Group/
https://www.weave.works/blog/?utm_source=Dzone&utm_campaign=Dzone-ads&utm_medium=January-ad&utm_content=weaveworks-blog
https://www.weave.works/blog/?utm_source=Dzone&utm_campaign=Dzone-ads&utm_medium=January-ad&utm_content=weaveworks-blog
https://www.weave.works/?utm_source=Dzone&utm_campaign=Dzone-ads&utm_medium=January%20Ad&utm_content=weaveworks-site
https://www.weave.works/?utm_source=Dzone&utm_campaign=Dzone-ads&utm_medium=January%20Ad&utm_content=weaveworks-site
https://www.twitter.com/weaveworks

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

3 0

Branching
Considered Harmful!
(for Continuous Integration)

If you’re working in what you might consider
a reasonably modern software development
environment, chances are you’re doing Agile, and
are aspiring to build out a Continuous Integration
and Deployment pipeline to push code to
production quickly. Chances are that you’re also
doing some form of branch-based development
– whether straightforward feature branches,
something more formalized such as git-flow, or a
pull request-based process using GitHub or similar.

Why the branches? How and when did the perception arise that

branching is A Good Thing? A branch-based development

strategy generally implies delayed merging, and delayed

merging is, almost literally, the exact opposite of the

“continuous integration” most teams consider themselves to

be practicing. Branch-based development usually means either

largely more complex and risky merges, or a manual code

review bottleneck, or both – things we almost never want in our

process if the aim to deliver code to production quickly.

I should briefly clarify that what I mean by “branch-based

development strategy” here are approaches that allow for, or

even encourage, the existence of branches that accumulate

changes that are not on trunk (or “master”, or “HEAD”, or

whatever the mainline branch in your environment is called)

for days, weeks, or longer. These changes are only incorporated

into trunk after an explicit, non-automated approval. There are

also development strategies using branches that in practice look

much more like trunk-based development – more on those later.

But isn’t branch-based development so well supported by

leading source control management systems such as Git

because it’s A Good Thing? Aren’t contributions via pull

requests, and hence branches, the way many, many well-known

and successful open-source projects work?

Yes, many open-source projects, including the Linux kernel

community that gave rise to Git, use branches in their

development strategy – and for good reason. If you are

working in a highly distributed environment where there is

no centralized server, there can be no notion of “merging to

master” or “committing to trunk”, because no such thing as

trunk exists. Determining the “current global state of trunk”

requires merging multiple tracks of development from separate

repositories.

Even if you have a centralized server which is the canonical

reference for a particular codebase, branches and pull request

reviews make sense if you are in an environment where many

contributions are being proposed by developers who are not

familiar with the code, and who in addition are not in a position

to ask for advice from more expert developers on an ongoing

basis. They may be geographically separated, with few or no

overlapping working hours to allow for discussions, or they

may work for different companies and simply do not have the

opportunity to contact the experts often.

In such cases, a development strategy using branches and

delayed integration – usually after manual code review –

makes sense as an acceptable compromise given the various

constraints. However, projects in these situations are very

rarely examples of code that gets shipped to production

frequently. So if that is our goal, they hardly seem like models

that we should be seeking to emulate.

More importantly, the constraints under which these projects

operate are simply not applicable to most commercial software

development settings. We almost always have a central

repository whose mainline is the global reference point so that

Branch-based development can
be a good trade-off in scenarios
such as open-source projects,
but should be Considered
Harmful for genuine Continuous
Integration.

A trunk-based approach can
work, and it enforces good
practices we otherwise often
fail to get around to.

Branches can also be useful in
a trunk-based development
environment.

Consider trunk-based
development as a goal for your
teams.

01

02

03

04

Q U I C K V I E W

BY ANDREW PHILLIPS
VP DEVOPS STRATEGY AT XEBIALABS

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

3 1

the idea of “merging to trunk” on an ongoing basis is indeed

meaningful. And we usually have sufficiently frequent access to

someone with enough experience of the codebase that we could

arrange for reasonably regular feedback if we so chose.

“So what exactly are you proposing?” I hear you ask. I am

proposing something we’ll refer to here as “trunk-based

development.” It’s not a new concept by any means, having

been around at least as long as the idea of continuous

integration, to which it is closely related. But I think that, if we

are serious in our desire to ship code quickly, it’s definitely a

concept worth revisiting. It goes something like this:

1.	 When you have written an amount of code locally that you

think should work, commit it to trunk.

2.	 A commit to trunk triggers a series of tests and verification

steps that are intended to ensure that the system will not be

negatively impacted by the change.

3.	 If all the tests and verification steps succeed, the code

change is deployed to production.

4.	 Otherwise, the commit could be rolled back automatically,

or the “offending” developer is notified that they have

broken trunk.

That’s all – a pretty straightforward setup. But what about

style checks or architectural reviews? What about all those

work-in-progress commits? Won’t we be breaking production

all the time with problems the tests don’t catch, or with

incompatibilities that we’re introducing?

Yes, in most current setups committing straight to trunk and

thence to production would indeed end up breaking things

a fair amount of the time. And that is precisely the point: by

allowing ourselves to develop “off trunk” for long periods of

time, we allow ourselves to ignore the work necessary to protect

trunk and production from bad code.

Avoiding work may not sound like a bad thing, but it almost

always comes at the cost of a steadily worsening review

bottleneck that can see even simple changes delayed for days or

more. And if we are truly aiming for a continuous deployment

setup, we will eventually need to put in the effort to protect

trunk anyway.

Furthermore, the steps we need to take in a trunk-based

development environment in order to prevent production

incidents are exactly the kinds of best practice steps we

generally talk about striving for.

Want more architectural and code style input? Introduce

regular “check-ins” with a more experienced colleague, or do

more pair programming! Concerned about checking in code

that compiles but doesn’t work correctly when it makes it to

production? Write more tests to ensure your code does what

you expect! Working on a feature that shouldn’t be active

until changes to other systems are deployed? Use feature

flags! Aware that your system is too complicated to be tested

reliably with unit and integration tests? Implement automated

monitoring of system health, customer metrics, etc., and alert
or roll back if behavior is unexpectedly poor! And so on.

These are all things we know about and generally agree that
we should have – we just never get round to them because we
allow ourselves to work in a manner that doesn’t compel us to
implement them to keep our systems running.

But if we do force ourselves to go down this path, the benefits
in terms of speed can be enormous. A colleague who tried to
see how far he could take this ended up with what he called
“ludicrous mode”: every time a file was saved in his IDE, the
code would be compiled and, if successful, the unit tests for
that project were run. If those succeeded, the change would
automatically be committed to trunk and, if no stages in the
subsequent delivery pipeline failed, would make its way all the
way to production.

At his peak, he was deploying to production fifty times an hour.
But he said that the first thing the experiment taught him
is that it was essential to write failing unit tests first before
starting on the actual implementation, because that was
required to ensure bad code didn’t make it to production. Good
practice not as a nice-to-have, but out of necessity!

Having said all that, in practical terms there are still good
use cases for branches, of course: for example, they are often
the easiest way of “throwing a code diff out there,” especially
during a discussion with remote participants. It’s also easier
in many current continuous integration and deployment tools
to configure a “create pull request, trigger tests, automatically
merge to trunk, continue pipeline” flow than the “merge to
trunk, trigger tests, continue pipeline or automatically revert”
process sketched above.

The key to both of these cases, though, is that they involve,
respectively, throw-away and short-lived branches that are
automatically merged into trunk. There is no long-running “off
trunk” development followed by a large merge or manual review.

Of course, for most teams (including the ones I am part of!)
trunk-based development isn’t something that could be
implemented today: a lot of the work required to protect trunk
from bad commits is still needed, and that work isn’t easily or
quickly done. But we can embrace trunk-based development
as a desirable goal and reconsider our use of branch-based
approaches that build delay and manual bottlenecks into our
flow to production. That way, we can get back to focusing on
what it would take to build a system and process that will allow
us to deliver code as quickly and safely as we can.

So go on, ask yourself: what would your team need to do to be
able to develop safely on trunk?

ANDREW PHILLIPS heads up strategy at XebiaLabs, devel-
oping software for visibility, automation, and control of Continuous
Delivery and DevOps in the enterprise. He is an evangelist and
thought leader in the DevOps and Continuous Delivery space. When
not “developing in PowerPoint,” Andrew contributes to a number of open-
source projects, including the multi-cloud toolkit Apache jclouds.

Find out how Sauce Labs
can accelerate your testing
to the speed of awesome.

For a demo, please visit saucelabs.com/demo
Email sales@saucelabs.com or call (855) 677-0011 to learn more.

A brief history of web and mobile app testing.

B E F O R E S A U C E L A B S
Devices. Delays. Despair.

A F T E R S A U C E L A B S
Automated. Accelerated. Awesome.

SPONSORED OP IN ION

http://www.saucelabs.com/demo?DZone.com

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

3 3

In order to reap the full benefits of DevOps, organizations must
integrate automated software testing into their continuous
delivery pipelines. It is the only way to ensure that releases
occur at both a high frequency, and with a high level of quality.

In order to integrate continuous testing effectively into a
DevOps toolchain, look for the following essential features
when evaluating an automated testing platform:

•	 Support for a variety of languages, tools, and frameworks.
The programming languages and development tools that your
DevOps teams use today are likely to change in the future.
Look for a testing solution that can support a broad array of
languages, tools, and frameworks.

•	 Cloud testing. On-demand cloud-based testing is the most
cost-efficient option because it obviates the need to set up and
maintain an on-premises test grid that is underutilized most

of the time. It also reduces the resource drain associated with
identifying and resolving false positives, or failures due to
problems in the test infrastructure.

•	 The ability to scale rapidly. Your testing platform should be
able to perform tests as quickly as needed, and be able to do so
across all required platforms, browsers, and devices. It should
also be highly scalable to support as many parallel tests at one
time as you require.

•	 Highly automated. DevOps teams achieve their speed and
agility in part by automating as much of the software delivery
process as possible. Your testing solution should work
seamlessly with other components of your toolchain, most
notably your CI and collaboration tools.

•	 Security. In a DevOps environment, all members of the
team have an important role to play in keeping applications
secure. Testing platforms, therefore, need enterprise-grade
security features.

A software testing platform that includes these qualities
will empower your organization to derive full value from its
migration to a DevOps-based workflow by maximizing the agility,
scalability, and continuity of your software delivery pipeline.

WRITTEN BY LUBOS PAROBEK
VP OF PRODUCTS, SAUCE LABS

Sauce Labs accelerates the software development process by providing the world’s
largest automated testing cloud for mobile and web applications.

BLOG saucelabs.com/blog WEBSITE saucelabs.comTWITTER @saucelabs

Automated Testing Platform By Sauce Labs

CASE STUDY
As a cutting edge development team, Dollar Shave Club was quick to

adopt DevOps. However, the QA team was spending too much time testing

their website. In fact, it took more than 10 hours to do a full test suite, and

it did not cover the diverse set of devices and browsers for their users.

To increase its test coverage while reducing test execution time, Dollar

Shave Club decided on Sauce Labs for cloud-based automated testing. The

QA team now runs automated functional, regression, and configuration

tests in parallel for both its web and mobile applications. Each day, Dollar

Shave Club can now run more than one hundred unique tests on desktop

web, mobile web, and its native iOS and Android apps. Each test runs

several times a day, on multiple browsers and platforms. Because Sauce

Labs integrates with their Jenkins Continuous Integration (CI) server, the

company can test code automatically with each commit, getting results

back within 10 minutes of each check-in. By running their tests in parallel

on Sauce Labs, Dollar Shave Club is saving hundreds of thousands of dollars

per year due to reduced testing time and increased developer productivity.

STRENGTHS
•	Enterprise-grade cloud-based test infrastructure

provides instant access to more than 800+ browser/OS/

platform configurations

•	Highly scalable, on-demand platform reduces testing

time from hours to minutes when tests are run in

parallel

•	Optimized for CI/CD workflows, testing frameworks,

tools and services

•	Single platform for all your testing needs—automated

& manual testing across desktop web, mobile web, and

native/hybrid iOS and Android apps

CATEGORY
Automated
Testing Platform

NEW RELEASES
Daily

OPEN SOURCE
Yes

NOTABLE CUSTOMERS

•	 American Express

•	 Home Depot

•	 IBM

•	 New Relic

•	 Salesforce

•	 Slack

Automated Testing:
The Glue Between
Dev and Ops

SPONSORED OP IN ION

http://saucelabs.com/blog
https://www.saucelabs.com
https://www.saucelabs.com
https://twitter.com/saucelabs
http://www.twitter.com/nginx

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

3 4

Microservices and
Docker at Scale:
The PB&J of Modern Application Delivery

Microservices and containers have recently garnered
a lot of attention in the DevOps community.
Docker has matured, and is expanding from being
predominantly used in the Build/Test stages to
Production deployments. Similarly, microservices
are expanding from being used mostly for greenfield
web services to being used in the enterprise—as
organizations explore ways to decompose their
monolith applications to support faster release cycles.

As organizations strive to scale their application
development and releases to achieve Continuous
Delivery, microservices and containers, although
challenging, are increasingly considered. While both
offer benefits, they are not “one size fits all,” and we
see organizations still experimenting with these
technologies and design patterns for their specific
use cases and environment.

WHY MICROSERVICES? WHY CONTAINERS?
Microservices are an attractive DevOps pattern because of
their enablement of speed to market. With each microservice
being developed, deployed, and run independently (often
using different languages, technology stacks, and tools),
microservices allow organizations to “divide and conquer,”
and scale teams and applications more efficiently. When the
pipeline is not locked into a monolithic configuration—of
either toolset, component dependencies, release processes,
or infrastructure—there is a unique ability to better scale
development and operations. It also helps organizations
easily determine what services don’t need scaling in order to
optimize resource utilization.

Containers offer a well defined, isolated runtime environment.
Instead of shipping an artifact and all of its variables,
containers support packaging everything into a Docker-
type file that is promoted through the pipeline as a single
container in a consistent environment. In addition to isolation
and consistent environment, containers also have very low
overhead of running a container process. This support for
environment consistency from development to production,
alongside extremely fast provisioning, spin-up, and scaling,
accelerate and simplify both development and operations.

WHY RUN MICROSERVICES IN CONTAINERS?
Running microservices-based applications in a containerized
environment makes a lot of sense. Docker and microservices
are natural companions, forming the foundation for modern
application delivery.

At a high level, microservices and Docker together are the
PB&J of DevOps because:
•	 They are both aimed at doing one thing well, and those

things are complimentary.
•	 What you need to learn to be good at one translates well

to the other.

More specifically:
•	 Purpose

-- A microservice is (generally) a single process focused
on one aspect of the application, operating in isolation
as much as possible.

-- A Docker container runs a single process in a well-
defined environment.

•	 Complexity
-- With microservices you now need to deploy,

coordinate, and run multiple services (dozens to

BY ANDERS WALLGREN
CTO AT ELECTRIC CLOUD

Microservices and containers have
several benefits, including: allowing
organizations to “divide and conquer,”
scale teams and applications more
efficiently, and offer a consistent,
isolated runtime environment.

Microservices and containers are
complex patterns/tools for solving
complex problems. They are not for
everyone. Key challenges are around
test automation, pipeline variations,
operations complexity, monitoring,
logging, and remediation.

You need to figure out if they are right
for your use case, and ensure you
develop the skills and key prerequisites
to make microservices and large-scale
container deployments work for you.

01

02

03

Q U I C K V I E W

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

3 5

hundreds), whereas before you might have had a more
traditional three-tier/monolithic architecture. While
microservices support agility—particularly on the
development side—they come with many technical
challenges, mainly on the operations side.

-- Containers help with this complexity because they
make it easy and fast to deploy services in containers,
mainly for developers.

•	 Scaling
-- Microservices make it easier to scale because each

service can scale independently of other services.

-- Container-native cluster orchestration tools, such as
Kubernetes, and cloud environments, such as Amazon
ECS and Google Container Engine (GKE), provide
mechanisms for easily scaling containers based on
load and business rules.

•	 System Comprehension
-- Both microservices and containers essentially force

you into better system comprehension—you can’t
be successful with these technologies if you don’t
have a thorough understanding of your architecture,
topology, functionality, operations, and performance.

Challenges
Managing microservices and large-scale Docker deployments
pose unique challenges for enterprise IT. Because there is
so much overlap in terms of what an organization has to
be proficient at in order to successfully deploy and modify
microservices and containers, there is quite a bit overlap in
terms of challenges and best practices for operationalizing
containers and microservices at scale.

•	 Increased pipeline variations: Orchestrating the delivery
pipeline becomes more complex, with more moving parts.
When you split a monolith into several microservices,
the number of pipelines might jump from one to 50 (or
however many microservices you have set up). You need
to consider how many different teams you will need
and whether you have enough people to support each
microservice/pipeline.

•	 Testing becomes more complex. There is a larger amount
of testing that needs to be taken into consideration–
integration testing, API contract testing, static analysis,
and more.

•	 Deployment complexity increases. While scaling the
containerized app is fairly easy, there’s a lot of activity
that needs to happen first. It must be deployed for
development and testing many times throughout the
pipeline, before being released to production. With so
many different services developed independently, the
number of deployments increases dramatically.

•	 Monitoring, logging, and remediation become very important
and increasingly difficult because there are more moving

parts and different distributed services that comprise the
entire user experience and application performance.

•	 There are numerous different toolchains, architectures,
and environments to manage.

•	 There is a need to take into consideration existing legacy
applications and how these are coordinated with the new
services and functionality of container- or microservices-
based applications.

•	 Governance and auditing (particularly at the enterprise
level) become more complicated with such a large
distributed environment, and with organizations having
to support both containers and microservices, alongside
traditional releases and monolithic applications.

In addition to these common challenges, microservices and
containers each pose their own unique challenges. If you’re
considering microservices, know that:

•	 Distributed systems are difficult and mandate strong
system comprehension.

•	 Service composition is tricky and can be expensive
to change. Start as a monolith, and avoid premature
decomposition, until you understand your application’s
behavior thoroughly.

•	 Inter-process failure modes need to be accounted for and
although abstractions look good on paper they are prone
to bottlenecks.

•	 Pay attention to transaction boundaries and foreign-key
relationship as they’ll make it harder to decompose.

•	 Consider event-based techniques to decrease coupling
further.

•	 For API and services’ SLA - “Be conservative in what you do,
be liberal in what you accept from others”

•	 State management is hard–transactions, caching, and
other fun things...

•	 Testing (particularly integration testing between services)
and monitoring (because of the increased number of
services) become way more complex.

•	 Service virtualization, service discovery, and proper
design of API integration points and backwards-
compatibility are a must.

•	 Troubleshooting failures: “every outage is a murder mystery.”

•	 Even if a service is small, the deployment footprint must
be taken into account.

•	 You rely on the network for everything-you need to
consider bandwidth, latency, reliability.

•	 What do you do with legacy apps: Rewrite? Ignore? Hybrid?

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

3 6

For containers:
•	 Security is a critical challenge–both because it is still

a relatively new technology, and due to the security
concerns for downloading an image file. Containers are
black boxes to OpSec: less control, less visibility inside the
container, and existing tools may not be container-savvy.
Be sure to sign & scan images, validate libraries, etc.;
harden the container environment as well; drop privileges
early, and use fine-grained access control so it’s not
all root. Be smart about credentials (container services
can help).

•	 Monitoring is tricky, since container instances may be
dropped or span-up continuously. Logging and monitoring
needs to be configured to decommission expired
containers, or save the log and data-business data,
reference data, compliance data, logs, diagnostics-from
other (temporal) instances.

•	 Know what’s running where, and why, and avoid image
bloat and container sprawl.

•	 Since the containers hosting and cluster orchestration
market is still emerging, we see users experimenting a lot
with running containers across multiple environments,
or using different cluster orchestration tools and APIs.
These early adopters need to manage containers while
minimizing the risk of lock-in to a specific cloud vendor
or point-tool, or having to invest a lot of work (and steep
learning curve) in rewriting complex scripting in order to
repurpose their deployment or release processes to fit a
new container environment or tool.

BEST PRACTICES FOR MICROSERVICES AND CONTAINERS
While, admittedly, there are a fair number of challenges
when it comes to deploying microservices and containers,
the end-result, will be reduced overhead costs and faster
time to market. If microservices and containers make the
most sense for your application use case, there is a great
deal of planning that needs to happen before you decompose
your application to a set of hundreds of different services,
or migrate your data center to a container environment.
Without careful planning and following industry best
practices, it can be easy to lose the advantages of
microservices and containers.

To successfully run microservices and containers at scale,
there are certain skill sets that the organization must
possess throughout the software delivery cycle:

•	 Build domain knowledge. Before deploying microservices
it is critically important to understand the domain before
making difficult decisions about where to partition the
problem into different services. Stay monolithic for a
while. Keep it modular and write good code.

•	 Each service should have independent CI and
Deployment pipelines so you can independently build,
verify, and deploy each service without having to take
into account the state of delivery for any other service.

•	 Pipeline automation: A ticketing system is not
automation. With the increase in number of pipelines
and pipeline complexity, you must be able to orchestrate
your end-to-end process, including all the point-tools,
environments, and configuration. You need to automate
the entire process-from CI, testing, configuration,
infrastructure provisioning, deployments, application
release processes, and production feedback loops.

•	 Test automation: Without first setting up automated
testing, microservices and containers will likely become a
nightmare. An automated test framework will check that
everything is ready to go at the end of the pipeline and
boost confidence for production teams.

•	 Use an enterprise registry for containers. Know where
data is going to be stored and pay attention to security by
adding modular security tools into the software pipeline.

•	 Know what’s running where and why. Understand the
platform limitations and avoid image bloat.

•	 Your pipeline must be tools/environment agnostic so
you can support each workflow and tool chain, no matter
what they are, and so that you can easily port your
processes between services and container environments.

•	 Consistent logging and monitoring across all services
provides the feedback loop to your pipeline. Make sure
your pipeline automation plugs into your monitoring
so that alerts can trigger automatic processes such as
rolling back a service, switching between blue/green
deployments, scaling, and so on. Your monitoring/
performance testing tool needs allow you to track a
request through the system even as it bounces between
different services.

•	 Be rigorous in handling failures (consider using Hystrix,
for example, to bake in better resiliency).

•	 Be flexible at staffing and organizational design for
microservices. Consider whether there are enough people
for one team per service.

There is increasing interest in microservices and containers,
and for good reasons. However, businesses need to make
sure they have the skills and knowledge for overcoming
the challenges of managing these technologies reliably, at
scale. It is critical to plan and model your software delivery
strategy, and align its objectives with the right skill sets and
tools, so you can achieve the faster releases and reduced
overhead that microservices and containers can offer.

ANDERS WALLGREN is Chief Technology Officer at
Electric Cloud. Anders has over 25 years’ experience designing
and building commercial software. Prior to joining Electric Cloud,
he held executive positions at Aceva, Archistra, and Impresse and
management positions at Macromedia (MACR), Common Ground Soft-
ware, and Verity (VRTY), where he played critical technical leadership
roles in delivering award-winning technologies such as Macromedia’s
Director 7. Anders holds a B.SC from MIT.

http://electric-cloud.com

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

3 7

Diving Deeper
INTO DEVOPS

TOP #DEVOPS TWITTER FEEDS
To follow right away

DEVOPS PODCASTS

@martinfowler

@bridgetkromhout

@ChrisShort

@auxesis

@botchagalupe

@UberGeekGirl

@RealGeneKim

@nicolefv

@kelseyhightower

@damonedwards

DevOps Café

Arrested DevOps

The Food Fight Show

The DevOps Handbook
by Gene Kim, Jez Humble, Patrick Debois, and John WIllis

DevOps for Developers
by Michael Hüttermann

Release It!: Design and Deploy
Production-Ready Software
by Michael T. Nygard

DEVOPS ZONES
Learn more & engage your peers in our Security-related topic portals

DEVOPS BOOKS

DevOps
dzone.com/devops
DevOps is a cultural movement supported by exciting new tools that

is aimed at encouraging close cooperation within cross-disciplinary

teams of developers, and IT operations, and system admins.

The DevOps Zone is your hot spot for news and resources about

Continuous Delivery, Puppet, Chef, Jenkins, and more.

Cloud
dzone.com/cloud
The Cloud Zone covers the host of providers and utilities that make cloud

computing possible and push the limits (and savings) with which we

can deploy, store, and host applications in a flexible, elastic manner. The

Cloud Zone focuses on PaaS, infrastructures, security, scalability, and

hosting servers.

Agile
dzone.com/agile
In the software development world, Agile methodology has overthrown

older styles of workflow in almost every sector. Although there are a

wide variety of interpretations and techniques, the core principles of the

Agile Manifesto can help any organization in any industry improve their

productivity and success. The Agile Zone is your essential hub for Scrum,

XP, Kanban, Lean Startup, and more.

TOP DEVOPS REFCARDZ

Getting Started With Git
dzone.com/refcardz/getting-started-git
This updated Refcard explains why so many developers are migrating to this
exciting platform. Learn about creating a new Git repository, cloning existing
projects, the remote workflow, and more to pave the way for limitless content
version control.

Continuous Delivery Patterns
dzone.com/refcardz/continuous-delivery-patterns
Functional programming is a software paradigm that will radically change the way
in which you approach any programming endeavor. Combining simple functions to
create more meaningful programs is the central theme of functional programming.

Getting Started With Docker
dzone.com/refcardz/getting-started-with-docker-1
Teaches you typical Docker workflows, building images, creating Dockerfiles,
and includes helpful commands to easily automate infrastructure and contain
your distributed application.

https://twitter.com/martinfowler
http://www.twitter.com/bridgetkromhout
http://www.twitter.com/ChrisShort
http://www.twitter.com/auxesis
http://www.twitter.com/botchagalupe
http://www.twitter.com/UberGeekGirl
http://www.twitter.com/RealGeneKim
http://www.twitter.com/nicolefv
http://www.twitter.com/kelseyhightower
http://www.twitter.com/damonedwards
http://devopscafe.org/
https://www.arresteddevops.com/
https://player.fm/series/the-food-fight-show
https://www.amazon.com/DevOps-Handbook-World-Class-Reliability-Organizations/dp/1942788002
https://www.amazon.com/DevOps-Handbook-World-Class-Reliability-Organizations/dp/1942788002
https://www.amazon.com/DevOps-Developers-Experts-Voice-Development/dp/1430245697
https://www.amazon.com/Release-Production-Ready-Software-Pragmatic-Programmers/dp/0978739213/ref=sr_1_9?s=books&ie=UTF8&qid=1484682253&sr=1-9&keywords=continuous+delivery
https://www.amazon.com/Release-Production-Ready-Software-Pragmatic-Programmers/dp/0978739213/ref=sr_1_9?s=books&ie=UTF8&qid=1484682253&sr=1-9&keywords=continuous+delivery
https://dzone.com/devops-tutorials-tools-news
https://dzone.com/cloud-computing-tutorials-tools-news
https://dzone.com/agile-methodology-training-tools-news
https://dzone.com/refcardz/getting-started-git
https://dzone.com/refcardz/getting-started-git
https://dzone.com/refcardz/continuous-delivery-patterns
https://dzone.com/refcardz/continuous-delivery-patterns
https://dzone.com/refcardz/getting-started-with-docker-1
https://dzone.com/refcardz/getting-started-with-docker-1
https://dzone.com/devops-tutorials-tools-news
https://dzone.com/cloud-computing-tutorials-tools-news
https://dzone.com/agile-methodology-training-tools-news
https://dzone.com/refcardz/continuous-delivery-patterns
https://dzone.com/refcardz/getting-started-git
https://dzone.com/refcardz/getting-started-with-docker-1
https://www.arresteddevops.com/
https://www.amazon.com/DevOps-Handbook-World-Class-Reliability-Organizations/dp/1942788002
https://www.amazon.com/DevOps-Developers-Experts-Voice-Development/dp/1430245697
https://www.amazon.com/Release-Production-Ready-Software-Pragmatic-Programmers/dp/0978739213/ref=sr_1_9?s=books&ie=UTF8&qid=1484682253&sr=1-9&keywords=continuous+deliveryhttps://www.amazon.com/Release-Production-Ready-Software-Pragmatic-Programmers/dp/0978739213/ref=sr_1_9?s=books&ie=UTF8&qid=1484682253&sr=1-9&keywords=continuous+delivery
https://twitter.com/martinfowler
https://www.amazon.com/Release-Production-Ready-Software-Pragmatic-Programmers/dp/0978739213/ref=sr_1_9?s=books&ie=UTF8&qid=1484682253&sr=1-9&keywords=continuous+delivery

SPONSORED OP IN ION

http://ca.com/continuous-delivery?DZone.com

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

3 9

It’s amazing to think of the change in economic behavior

over past 20 years. In 1995—the year both Amazon and

eBay launched—virtually all commerce was conducted in

the physical realm.

Today that’s changed. In the application economy,

customers’ impressions are overwhelmingly shaped by

their interactions with your web and mobile applications.

The battleground for consumer loyalty is no longer in the

physical world: it takes place on your web and mobile

apps. This means that whatever products or services your

company sells—and whether you realize it or not—your

company is in the software business.

To compete in the application economy, your organization

has to create software the way a modern factory

manufactures goods. Specifically, software needs to be

developed faster, at lower costs, and with high degree of

quality. And this is true across all virtual touchpoints: your

public-facing web and mobile apps, as well as your backend

systems, are all equally critical to delivering a superior

customer experience.

Agile development methodologies are a step in the right

direction. DevOps takes things one step further. But the

ultimate goal of any organization should be transforming

into a factory capable of continuously delivering software.

Continuous delivery is not an easy task. It requires

automation throughout the software development lifecycle,

as a bottleneck anywhere can back up the entire assembly

line. That means development, testing and release

automation all must occur continuously—and concurrently.

Testing is often the last hurdle to continuous delivery,

and achieving continuous testing means shift-left testing

practices, test automation, and testing at the API level.

CA offers an open and integrated portfolio of continuous

delivery solutions that automate software delivery—

from planning through production. These solutions help

you accelerate the delivery of innovative, high-quality

applications to drive competitive advantage and win in the

application economy.

WRITTEN BY BRENDAN HAYES
DIRECTOR OF DEVOPS SOLUTIONS MARKETING, CA TECHNOLOGIES

Where development, testing, and release teams can work in a unique
and open integrated ecosystem with proven results.

BLOG blogs.ca.com WEBSITE ca.com/continuous-deliveryTWITTER @CAInc

Continuous Delivery solutions By CA Technologies

CASE STUDY
GM Financial, the finance arm of General Motors, was striving to deliver

applications and updates faster, to better serve its customers—and make

it easier for them to get loans. Rapid growth within in the business and

increased competition meant traditional development methods were no

longer keeping pace.

GM Financial recognized the need to deliver higher quality software,

faster—something that could only be achieved by automating much of

the software development lifecycle.

A cohesive effort spanning dev, ops, and quality assurance did just this.

With the help of CA’s continuous delivery solutions, GM Financial was

able to shorten a standard server deployment from several hours to a few

minutes. Results like this have had a direct customer-facing impact: now

loans can be processed in 1 day vs. 1-2 weeks.

Listen to their story here.

STRENGTHS
•	 Integrated and open, end-to-end continuous

delivery ecosystem

•	 Develop continuously to release applications up

to 20x faster

•	 Test continuously to gain up to a 25% reduction

in testing cost and time

CATEGORY
DevOps and
Continuous Delivery

NEW RELEASES
Continuous

OPEN SOURCE
Yes

NOTABLE CUSTOMERS

•	 SunTrust

•	 Direct Line Group

•	 RaboBank

•	 Manheim

•	 AutoTrader

•	 Jewelers Mutual

SPONSORED OP IN ION

https://blogs.ca.com
https://ca.com/continuous-delivery
https://ca.com/continuous-delivery
https://twitter.com/CAInc
http://www.twitter.com/nginx
http://bit.ly/2j1J0vH

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

4 0

What the Military
Taught Me About
DevOps

When we talk about failures in DevOps we

are usually talking about how we want to fail

fast. What is failing fast though? The term

“fail fast” has several origins but the one that

is referred to in Agile is probably the most

appropriate for DevOps. Fail fast is a strategy

in which you try something, it fails, feedback

is delivered quickly, you adapt accordingly,

and try again. Failing fast is the only way to

fail in DevOps. Roll out a product, service, or

application quickly, and if it doesn’t pan out,

move on quickly.

We don’t often think of military failures in a positive

light, and rightfully so. The Battle of the Little Bighorn

did not work out well for General Custer. Operation Eagle

Claw, the aborted operation to rescue hostages in Iran,

resulted in loss of life and contributed to President Jimmy

Carter’s failed re-election bid. And a nuclear mishap

almost resulted in the creation of “a very large Bay of

North Carolina,” according to Dr. Jack ReVelle, Explosive

Ordinance Disposal officer. For the scope of this article,

we’ll focus on this near-nuclear B-52 blunder, exploring

what went wrong and applying the lessons learned from it

to our DevOps craft today.

The 1961 Goldsboro B-52 crash is what I consider a

near miss for humanity and a very well timed wake-

up call for the US military, who nearly bombed its own

country. Around midnight on January 24, 1961 a B-52G

Stratofortress was flying a Cold War alert flight out of

Seymour-Johnson Air Force Base, North Carolina. These

alert flights were part of the US military’s answer to what

was believed to be a superior Soviet ballistic missile

threat. The B-52G that took off that night in ‘61 had two

Mark 39 thermonuclear weapons on board.

The Cold War was a very tenuous time in world history.

The battle over who could deploy weapons fastest

between east and west was far greater than any Vim vs.

Emacs flamewar could ever hope to reach; it was almost

unquantifiable. The US military commanders in charge

of the nuclear weapons were so afraid of not being able to

respond to an attack, that they routinely fought against

the use of safeties in nuclear weapons. We can draw a

parallel here to eager investors wanting to see return

on investment or managers trying to meet unrealistic

delivery dates.

Continuing our analogy, the role of development and

operations will be played by the scientists and bomb

makers of the era, who wanted weapons to fail safely

(thus not exploding when something went wrong). The

makers wanted safe backout plans laid out as part of

the design, planning, and implementation. Meanwhile,

the investors/managers (military commanders) wanted

weapons that could be deployed quickly and cheaply.

The makers and commanders were at odds in their

philosophies. As a result, the Mark 39 bomb had safeties

disabled when the aircraft carrying them was aloft. On

Failing fast is not unique to
DevOps but it is an incredibly
important strategy to adhere
to in DevOps

The US military has numerous
lessons learned from some of
its failures that can be brought
into the DevOps space

One nuclear mishap in 1961
demonstrates issues DevOps
engineers face today

Practicing failures and mitigating
issues as a result of those failures
should be a standard function of
DevOps teams

01

02

03

04

Q U I C K V I E W

BY CHRIS SHORT
GLOBAL DEVOPS ENGINEER AT SOLARWINDS MSP

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

4 1

this night in 1961, the B-52G carrying these weapons

above Faro, North Carolina had a structural failure and

broke up in mid-air.

The two Mark 39 bombs, clocking in at 3.8 megatons a

piece (more than 250 times the destructive power of the

Hiroshima bomb), plummeted to earth. One Mark 39

deployed its parachute (a part of a planned detonation

of the weapon) and it was later discovered that three of

the four safety mechanisms were flipped off during the

accident; one step away from a nuclear explosion. This

particular bomb landed in a tree and was safely recovered.

The other Mark 39 bomb did not deploy its parachute.

Instead, it became a nuclear lawn dart and slammed in

to a swampy patch of earth at an estimated 700 miles

per hour breaking apart on impact. The core (or pit) of

the bomb was safely recovered. A complete recovery of

all of the weapon’s components was not possible due

to the conditions. As a result, a small chunk of eastern

North Carolina has some fissile material leftover from

the accident. There is a concrete pad in place to prevent

tampering and a hastily written law that no farming or

other activity will take place deeper than five feet at the

site. There was no disaster recovery plan, and it showed.

The 1961 Goldsboro B-52 Crash is a prime example of

failing fast going wrong. We were one step away from not

one but two multi-megaton nuclear detonations on the

US eastern seaboard. The US military did not want inert

bombs to fall on the Soviet Union if a delivery system

was somehow disabled. The investors/managers wanted

the weapons to fail spectacularly. The development and

operations teams wanted the weapons to fail fast and

safely. Investors/managers did not want to bother with

security testing, failure scenarios, and other DevOps-type

planning, and this nearly resulted in catastrophic costs.

Luckily, for most of us following DevOps practices, we do

not have lives or the fate of humanity in our hands. We

can deploy things like Chaos Monkey in our production

environments with little risk to life and limb. If you break

something in stage, is it not doing its intended purpose:

to catch bugs safely before they manifest themselves in

production? Take advantage of your dev, test, and stage

environments. If those non-production environments are

not easily rebuilt, do the work to make them immutable.

Automate their deployment so you can take the time to

rigorously test your services. Practice failures vigorously;

spend the time needed to correct or automate issues out

of the systems.

Following the near disaster in Goldsboro, the US

government conducted an amazingly detailed

postmortem. Speaking with Dr. Jack ReVelle, the Explosive

Ordnance Disposal (EOD) officer who responded to the

accident, I learned that significant improvements were

made to training and documentation. Security and

safety became an iterative part of the development and

deployment processes. Prior to this deployment, Dr.

ReVelle was not trained in disaster recovery of nuclear

devices, “We were writing the book on it as we went.”

As a result of this accident, techs were taught how to

manage the systems before deployment. Additionally,

documentation was updated continuously to include

necessary information about the systems as they were

being developed. Better tooling was procured for the

teams to manage incidents. In short, significant rigor

was added to training programs, deployment plans, and

documentation processes in the EOD teams. EOD teams

now planned for failures in the way DevOps teams of

today plan for failures.

One thing you have to keep in mind about everything

procured by the US government is that it is delivered

by the person or company that is the lowest bidder. In

other words, a failure rate is expected with anything. The

military has to practice failing in any and all forms that

can be thought of just like DevOps professionals should.

Practicing failures is important because it will improve

your recognition time and response times to these

failures. Your teams will build a sort of “muscle memory”

to effectively quash issues before they become incidents.

This “muscle memory” will allow your teams to iterate

through one scenario while discussing other scenarios

more calmly. Common sense is not common, so explicit

documentation and processes are incredibly important.

Remember, the most important part of failing is not the

fact something failed, but how you respond to and learn

from such failures.

“The most important part of

failing is not the fact something

failed, but how you respond to

and learn from such failures.”

CHRIS SHORT has over two decades in various IT
disciplines from textile manufacturing to dial-up ISPs to DevOps
Engineer. He’s been a staunch advocate for open source
solutions throughout his time in the private and public sector. He’s a
partially disabled US Air Force Veteran living with his wife and son in NC.
Check out his writing at chrisshort.net.

https://chrisshort.net/

Bridge the gap
between Dev and Ops
with Jobs-as-Code

—
Bring IT to Life at bmc.com/jobsascode

Control-M & DevOps: Automation API

SPONSORED OP IN ION

http://www.bmc.com/jobsascode?DZone.com

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

4 3

DevOps is about increasing the speed of delivering high-quality

applications. However, many DevOps teams do not realize how

much time they lose dealing with the mix-and-match job scripts

that are rolling through to production.

During the build phase, simple tools and manual scripts are

used to code jobs for applications. This non-standard approach

results in downstream issues when Operations goes to scale in

production. Operations teams are forced to send back to Dev or

rework the scripts so applications can run as expected. Often

this means converting scripts to comply with the enterprise job

scheduling solution. This extra effort causes unnecessary delays

in the application delivery process.

With agile development and delivery top priority for companies

worldwide, job scheduling and file transfer solutions are being

extended to support these new initiatives. To avoid rework,

headaches, and poor quality applications, BMC is working with

Dev teams around the globe to shift-left these functions from

Ops into Dev with Jobs-as-Code. Control-M Jobs-as-Code gives

developers access to the power of Control-M by embedding job

scripts into the code. The functionality expected in production

is now delivered from development through the entire lifecycle.

70% of business processing is done by application job

scheduling. Jobs-as-Code increases quality and shortens

delivery time (source: How to Accelerate DevOps Delivery

Cycles, 2016). Free up development time to rapidly improve

applications running in production. The result is a faster, better

DevOps delivery cycle.

WRITTEN BY TINA STURGIS
DIRECTOR, SOLUTION MARKETING AT BMC

“When we look at how much work we push through our environment running multiple platforms, we estimate that
we would need 30 full-time personnel working seven days a week to do the amount of work that our team of six

does with Control-M.” — DON SNIOS, SENIOR MANAGER OF OPERATIONS AND SCHEDULING, INGRAM MICRO

BLOG bit.ly/2h64GBL WEBSITE bmc.com/jobsascodeTWITTER @ControlM_BMC

Control-M By BMC

CASE STUDY
Unum, which encompasses Unum US, Colonial Life, Starmount,

and Unum UK, is a leading provider of financial protection

benefits in the workplace, including disability, life, accident,

and critical illness coverage. The IT organization at Unum is

committed to putting the right technologies in place to support

the company’s growth. BMC Control-M has been part of that effort

for more than 20 years. Today, Control-M manages every aspect of

their batch processing—supporting internal business operations,

enrolling policyholders, transferring employee data reliably

among employers, Unum, and payroll providers, and processing

claims for individuals. The result has been a 60 percent reduction

in batch service requests coming into the scheduling team.

They’ve also seen a 900 percent increase in jobs submitted via

Self Service over the past 3½ years.

STRENGTHS
•	Jobs-as-Code helps organizations operationalize applications

faster by embedding automated job scheduling into the current

development and release process.

•	Strengthen application quality by decreasing downstream

complexity and minimizing errors when rolling into production.

•	Increase team member productivity by reducing the time spent

learning a new scheduling tool for every application or manually

scripting and re-scripting jobs.

•	Accelerate application change and deployment cycle times with

automated application workflow between test and production.

•	Quickly and reliably deliver business services by easily connecting

applications and workflow processes.

CATEGORY
Enterprise Job
Scheduling / Jobs-
as-Code

NEW RELEASES
Continuous

OPEN SOURCE
No

NOTABLE CUSTOMERS
•	Eaton

•	Carfax

•	UNUM

•	Ingram Micro

•	British Sky
Broadcasting

•	Raymond James
Financial

End the Hidden
Drag in Application
Delivery

SPONSORED OP IN ION

70% of business processing is done by

application job scheduling. Jobs-as-Code

increases quality and shortens delivery time.

http://bit.ly/2h64GBL
http://bit.ly/2h64GBL
http://www.bmc.com/jobsascode?DZone.com
http://www.bmc.com/jobsascode?DZone.com
https://twitter.com/ControlM_BMC
http://www.twitter.com/nginx

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

4 4

This directory contains software configuration, build, container, repository, monitoring, and

application performance management tools, as well as many other tools to help you on your journey

toward Continuous Delivery. It provides the company name, product information, open source data,

and product category information gathered from vendor websites and project pages. Solutions

are selected for inclusion based on several impartial criteria, including solution maturity, technical

innovativeness, relevance, and data availability.

Solutions Directory

COMPANY NAME PRODUCT CATEGORY OPEN
SOURCE WEBSITE

Amazon Amazon ECS Container Management No aws.amazon.com/ecs

Apache Software Foundation Apache Ant Build Management Yes ant.apache.org

Apache Software Foundation Apache Archiva Repository Management Yes archiva.apache.org

Apache Software Foundation Apache Maven Build Management Yes maven.apache.org

Apache Software Foundation Apache Subversion Software Configuration Management Yes subversion.apache.org

Apache Software Foundation JMeter Web and Java Testing Yes jmeter.apache.org

AppDynamics AppDynamics Application Performance Management No appdynamics.com

Appium Appium Automated Web and Mobile Testing Yes appium.io

Atlassian Bamboo
Continuous Integration, Application
Release Automation

No atlassian.com/software/bamboo

Attunity RepliWeb for ARA Application Release Automation No attunity.com/products/repliweb

Automic Automic V12 Application Release Automation Yes
automic.com/products/application-release-
automation

BigPanda
Altert Correlation
Platform

Monitoring Alert Software No bigpanda.io

BMC Control-M Enterprise Job Scheduling No bmc.com/it-solutions/control-m.html

Buildbot Buildbot Continuous Integration Yes buildbot.net

CA CA Release Automation Application Release Automation Yes ca.com/us/products/ca-release-automation.html

Chef Chef Automate Continuous Deployment Platform Yes chef.io/automate

https://aws.amazon.com/ecs
http://ant.apache.org
http://archiva.apache.org
http://maven.apache.org
http://subversion.apache.org
http://jmeter.apache.org
http://appdynamics.com
http://appium.io
https://www.atlassian.com/software/bamboo
http://attunity.com/products/repliweb
https://automic.com/products/application-release-automation
https://bigpanda.io
http://www.bmc.com/it-solutions/control-m.html
http://buildbot.net
https://www.ca.com/us/products/ca-release-automation.html?intcmp=headernav
https://www.chef.io/automate

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

4 5

Solutions Directory
COMPANY NAME PRODUCT CATEGORY OPEN

SOURCE WEBSITE

Chef Continuous Delivery
Application and Infrastructure Release
Automation

No chef.io/solutions/continuous-delivery

CircleCI CircleCI Continuous Integration No circleci.com

Cloudbees Jenkins Enterprise
Continuous Integration, Application
Release Automation

No
go.cloudbees.com/docs/cloudbees-
documentation/cje-install-guide

Codeship ParallelCI Continuous Integration No codeship.com/features/parallelci

Cucumber Cucumber Automated Rails Testing Yes cucumber.io

Datadog Datadog IT Stack Performance Management No datadoghq.com

Docker Docker Swarm Container Management Yes docker.com/products/docker-swarm

Eclipse Hudson Continuous Integration Yes eclipse.org/hudson

ElasticBox ElasticBox Container Management No elasticbox.com

Electric Cloud ElectricFlow Application Release Automation No electric-cloud.com/products/electricflow

FitNesse FitNesse Acceptance Testing Framework Yes fitnesse.org

Free Software Foundation
Concurrent Versions
Systems (CVS)

Software Configuration Management Yes savannah.nongnu.org/projects/cvs

Git Git Software Configuration Management Yes git-scm.com

Gitlab GitLab
Code Review, Continuous Integration,
Continuous Delivery

Yes about.gitlab.com

Gradle Gradle Build Automation Yes gradle.org

Grid Dynamics Agile Software Factory Application Release Automation No griddynamics.com/blueprints

Gridlastic Gridlastic Automated Web Testing No gridlastic.com

Hashicorp Vagrant Configuration Management Yes vagrantup.com

HPE ALM Octane Application Lifecycle Management No saas.hpe.com/en-us/software/alm-octane

IBM Rational Software Configuration Management No 01.ibm.com/software/rational/strategy

IBM Urbancode Build
Continuous Integration, Build
Management

No
developer.ibm.com/urbancode/products/
urbancode-build/

IBM Urbancode Deploy Application Release Automation No
developer.ibm.com/urbancode/products/
urbancode-deploy

Inedo Buildmaster Application Release Automation No inedo.com/buildmaster

https://www.chef.io/solutions/continuous-delivery
http://circleci.com
https://go.cloudbees.com/docs/cloudbees-documentation/cje-install-guide/
https://go.cloudbees.com/docs/cloudbees-documentation/cje-install-guide/
https://codeship.com/features/parallelci
http://cucumber.io
http://datadoghq.com
https://www.docker.com/products/docker-swarm
https://eclipse.org/hudson
http://elasticbox.com
http://electric-cloud.com/products/electricflow
http://fitnesse.org
http://savannah.nongnu.org/projects/cvs
http://git-scm.com
https://about.gitlab.com
http://gradle.org
https://www.griddynamics.com/blueprints
http://gridlastic.com
http://vagrantup.com
https://saas.hpe.com/en-us/software/alm-octane
https://www-01.ibm.com/software/rational/strategy
https://developer.ibm.com/urbancode/products/urbancode-build/
https://developer.ibm.com/urbancode/products/urbancode-build/
https://developer.ibm.com/urbancode/products/urbancode-deploy
https://developer.ibm.com/urbancode/products/urbancode-deploy
https://inedo.com/buildmaster

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

4 6

COMPANY NAME PRODUCT CATEGORY OPEN
SOURCE WEBSITE

Inflectra Rapise Automated Web Testing No inflectra.com/Rapise

Jenkins Jenkins Continuous Integration Yes jenkins-ci.org

JetBrains TeamCity
Continuous Integration, Application
Release Automation

No jetbrains.com/teamcity

jFrog Artifactory Repository Management No jfrog.com/artifactory

Junit JUnit Unit Testing Framework Yes junit.org

Librato Librato Monitoring Alert Software No librato.com

Mercuiral Mercurial Software Configuration Management Yes mercurial-scm.org

Micro Focus AccuRev Software Configuration Management No
microfocus.com/products/change-management/
accurev

Microsoft
Team Foundation
Server

Software Configuration Management No
visualstudio.com/en-us/news/releasenotes/
tfs2017-relnotes

MidVision RapidDeploy Application Release Automation No midvision.com/product/rapiddeploy

Nagios Nagios Core Infrastructure Monitoring Yes nagios.org/projects/nagios-core

New Relic New Relic Application Performance Management No newrelic.com

NuGet NuGet Repository Management Yes nuget.org

Nunit NUnit Unit Testing Framework Yes nunit.org

OpsGenie OpsGenie Monitoring Alert Software No opsgenie.com

PagerDuty PagerDuty Monitoring Alert Software No pagerduty.com

Parasoft Parasoft Automated Web and API Testing No parasoft.com

Perforce Helix Software Configuration Management No perforce.com/helix

Plutora Plutora Application Release Automation No plutora.com

Puppet Labs Puppet Configuration Management No puppetlabs.com

Rake Rake Build Automation Yes github.com/ruby/rake

Ranorex Ranorex Automated Web and Desktop Testing No ranorex.com

Red Gate Software DLM Automation Suite Database CI and Release Automation No red-gate.com/products/dlm/dlm-automation

https://www.inflectra.com/Rapise
http://jenkins-ci.org
https://www.jetbrains.com/teamcity
https://www.jfrog.com/artifactory
http://junit.org
https://www.librato.com
http://mercurial-scm.org
https://www.microfocus.com/products/change-management/accurev
https://www.microfocus.com/products/change-management/accurev
https://www.visualstudio.com/en-us/news/releasenotes/tfs2017-relnotes
https://www.visualstudio.com/en-us/news/releasenotes/tfs2017-relnotes
http://www.midvision.com/product/rapiddeploy
https://www.nagios.org/projects/nagios-core/
http://newrelic.com
http://nuget.org
http://nunit.org
http://opsgenie.com
http://pagerduty.com
http://parasoft.com
https://www.perforce.com/helix
http://plutora.com
http://puppetlabs.com
http://github.com/ruby/rake
http://ranorex.com
http://www.red-gate.com/products/dlm/dlm-automation/

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

4 7

COMPANY NAME PRODUCT CATEGORY OPEN
SOURCE WEBSITE

Red Hat Ansible
Configuration Management,
Application Release Automation

Yes ansible.com

Rocket Software ALM and DevOps Application Release Automation No
rocketsoftware.com/product-categories/
application-lifecycle-management-and-
devops?rcid=mm-pr-alm-explore

Sahi Sahi Automated Web Testing No sahipro.com

SaltStack Salt Configuration Management Yes saltstack.com

Sauce Labs Sauce Labs Automated Web and Mobile Testing Yes saucelabs.com

Selenium Selenium WebDriver Automated Web Testing Yes seleniumhq.org

Serena
Serena Deployment
Automation

Application Release Automation No
serena.com/index.php/en/products/deployment-
configuration-automation/serena-deployment-
automation/overview

SmartBear Software SoapUI Automated Web and API Testing Yes soapui.org

SnapCI SnapCI Continuous Integration No snap-ci.com

Solano Labs Solano Labs Continuous Integration No solanolabs.com

Sonatype Nexus Repository Management Yes sonatype.org/nexus

Tellurium Tellurium Automated Web Testing No te52.com

TestingBot TestingBot Automated Web Testing No testingbot.com

TestNG TestNG Unit Testing Framework Yes testng.org

The Linux Foundation Kubernetes Container Management Yes kubernetes.io

Thoughtworks Go Application Release Automation Yes gocd.io

TravisCI TravisCI Continuous Integration Yes travis-ci.org

VictorOps VictorOps Monitoring Alert Software No victorops.com

Watir Watir Automated Web Testing Yes watir.com

WeaveWorks Weave Cloud Containers, Microservices, and SaaS No weave.works/solution/cloud

Windmill Windmill Automated Web Testing Yes getwindmill.com

Xebia Labs XL Deploy Application Release Automation No xebialabs.com/products/xl-deploy

xUnit xUnit Unit Testing Framework Yes xunit.github.io

Zend Zend Server
Application Release Automation for
PHP

No zend.com/en/products/zend_server

https://www.ansible.com
http://www.rocketsoftware.com/product-categories/application-lifecycle-management-and-devops?rcid=mm-pr-alm-explore
http://www.rocketsoftware.com/product-categories/application-lifecycle-management-and-devops?rcid=mm-pr-alm-explore
http://sahipro.com
http://saltstack.com
http://saucelabs.com
http://seleniumhq.org
http://www.serena.com/index.php/en/products/deployment-configuration-automation/serena-deployment-automation/overview
http://www.serena.com/index.php/en/products/deployment-configuration-automation/serena-deployment-automation/overview
http://www.serena.com/index.php/en/products/deployment-configuration-automation/serena-deployment-automation/overview
http://soapui.org
http://snap-ci.com
http://solanolabs.com
http://www.sonatype.org/nexus
http://te52.com
http://testingbot.com
http://testng.org
http://kubernetes.io
https://www.gocd.io
http://travis-ci.org
http://victorops.com
http://watir.com
https://www.weave.works/solution/cloud/
http://getwindmill.com
https://xebialabs.com/products/xl-deploy
http://xunit.github.io
http://www.zend.com/en/products/zend_server

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DevOps : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

4 8

ARTIFACT Any description of a process

used to create a piece of software that can

be referred to, including diagrams, user

requirements, and UML models. 

AUTONOMY The ability to make changes

with the resources currently available,

without the need to defer to something or

someone higher up in the hierarchy. 

BRANCHING The duplication of an object

under review in source control so that the

same code can be modified by more than

one developer in parallel. 

COMMIT A way to record the changes

to a repository and add a log message to

describe the changes that were made. 

COMPLEX-ADAPTIVE SYSTEMS Any

system made of a collection of similar,

smaller pieces that are dynamically

connected and can change to adapt

to changes for the benefit of a macro-

structure. 

CONTAINERS Resource isolation at the

OS (rather than machine) level, usually (in

UNIX-based systems) in user space. Isolated

elements vary by containerization strategy

and often include file system, disk quota, CPU

and memory, I/O rate, root privileges, and

network access. Much lighter-weight than

machine-level virtualization and sufficient for

many isolation requirement sets.

CONTINUOUS DELIVERY A software

engineering approach in which continuous

integration, automated testing, and

automated deployment capabilities allow

software to be developed and deployed

rapidly, reliably, and repeatedly with minimal

human intervention.

CONTINUOUS DEPLOYMENT A software

development practice in which every code

change goes through the entire pipeline

and is put into production automatically,

resulting in many production deployments

every day. It does everything that

Continuous Delivery does, but the process

is fully automated, and there’s no human

intervention at all.

CONTINUOUS INTEGRATION  A

software development process where a

branch of source code is rebuilt every time

code is committed to the source control

system. The process is often extended to

include deployment, installation, and testing

of applications in production environments.

CONTINUOUS QUALITY   A principle

that preaches the continuous quest for

quality across the entire SDLC, starting from

requirements definition, code development,

testing, and operations. Another key area

of focus for Continuous Quality is the

application code pipeline orchestration.

There are many opportunities to negatively

impact the quality of an application when

code is being manually moved across

environments. 

 

CONTINUOUS TESTING  The process

of executing unattended automated tests

as part of the software delivery pipeline

across all environments to obtain immediate

feedback on the quality of a code build.

DEPLOYMENT PIPELINE  A deployment

pipeline is an automated manifestation of

your process for getting software from

version control into the hands of your users.

(source: informIT.com)

DEVOPS An IT organizational

methodology where all teams in the

organization, especially development teams

and operations teams, collaborate on both

development and deployment of software

to increase software production agility and

achieve business goals.

EVENT-DRIVEN ARCHITECTURE  A

software architecture pattern where events

or messages are produced by the system,

and the system is built to react, consume,

and detect other events. 

FAIL FAST A strategy in which you try

something, it fails, feedback is delivered

quickly, you adapt accordingly, and try again.

MICROSERVICES ARCHITECTURE The

practice of developing software as

an interconnected system of several

independent, modular services that

communicate with each other. 

MODEL-BASED TESTING  A software

testing technique in which the test cases

are derived from a model that describes

the functional aspects of the System Under

Test (SUT). Visual models can be used to

represent the desired behavior of a SUT,

or to represent testing strategies and a

test environment. From that model manual

tests, test data, and automated tests can be

generated automatically.

ONE-STOP SHOP / OUT-OF-THE-
BOX TOOLS  Tools that provide a set of

functionalities that works immediately after

installation with hardly any configuration

or modification needs. When applied to the

software delivery, a one-stop shop solution

allows quick setup of a deployment pipeline.

PAIR PROGRAMMING  A software

development practice where two developers

work on a feature, rather than one, so that

both developers can review each others’

code as it’s being written in order to

improve code quality. 

PRODUCTION The final stage in a

deployment pipeline where the software will

be used by the intended audience.

SOURCE CONTROL A system for storing,

tracking, and managing changes to

software. This is commonly done through

a process of creating branches (copies for

safely creating new features) off of the

stable master version of the software and

then merging stable feature branches back

into the master version. This is also known

as version control or revision control.

STAGING ENVIRONMENT Used to test

the newer version of your software before

it’s moved to live production. Staging is

meant to replicate as much of your live

production environment as possible, giving

you the best chance to catch any bugs

before you release your software. 

TECHNICAL DEBT A concept in

programming that reflects the extra

development work that arises when code

that is easy to implement in the short run is

used instead of applying the best

overall solution.

TEST AUTOMATION  The use of special

software (separate from the software being

tested) to control the execution of tests and

the comparison of actual outcomes with

predicted outcomes.

GLOSSARY

DZONE’S GUIDE TO DevOps: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

NETWORK SECURITY

WEB APPLICATION SECURITY

DENIAL OF SERVICE ATTACKS

IoT SECURITY

dzone.com/security

https://dzone.com/application-web-network-security

