
 THE DZONE GUIDE TO

BROUGHT TO YOU IN PARTNERSHIP WITH

Orchestrating and Deploying

Containers
 VOLUME I

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

2

Executive Summary BY MATT WERNER

Key Research Findings BY G. RYAN SPAIN

Introduction to Highly Available Container Applications BY ALAN HOHN

Checklist: Secure Networking with Kubernetes BY MIKE STOWE

Containers are the New Build Artifact BY TODD FASULLO

Application Routing for Containers BY CHRISTIAN POSTA

Is Docker the End of Traditional Release Automation? BY LARRY SALOMAN

Infographic: What’s the Porpoise of Containers?

5 Docker Logging Best Practices BY JEFFREY WALKER

Container-Driven Technology Diversity BY PAVLOV BARON

Five Things We’ve Learned About Monitoring Containers BY APURVA DAVE

Checklist: Comparing Container Image Registries BY RITESH PATEL

Executive Insights on the Containers BY TOM SMITH

Java Solutions Directory

Diving Deeper into Containers

Glossary

3

4

8

11

12

16

20

24

28

32

36

39

42

44

48

49

DEAR READER,
In 1955, a North Carolina businessman named Malcom P. McLean

came up with a simple yet ingenious idea. He realized that it would

be much easier to have a standardized container that could be moved

directly from a trailer or train into a ship without unloading its content,

thus improving transportation efficiency, reliability, and cost, and also

reducing cargo theft. He bought a steamship company and started a

revolution. 60 years later, most of the world’s goods travel this way.

Today, a new type of container is revolutionizing the way we build,

ship, and deploy applications, but unlike its physical namesake, these

virtualized containers were not the invention of a single man. The ideas

behind it started as early as 1979, with the introduction of the chroot

system call in Unix V7, a primitive way of process isolation through

changing its root directory to a new location in the filesystem. Two

decades later, FreeBSD Jails was introduced, and it was probably the

first truly isolated virtualization mechanism. Many others followed,

such as Linux VServer, Solaris Containers, Open Virtuozzo, Process

Containers, LXC, Warden, etc.

All this evolution in the virtualization space led to Docker taking the

world by storm in 2013. It didn’t just happen because Docker was an

improved virtualization technology, but because it was an entire set of

tools that allowed developers to create and run application containers

very quickly, which was the big missing piece of the puzzle. Docker

Hub was also a significant evolution, providing a centralized repository

of thousands of images that everyone could use as either a base to

develop their containers or as part of their application infrastructure.

However, Docker is not alone in this space. All the big names are in

on it, as well as companies that own alternative solutions. The good

news is that they are not trying to develop competing technologies,

but instead, they are cooperating with the goal of developing industry

standards for both the format and runtime software of containers on

all platforms. This spirit of collaboration was spurred by the Open

Container Initiative (OCI), established by Docker in 2015 who donated

5% of its code base to help jump start it. Even former competitors like

CoreOS and VMware are participating.

This way, all those organizations can focus their time and resources

on developing the tools required to support the additional challenges

brought in by the containerized world, such as container orchestration,

management, security, logging and monitoring, or routing and

networking.

In this guide, we want to show you what the revolution is, what

major problems the container technology has solved, and what new

challenges it has produced. We’ll show you the current solutions for

those problems, as well as a glimpse of what the future has in store.

We believe you’ll enjoy it and find it useful, whether you are new to

application containerization, or you’re already a field expert.

Thank you for reading it, and thank you to everyone who contributed

to it. Happy reading.

BY HERNANI CERQUEIRA
DISTINGUISHED ENGINEER, DZONE

PRODUCTION
Chris Smith
DIRECTOR OF PRODUCTION

Andre Powell
SR. PRODUCTION COORDINATOR

G. Ryan Spain
PRODUCTION PUBLICATIONS EDITOR

Ashley Slate
DESIGN DIRECTOR

Billy Davis
PRODUCTION ASSISSTANT

MARKETING
Kellet Atkinson
DIRECTOR OF MARKETING

Lauren Curatola
MARKETING SPECIALIST

Kristen Pagàn
MARKETING SPECIALIST

Natalie Iannello
MARKETING SPECIALIST

Miranda Casey
MARKETING SPECIALIST

Julian Morris
MARKETING SPECIALIST

BUSINESS
Rick Ross
CEO

Matt Schmidt
PRESIDENT

Jesse Davis
EVP

Gordon Cervenka
COO

SALES
Matt O’Brian
DIRECTOR OF BUSINESS DEV.

Alex Crafts
DIRECTOR OF MAJOR ACCOUNTS

Jim Howard
SR ACCOUNT EXECUTIVE

Jim Dyer
ACCOUNT EXECUTIVE

Andrew Barker
ACCOUNT EXECUTIVE

Brian Anderson
ACCOUNT EXECUTIVE

Chris Brumfield
SALES MANAGER

Ana Jones
ACCOUNT MANAGER

Tom Martin
ACCOUNT MANAGER

EDITORIAL
Caitlin Candelmo
DIRECTOR OF CONTENT AND
COMMUNITY

Matt Werner
PUBLICATIONS COORDINATOR

Michael Tharrington
CONTENT AND COMMUNITY MANAGER

Kara Phelps
CONTENT AND COMMUNITY MANAGER

Mike Gates
SR. CONTENT COORDINATOR

Sarah Davis
CONTENT COORDINATOR

Tom Smith
RESEARCH ANALYST

Jordan Baker
CONTENT COORDINATOR

Anne Marie Glen
CONTENT COORDINATOR

Special thanks to our topic
experts, Zone Leaders,
trusted DZone Most Valuable
Bloggers, and dedicated
users for all their help and
feedback in making this
guide a great success.

TABLE OF CONTENTS

Want your solution to be featured in coming guides?
Please contact research@dzone.com for submission information.

Like to contribute content to coming guides?
Please contact research@dzone.com for consideration.

Interested in becoming a dzone research partner?
Please contact sales@dzone.com for information.

mailto:research%40dzone.com?subject=
mailto:research%40dzone.com?subject=
mailto:sales%40dzone.com?subject=

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

3

BY MATT WERNER
PUBLICATIONS COORDINATOR, DZONE

In 2013, seemingly overnight, Docker caught the imagination

and attention of the software development world. Since

then, competitors have arisen, new tools to make the most

of containers have been developed, and the open source

community around the technology has been booming.

Containers have been the subject of fascination at almost every

tech conference since, particularly at DevOps-focused events,

where their benefits for testing, environmental consistency,

and faster time-to-market have been discussed by hundreds of

different speakers from hundreds of different backgrounds. For

a technology that’s so recently entered the spotlight and has

gotten so much attention, professionals have to ask: are they

worth the endless hype and praise?

It’s clear that containers are here to stay, at least for a while,

and it’s time to see how containers have been adopted by the

software developers in DZone’s audience. To learn about the

benefits and challenges of using containers, along with the

tools that they used to work with them, DZone asked over 800

software developers and IT professionals to share the details of

their container journeys. In our largest guide yet, we’ve asked

notable members of the DZone community to share their advice,

stories, and opinions on the space as well.

A NEW CHALLENGE IS APPROACHING
DATA 70% of respondents found refactoring or re-architecting

legacy apps to be a very or moderately challenging aspect of

adopting containers. Lack of developer experience was cited

as challenging by 68% of respondents, and 64% mentioned the

difficulty of ensuring application and network security.

IMPLICATIONS Most of the challenges around adopting

containers stem from how relatively new standalone container

management technologies like Docker are. Implementing

containers into existing systems and training developers on how

to use them can take a significant amount of time and effort.

Not only that, but teaching developers how to develop secure

applications is already a challenge, and adding containers to the

mix only complicates the process more.

RECOMMENDATIONS First, don’t feel like you need to reinvent the

wheel for all of your existing applications. Containerizing legacy

apps may not be necessary right at this moment depending on

the quality of the application, its necessity to the business and

its customers, and other priorities on the team, so don’t feel

that adopting Docker for one project means you have to adopt

it for every project. Spend time developing new applications

for containers first. Second, security will improve the more

developers adjust to planning their builds around security

testing and writing secure code. Third, the best way to overcome

a lack of experience is to practice in your spare time, as we’ll

elaborate below…

PRACTICE MAKES PERFECT
DATA 35% of developers who use containers in personal projects

find refactoring challenging, compared to 43% who do not

use containers in personal projects. 26% of those working

on personal projects find developer experience a hindrance

compared to 33% who don’t, and 18% of those who use

containers in personal projects find security to be difficult,

compared to 22% who don’t. A majority of respondents use

containers in personal projects (55%).

IMPLICATIONS While all of these factors were considered some

of the biggest challenges facing container adoption, those who

use containers in their personal development do not consider

them to be as difficult, suggesting that using these technologies

outside of the office increases familiarity with the tools that can

benefit the workplace.

RECOMMENDATIONS If you’re finding it difficult to introduce or

use containers in your work place due to any of the challenging

factors previously mentioned, it may be worth it to install

Docker on your home machine and try using it by yourself.

The knowledge you can pick up from learning technologies on

your own can cross over to your workplace and help teach and

inspire your team to adopt containers.

WAS IT WORTH IT?
DATA Container users find that the greatest benefits containers

provide are environmental consistency (63%), followed by faster

deployment (56%), portability (54%), and scalability (53%). Those

who are currently evaluating containers expect similar benefits

(64%, 56%, 51%, and 48%, respectively).

IMPLICATIONS A majority of developers who use containers have

found that they offer significant benefits for their application’s

health as well as their development process. It seems that

those evaluating containers are more cynical about whether

containers can truly improve portability and scalability. Several

of these benefits, particularly environmental consistency and

faster deployment, also improve DevOps processes. 40% of those

whose organizations have adopted containers believe they have

achieved Continuous Delivery.

RECOMMENDATIONS For those who believe adopting containers

will benefit their organizations, applications, and processes,

adoption should move forward, as the numbers are very

consistent between those who are using vs. those who

are evaluating containers. Those who are trying to achieve

Continuous Delivery may also find that containers bring them

closer to this ever-elusive goal.

Executive
Summary

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

4

BY G . RYAN SPAIN
PRODUCTION COORDINATOR, DZONE

DEMOGRAPHICS
811 software professionals completed DZone’s 2017

Containers survey. Respondent demographics are as follows:

•• 36% of respondents identify as developers or engineers;

20% identify as developer team leads; and 16% identify as

architects.

•• The average respondent has 14.5 years of experience as

an IT professional. 60% of respondents have 10 years of

experience or more; 20% have 20 years or more.

•• 45% of respondents work at companies headquartered

in Europe; 32% work in companies headquartered in

North America.

•• 17% of respondents work at organizations with more

than 10,000 employees; 21% work at organizations

between 1,000 and 10,000 employees; and 24% work at

organizations between 100 and 1,000 employees.

•• 83% develop web applications or services; 55% develop

enterprise business apps; and 26% develop native

mobile applications.

TOOLS OF THE TRADE
It should come as no surprise at this point that Docker is

the most dominant single tool in the containers ecosystem

at the moment. 92% of survey respondents who work in

organizations that use container technologies said their

organization uses Docker, followed far behind by Docker

Enterprise at 12%, and LXC at 4%. However, there are plenty of

other technologies in the ecosystem to discuss. For container

orchestration/management, the spread between tools is much

more even. 35% of respondents working at organizations

that use containers said their organization uses Kubernetes,

while 32% said they use Docker Swarm. In addition, 24% of

the respondents who said their organization uses one of these

said they use both. Amazon ECS was also a contender for

orchestration/management tools, with 26% of respondents

reporting that their organizations use it. For container

operating systems, CoreOS Container Linux was most popular

choice at 26%, with boot2docker close behind at 20%, though

26% of respondents weren’t sure what OS their organization is

using for their containers. OpenShift was the most popular PaaS

for containers at 18%, and Cloud Foundry was next at 12%, but

47% of all respondents at container-using organizations said

they don’t use a PaaS at all.

ALL ABOUT THE BENEFITS
Using containers can have many benefits depending on how

they are being used and what they are being used for. We

asked respondents what benefits they saw from containers

in their organization: 63% said that containers greatly

benefited environment consistency, 56% said that they greatly

benefit faster deployment, 54% said that they greatly benefit

portability, and 53% said they greatly benefit scalability. Those

Key
Research
Findings

 Does your organization currently use container
technologies?

 Benefits to the organization expected/received
from containers

23

42

25

7
2

My organization is
evaluating container
technologies

Yes, my organization
currently uses
container technologies

No, my organization
is not using container
technologies

Not applicable

Not sure
0

10

20

30

40

50

60

70

Environment
Consistency

ORGANIZATION USES
CONTAINERS

ORGANIZATION IS
EVALUATING CONTAINERS

Faster
Deployment Portability Scalability

63 64 56 56 54 51 53 48

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

5

working at organizations still evaluating containers said they

expected these great benefits in these areas at very similar

rates: 64% for environmental consistency, 56% for faster

deployment, 51% for portability, and 48% for scalability.

CONTAINER COMPLICATIONS AND CONCERNS
The benefits of containers, however, can be offset by challenges

that they invoke. Respondents from organizations that use

containers found that refactoring or rearchitecting legacy

applications was a major challenge with containers —

70% of these respondents said this was either “very

challenging” or “moderately challenging.” 68% of these

respondents found lack of developer experience with

container technologies challenging; and 64% said ensuring

application and network security was either very challenging

or moderately challenging. However, while those working at

organizations evaluating container technologies said they

expect the same top three challenges, their percentages

were significantly higher. 86% expect that refactoring

or rearchitecting will be a challenge, 80% expect lack of

development experience will be a challenge, and 75% expect

that ensuring security will be a challenge.

A PIECE OF THE PUZZLE
The container ecosystem is just one moving part of the

IT landscape, and it impacts and is impacted by other

moving parts. For example, containers and microservices

architectures are two such pieces that affect one another. We

found that 50% of total respondents said their organizations

had adopted microservices, while 37% said no (11% were

not sure and 2% said they were not applicable). Of the

respondents who said their organization uses containers,

68% said their organization has adopted microservices; of

those working for container-evaluating organizations, 52%

said their organization had adopted microservices; and for

the respondents who said their org doesn’t use containers,

26% said they had adopted microservices. The belief that

an organization had achieved Continuous Delivery also

varied between respondents based on container usage. 40%

of respondents at container-using organizations said they

believed they had achieved CD, versus 28% for container-

evaluators and 23% for non-container-users. Responses on

deployment speeds were affected as well; overall, 25% of

respondents said their organization performed on-demand

deployments (multiple times a day), but 36% of those at

organizations using containers said they deploy on-demand,

compared to 15% of those evaluating containers and 19% of

those not using containers.

OFF THE CLOCK
We found that whether or not a developer said they use

containers for personal development projects affected their

answers on how they felt about containers, as well as how

they developed overall. First, those working at organizations

that use containers were much more likely to say they use

containers for their own projects: 69% of these respondents

use containers for personal dev projects, compared to 56%

who work at companies evaluating containers and 37%

who work at companies that do not use containers. Those

respondents who do use containers for personal projects

were less likely to find the top container challenges discussed

earlier “very challenging.” For example, 35% of personal

container users thought refactoring/rearchitecting legacy

apps was very challenging, while 43% of those who don’t

use containers in their own projects thought the same.

Respondents who said they are learning and keeping their

skills up to date by participating in developer community

activities were overall more likely to use containers in their

own projects: 75% of respondents who contribute to open

source projects (14% of overall responses), 65% of respondents

who attend meetups (29% overall), and 63% of those who

attend conferences and workshops (40% overall) said they use

containers in their own projects.

 Challenges to the organization expected/presented
from containers

 Impacts on microservices, CD, and deployment

Organization uses
containers: Very

challenging

Organization is
evaluating containers:

Very challenging

Organization uses
containers: Moderately

challenging

Organization is
evaluating containers:

Moderately challenging

REFACTORING/
RE-ARCHITECTING
LEGACY APPLICATIONS

LACK OF DEVELOPER
EXPERIENCE WITH
CONTAINERS

ENSURING
APPLICATION AND
NETWORK SECURITY

0 10 20 30 40 50

37
28
19

50
42
33

33
40
44

36
38
42 Organization is

evaluating containers
Organization uses

 containers
Organization does
not use containers

ORGANIZATION
HAS ADOPTED
MICROSERVICES

BELIEVES
ORGANIZATION
HAS ACHIEVED CD

ORGANIZATION
DEPLOYS ON
DEMAND

0

10

20

30

40

50

60

70

68 40 36 52 28 15 26 23 19

SPONSORED OP IN ION

Twistlock.com
TO LEARN MORE, VISIT...

VULNERABILITY MANAGEMENT
Precise controls to detect and prevent
vulnerabilities before they reach production

RUNTIME DEFENSE
Automated, scalable active threat protection
and cloud native application firewall

COMPLIANCE
Extend and enforce your corporate compliance
across your container environment

THE MOST COMPREHENSIVE
CONTAINER SECURITY SOLUTION

https://www.twistlock.com/?utm_campaign=DZone&utm_source=Advertisement&utm_medium=Digital%20Ad

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

7

Containers make it possible to adopt a fundamentally new

approach to security. Rather than relying solely on perimeter-

level defenses and waiting for intrusion attempts to start

before reacting, you can minimize security vulnerabilities

within your production environment and prevent intrusions

before they even begin.

The small surface area of containers minimizes the

opportunity for attackers to find a vulnerability to exploit.

The transparency of containerized applications, combined

with environment parity, makes it much easier for your

security experts to become part and parcel of the software

delivery process and identify potential security gaps at

any layer (within application code itself, in environment

parameters, or in the host server) before software is

released to production. Environment parity also helps to

ensure that software that is deemed secure during pre-

production testing can be trusted to remain secure once it

is in production.

That’s not all. In addition to helping to prevent

opportunities for attack, microservice architectures and

containers also enable organizations to be proactive about

responding to attacks once they are underway. In the old,

reactive world of security, a response to an intrusion would

involve assessing how the attack occurred, then trying to

figure out what hole facilitated it. Under the new, proactive

paradigm, organizations can mitigate attacks instantly.

Using immutable infrastructure and machine learning,

security policies can be updated constantly so that attacks

are detected in real time. Responses can also be automated

in order to stop an intruder in their tracks, rather than

waiting until the damage is done to shut them out.

WRITTEN BY JOHN MORELLO
CTO, TWISTLOCK

How Containers

Can Revamp Your

Approach to Security

Twistlock protects today’s applications from tomorrow’s threats via advanced
intelligence, machine learning, and automated policy enforcement.

Twistlock Enterprise Edition

CASE STUDY
ClearDATA provides secure, managed services for healthcare and life
sciences on AWS. ClearDATA customers must comply with significant
regulatory requirements, have huge amounts of sensitive data to
manage, and customers demanding better data collaboration.

In order to help their clients deliver solutions faster, ClearDATA
wanted to deliver a new set of product and service offerings to allow
health organizations to run Docker containers using AWS’ EC2
Container Services (ECS).

Using Twistlock in their environment has enabled ClearDATA
to monitor and enforce compliance requirements, check for
vulnerabilities from development through production, and automate
runtime defense that scales within the ECS environment.

STRENGTHS

NOTABLE CUSTOMERS

• 	 Runtime Defense: Automatically prevent next gen
attacks against containers and cloud native apps

• 	 Vulnerability Management: Detect and prevent
vulnerabilities before they make it to production

• 	 Compliance: Extend regulatory and corporate
compliance into your container environment

• 	 Cloud Native Application Firewall: Automatically
protect your apps in a ‘software defined’ manner

• 	 Access Control: Define new or extend existing
policies and enforce them across your container
stack

• 	 ClearDATA

• 	 Aetna

• 	 Booz Allen Hamilton

• 	 AppsFlyer

CATEGORY
Container and Cloud
Native application
security

NEW RELEASES
6x year

OPEN SOURCE
No

WEBSITE twistlock.com BLOG twistlock.com/blogTWITTER @twistlockteam

SPONSORED OP IN ION

https://www.twistlock.com/2017/07/06/ultimate-guide-container-security/
https://www.twistlock.com/2017/07/06/ultimate-guide-container-security/
https://www.twistlock.com/use-cases/container-runtime-defense/
https://www.twistlock.com/2017/03/20/microsecurity-for-microservices-2/
https://www.twistlock.com/resources/proactive-security-paradigm/
https://www.twistlock.com/resources/proactive-security-paradigm/
https://www.twistlock.com/2017/05/31/twistlock-uses-machine-learning/
https://www.twistlock.com/?utm_campaign=DZone&utm_source=Advertisement&utm_medium=Digital%20Ad
https://www.twistlock.com/?utm_campaign=DZone&utm_source=Advertisement&utm_medium=Digital%20Ad
https://www.twistlock.com/blog/
https://www.twistlock.com/blog/
https://twitter.com/twistlockteam

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

8

CONTAINER DEVELOPMENT VERSUS
PRODUCTION

In The Mythical Man Month, Fred Brooks estimates
that it takes nine times the effort to create a
complete software system as it does to create
just the core software functionality. This rule
of thumb certainly applies to a containerized
system architecture, which is much more
complex than just a simple application running
in a container.

To design a container architecture, we need
to gain a deeper understanding of how container
infrastructure works, especially in three
main areas:

•• Multiple containers: How does our approach
change when our system consists of multiple
containers?

•• Multiple hosts: How can we distribute our
containers across multiple hosts without
having to explicitly manage individual
container or host instances?

•• Networking: How can we connect a set of
containers while also providing the same
isolation we expect when we run containers
for separate applications?

It might be tempting to avoid this complexity by just

bundling our system components into a single uber-

container. Unfortunately, this solution eventually hits

limits. First, in order to scale a system efficiently, we

usually need to scale different parts in different amounts.

For example, we generally need many more web server

instances to handle serving content to users than we need

database instances for those web server instances to use.

Second, we still have to contend with sharing state across

those multiple uber-containers. Third, we miss out on

some of the isolation advantages with an uber-container,

such as avoiding a failure in one component rippling into

other components.

So it appears that we are stuck running multiple

containers. Indeed, the usual approach is the microservice

architecture, where each discrete piece of our system gets

its own container so that it can be scaled independently,

upgraded independently, and developed independently.

And we also need multiple hosts in order to create a highly

available system because servers are fleeting. So we need

to run lots of instances of lots of container images, spread

across multiple hosts but networked together. Here’s

how that is accomplished. I’ll be using the Docker and

Kubernetes ecosystems for examples, but the core issues

arise no matter what technology is used.

CONTAINER ORCHESTRATION

Running multiple linked containers in Docker can be

done in a shell script. Here’s the one I use for running a

development instance of Atlassian JIRA:

Introduction to Highly
Available Container
Applications

BY ALAN HOHN
LM FELLOW, LOCKHEED MARTIN ROTARY AND MISSION SYSTEMS

Running a highly available
containerized application with
failover and load balancing requires
different tools from Docker at
development time.

It takes a lot of work to make
containerized networking easy.

Container orchestration is essential
for scaling and networking issues
that arise with highly available
applications in containers.

The two main frameworks for
container orchestration have
similar approaches to provide an
environment for containers.

01

02

03

04

Q U I C K V I E W

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

9

#!/bin/bash
docker run --name postgres -e POSTGRES_PASSWORD=password \
 -v $(pwd)/pgdata:/var/lib/postgresql/data -d postgres:9.4
docker run -it --name jira --link postgres:postgres \
 -p 8080:8080 -v $(pwd):/mnt jira

But this approach is missing essential features. First, there

is no built-in mechanism to restart any failed containers.

Second, this solution is tied to a specific host and can’t

easily be distributed to multiple hosts or scaled to multiple

instances. Third, the script requires close reading to figure

out what is going on.

This is why container orchestration exists; it addresses all

of these issues and more. A simplified Docker Compose file

for the same purpose looks like this:

version: ‘3’
services:
 postgres:
 image: postgres:9.4
 jira:
 image: jira:latest
 links:
 - postgres:postgres
 ports:
 - “8080:8080”

A Kubernetes Replication Controller definition would look

much the same. Both are much more readable than our

Bash script. Also, by allowing an orchestration engine to

run the containers, we can restart failed containers, scale

to multiple instances, and distribute our application across

multiple hosts.

CONTAINER NETWORKING

Scaling to multiple instances and distributing across

multiple hosts raises important issues with networking.

On a single host, it is easy to understand how links work

between containers. Docker gives each container its

own set of virtual network devices. These devices are all

connected to some software-defined network, and Docker

determines the IP address a container gets. So a link

between containers is ultimately just an entry in /etc/hosts

that ties a name to the correct IP address.

However, once we start using a container orchestration

engine, the situation gets more complicated. First, there

might be multiple instances of each container, so the

orchestration engine must apply a unique name to each.

Second, these instances may come and go. To allow for a

more dynamic way for containers to find each other, both

Docker and Kubernetes provide a Domain Name Service

(DNS) server that is automatically updated as instances

come and go. Where there are multiple instances, the DNS

server either provides the IP address for one, or sends the

whole list.

CROSSING HOSTS

Multiple software-defined networks allow for isolation

if we run multiple sets of containers. DNS provides

discovery of container instances on those software-defined

networks. But in order to spread our containers across

hosts, we need one more feature, which is connecting

a software-defined network on one host with the right

software-defined network on the other host.

Of course, the container orchestration engine places

the software-defined networks on the same subnet and

avoids duplicate IP addresses. But any switches and

routers between the hosts are going to get confused by

container IP addresses. So the host encapsulates the

traffic inside messages that look like normal host-to-

host communication. There are multiple ways to do this,

but the most popular is Virtual Extensible Local Area

Network (VXLAN).

VXLAN works by sending User Datagram Protocol (UDP)

packets on port 4789 between hosts. The receiving host

unpacks and sends the contents to the correct container.

As a result, the container appears to be directly connected

to another container, even when those containers are

running on separate hosts.

Here’s an example Wireshark capture from a Docker

Swarm environment. One container is connecting to

another on port 80.

To allow for a more dynamic

way for containers to find

each other, both Docker and

Kubernetes provide a Domain

Name Service (DNS) server

that is automatically updated

as instances come and go.

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

1 0

You can see the TCP port 80 connection attempt (blue

bar). This is inside a regular IP packet inside an Ethernet

message. This whole Ethernet message is then hidden

inside a VXLAN message that travels over UDP on the

host network.

So now our container orchestration environment can

deploy a set of containers spread across many hosts

and give the software in these containers access to each

other over what looks like a completely independent

private network.

EXPOSING SERVICES

We’re still missing one piece in order to construct a typical

system. We need at least one thing to be accessible from

outside the container network. With “docker run”, this just

meant exposing a port. Docker opens this port on the host,

and all traffic to it goes to a port on the container.

Both Docker Swarm and Kubernetes support a similar

approach in an orchestration environment. However,

there is extra complexity because there may be multiple

instances across multiple hosts. So the orchestration agent

on every host must listen on all exposed ports used by

any container, then route the traffic to a host running an

instance of that container.

This way of doing things has the limitation that we

must either communicate the port to clients (which is

complex) or find a free port (which removes one of the

advantages of containers: lack of resource conflicts with

other applications). One alternative is to allocate an IP

address to a service that is accessible from outside the

orchestration environment. This is currently possible with

Kubernetes, though it requires some integration with the

external IP provider. Docker Enterprise Edition has an

alternate approach specific to HTTP that adds an entry in

DNS that routes to an HTTP load balancer. The HTTP load

balancer selects the server based on the host identified in

the HTTP request.

ARCHITECTURAL IMPLICATIONS
A typical containerized system has lots of instances of

services. These instances start and stop at any time. Some

services are exposed to the outside world. So how do

we locate a service? From the client side, there are two

solutions. First, we can get the address of one instance

and start our conversation with that one. Second, we can

get a list of instances and either pick one or load balance

across multiple instances. The first approach might not be

as efficient, but it does not require any special logic in

the client other than the robustness to handle losing its

server connection.

In the service, we also have two main approaches. First,

we can have one instance handle all of the client traffic

itself, with other instances just acting as backup. Second,

we can have all of the instances sharing the work as much

as possible. The second approach scales better, but is of

course much more complex, especially if the service is

storing data that needs to be synchronized.

For a containerized microservice architecture, the main

appeal is scaling across many instances. So we would

like to have clients and services that understand load

balancing. However, in real systems, clients such as

browsers don’t know about our highly distributed, load

balanced approach. So at some level, we have to use both

these approaches: a single front-end (with backup) that

dispatches work, and lots of load balanced services that do

the heavy lifting. Not surprisingly, both Docker Swarm and

Kubernetes are designed around this pattern.

Of course, this article is an introduction to a very complex

topic, but hopefully it is a useful foundation that makes it

clear why container orchestration is important and why

the two main implementations offer so many of the

same features.

Alan Hohn is a Fellow with Lockheed Martin Rotary and
Mission Systems. While most of his background is in Java,
especially Java EE and OSGi, lately he’s been doing a great
deal of work in DevOps and with containerized architectures
and applications, especially the applicability of containers to
dynamic, complex military applications. This has also meant
learning Go, which is his new favorite language.



The orchestration agent on every host

must listen on all exposed ports used by

any container, then route the traffic to a

host running an instance of that container.

https://www.linkedin.com/in/alan-hohn-5a3b3527/

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

1 1

STEP 1: INSTALLING CANAL
The first open source project we’ll
install is Canal, an installer script for two
different open source projects: Flannel, an
open source networking solution to build
in scalable networking utilizing VXLAN-
based overlays; and Project Calico, an
open source networking and policy
isolation project from Tigera. Using Calico,
we’ll be able to set up policies to create
dynamic firewalls, which will enable us to
greatly reduce our infrastructure’s attack
surface (at least on layers 3 and 4, i.e.
filtering based on IP address and port).

Canal will install both of these projects and
configure them to use Flannel’s networking
and Project Calico’s isolation policies.

CANAL REQUIREMENTS:

•	 Kubernetes command-line tool has been
installed (kubectl)

•	 Kubernetes cluster is configured to
provide serviceaccount tokens to pods

•	 Kublets have been started with

--network-plugin=cni and have

--cni-conf-dir and --cni-bin-

dir properly set

•	 Controller manager has been started

with --cluster-cidr=10.244.0.0/16

and --allocate-node-cidrs=true

INSTALLING CANAL:

To install Canal for Kubernetes 1.6, run the
following commands via kubectl:

$ kubectl apply -f https://
raw.githubusercontent.com/
projectcalico/canal/master/k8s-
install/1.6/rbac.yaml

$ kubectl apply -f https://
raw.githubusercontent.com/
projectcalico/canal/master/k8s-
install/1.6/canal.yaml

For additional installation guidelines, visit

github.com/projectcalico/canal.

STEP 2: INSTALLING ISTIO
With Istio, we’ll be able to add in numerous
additional features (such as fault-
injection, in-memory rate limiting, and log
collection), while providing security and

load balancing on Layers 5 and 7.

ISTIO REQUIREMENTS:

•• Kubernetes command-line tool has
been installed (kubectl)

•• Access to a Kubernetes cluster

INSTALLING ISTIO:

With Kubernetes installed, installing
Istio is as easy as downloading and
extracting the file, ensuring you have the
correct RBAC configuration for Istio, and

installing via kubectl.

1.	 Download and extract the installation

file: curl -L https://git.io/

getIstio | sh -

2.	 Add the istioctl client to your PATH:

export PATH=$PWD/bin:$PATH

3.	 Check Role-Based Access Control
(RBAC) Settings (if error, continue to

step 4, otherwise visit istio.io/docs/

tasks/installing-istio.html for steps to
configure RBAC)

4.	 Install Istio

a.	 To install Istio with Auth module

(additional security layers): kubectl

apply -f install/kubernetes/

istio-auth.yaml

b.	 To install Istio without the Auth

module: kubectl apply -f install/

kubernetes/istio.yaml

STEP 3: CUSTOMIZING AND GOING
FURTHER
To learn more about each of these projects

and how to further customize and setup

your secure network, visit the appropriate

project’s documentation:

Flannel: coreos.com/flannel

Calico: projectcalico.org

Istio: istio.io

Once you have Canal and Istio deployed,

you will have the tools available to build

a secure Kubernetes environment for

your applications.

You can also learn about other tools

and additional resources for Kubernetes

networking and network policy here.

While Kubernetes has quickly become the leading container orchestrator by

greatly reducing many of the challenges of deploying, scaling, and managing

containers, it still leaves developers with a basic challenge: building a secure,

scalable, and resilient network for containers to be deployed on.

Not only is it vital that your network be scalable, but it’s just as important that it

is built to be secure to prevent outside breaches and prevent internal breaches

by building on isolation policies (or limit the attack surface once a malicious user

is inside your network).

This approach means focusing on several different layers of the network (from

L3 to L7) to ensure that a breach on any microservice, container, node, or host is

quickly isolated and limited.

One approach to provide multi-layered networking and security for Kubernetes

is to use Canal (Flannel and Project Calico) with Istio for a microservices mesh.

Secure
Networking
for
Kubernetes

BY MIKE STOWE

DIRECTOR OF COMMUNITY AT TIGERA

https://github.com/projectcalico/canal
https://istio.io/docs/tasks/installing-istio.html
https://istio.io/docs/tasks/installing-istio.html
https://coreos.com/flannel
https://www.projectcalico.org
https://istio.io/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
 https://kubernetes.io/docs/concepts/cluster-administration/networking/ and https://kubernetes.io/docs/concepts/services-networking/network-policies/.

https://github.com/projectcalico/canal
https://coreos.com/flannel

$ dctl cluster create my-cluster [args]

$ dctl network create my-network [args]

$ dctl volume create my-volume [args]

$ kubectl create -f my-deployment.yaml

//done. taking rest of week off.

Why take months when you can
get it done in 15 minutes?

Learn more at diamanti.com

ENTERPRISE CONTAINER
STRATEGY
Start to finish in 15 minutes

SPONSORED OP IN ION

http://get.diamanti.com/dzone_containers

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

1 3

“Diamanti lets us focus on building and deploying

unique media offerings faster than ever.” -NBCUNIVERSAL

Containers are taking off with developers, but moving the

application from development on a laptop to production

in the datacenter is a huge IT challenge. The challenges

include planning, tool selection, integration into the

network, persistent storage, and everything else it takes

to run the infrastructure after day one.

Why? Containers break legacy networking and storage

infrastructure and create time and labor-intensive

considerations for operators:

Which Software stack?  Choosing a reliable, efficient,

interoperable set of tools is daunting.  There are dozens of

container technologies with more emerging by the day.  

What is my network model?  Most enterprises going the DIY

route immediately struggle with container networking’s

concepts of port mappings, overlays, and requirements

of L3 all the way to the endpoint, with a host of

interoperability challenges.

How do I provide persistent storage? Legacy scale-up

storage arrays don’t fit modern scale-out containers.

Delivering performance of databases and key value

stores at scale to containers has ops teams scrambling to

deliver persistent storage.

WRITTEN BY JEFF CHOU
 CEO, DIAMANTI

The Challenges of

Moving Containers From

Developer Laptops Into

Production

Purpose-built bare metal container platform for moving your applications
from development to production.

Diamanti Container Platform

CASE STUDY
What if you could reduce your container production deployment

cycles from a dedicated team of specialized engineers and a 9-12

month schedule to just 15 minutes and a single administrator?

With Diamanti, you can. We give you a reliable, performant,

simple container strategy.

Diamanti is the first container platform with plug and play

network and persistent storage that seamlessly integrates the

most widely adopted software stack - standard open source

Kubernetes and Docker - so there is no vendor lock-in. QoS on

network and storage maximizes container density. 24x7 support

also allows you to focus on building applications instead of

building and supporting the infrastructure.

STRENGTHS
• 	 No vendor lock-in, seamless integration with

Docker and Kubernetes

• 	 Easy plug-and-play with your existing network

• 	 Bare metal containers… no hypervisor tax!

• 	 24x7 full stack support

• 	 Up to 8x infrastructure consolidation reported
by Diamanti users

• 	 3-5x performance gain

CATEGORY
Container Platform

NEW RELEASES
Quarterly

OPEN SOURCE

Yes

WEBSITE diamanti.com BLOG diamanti.com/blogTWITTER @diamanticom

SPONSORED OP IN ION

https://www.diamanti.com
https://www.diamanti.com
https://www.diamanti.com/blog/
https://www.diamanti.com/blog/
https://twitter.com/diamanticom

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

1 4

We can all acknowledge that containers are

gaining traction and rapidly becoming a

common development tool. Containers make

it easy to download and run pre-built images

of the software components we use every day

in our development and test environments

(and maybe even in production environments

if we are really cutting edge). But how well-

integrated are containers in our own build and

deployment systems? It is challenging to ensure

consistency between our development and

test environments. And the local development

environments our developers are running can

be even harder to verify to ensure the correct

versions of our applications and services. And

most importantly, we have to ensure that the

testing is being performed against the exact same

code and environment that will eventually be

deployed to production.

If we think back to when we were first developing centralized

build systems, we dealt with many of these same issues. We

wanted to ensure everyone was using the same X.Y.Z version

of an artifact, and that what was compiled into the artifact

was exactly what was checked into our source control

repository. Centralized build systems solved many of these

problems and made sure that only code from source control

repositories was compiled into artifacts. The artifacts were

then published to the central artifact repositories everyone

pulled from. This solution removed the need for individual

developers to compile all artifacts on their local machines,

share them via a central file share, or email them to their

co-workers. In addition, our developers only needed to build

and test the components of the system they were directly

working on.

The DevOps movement of the past decade then started to

address this for the rest of the environments our artifacts

were running in. These systems would be responsible for

everything else running in those environments beyond

the artifacts we are compiling. This controlled the version

of Java running on our systems, the Java Cryptography

Extension (JCE) policy files, the proper configuration files,

etc. It helped make sure our artifacts had the correct

version of all the other dependencies installed and set up

correctly in their runtime environment.

Maybe you are already using a configuration management

tool like Puppet, Chef, Ansible, etc. to set up and maintain

these dependencies on long-running hosts. These tools are

terrific and have greatly improved our ability to set up and

maintain long-running environments consistently. They

have also accomplished a major goal of the Infrastructure

as Code movement — ensuring that all of our configuration

is checked into source control and managed by a release

process just like our build artifacts (it is all checked in,

right?). But now we have a configuration tool that is likely

separate from our deployment process. Which means, now

Containers are the
New Build Artifact

BY TODD FASULLO
SOFTWARE DEVELOPMENT PROFESSIONAL, SMARTSHEET.COM

Containers are a convenient
mechanism for deploying software
artifacts with all of their necessary
dependencies bundled into them.

You can use your build system to
create container images and publish
them to a private container registry.
Once centralized, these images can
be used by any environment to run
the container.

Images can be versioned by using
image tags — this can include both
the artifact version and other base
image attributes, like the Java
version, if you need to deploy in
various permutations.

01

02

03

Q U I C K V I E W

https://en.wikipedia.org/wiki/Infrastructure_as_Code
https://en.wikipedia.org/wiki/Infrastructure_as_Code

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

1 5

we have to manage both a configuration management

system and the deployment process.

What if we evolved our thinking of what the build artifact

is? How about if we bundle the build artifact with the

runtime environment and everything it needs to run as a

stand-alone deployment artifact? Container images are a

perfect solution for this — we can bundle our artifacts and

all of the other dependencies into a single image. Our build

systems can create container images and push them to

a central container registry. Docker has their own open-

source private registry implementation, and many of the

existing artifact repositories like Artifactory and Nexus have

added the ability to manage Docker images. Once an image

is published to a container registry, we can then share and

deploy the exact same image to every environment — local

dev, QA, and production. Need to support multiple versions

of a runtime component like the Java Runtime Environment

(JRE)? We can build different container images for each of

our supported versions of Java. In Smartsheet’s case, we

have set up multiple base images for the different versions

of Java we currently run. To update from Java 8.0.121 to

Java 8.0.131, we switch our default image and generate new

container images from that specific version.

But hold on a second, you say. You are telling me to build

a single container image that can be deployed to any

environment? How do I set up environment-specific

attributes like database connection settings, secrets, etc?

Externalizing your configuration is already an important

aspect of building a proper Twelve-Factor App. Containers

provide a number of options for managing the external

configuration of the container image — we can mount files

or directories from the host, use environment variables,

access external configuration stores (database, Consul/

Vault), use the new Docker secrets feature, etc.

Storing data (log files, database data, etc.) is an obvious

challenge many quickly encounter when they first start

running containers. I’m sure you can find many articles

focused entirely on this topic. Simple solutions include

mounting directories from the host file system into the

container to store persistent data. As an example, a MySQL

server could mount the /var/lib/mysql directory (where the

data files are stored — NOT the executable files) from a host

folder. This still allows you to change the version of MySQL

you are running by stopping the container with the old

version and then starting the new version with the same

data directory.

Services with stateful data like databases are often a

lower priority for migrating to containers. Eventually, the

tools and ecosystem will better evolve to support them.

We are starting to see this with tools like Kubernetes

that expose persistent data primitives across clusters in

a cloud environment like Google Container Engine. Our

technologies will also evolve to better support containers

with cloud-native distributed data stores like CockroachDB.

If you agree that containers could be a useful deployment

artifact, you can start by generating them as part of

your build pipeline. Containers can easily be built with

command line tools that are easy to integrate into existing

build systems. At Smartsheet, we use a Jenkins build

environment that compiles artifacts and then executes

downstream jobs, which generate container images with

the build artifact. Each artifact is compiled using an array of

base container images. This generates a container image for

each supported version of Java, Tomcat, and other services

we want to be able to deploy it with.

These containers are then tagged with the version of

the build artifact, plus information about the base image,

to allow deployment of each container image. We also

tag images with easy defaults, so if a user wants to run

the current version of a container, they can use the

image <private registry>/servicefoo. For a specific

version of a build artifact with the default version of

Java, one would specify the image <private registry>/

servicefoo:1.5.1. For a specific version with a non-

default version of Java, they would use the image <private

registry>/servicefoo:1.5.1-java8u121.

In the words of a co-worker, containers are just like a

Go application — a statically linked image containing

everything we need to execute at runtime. Our container

registry provides a library of images that we can deploy to

any local dev, QA, or production environment. Just provide a

Linux kernel with a container runtime, and our application

will have everything it needs to run. To walk through a very

simple example, take a look at the Docker Container Java

Hello World GitHub example. After all, containers are the

new build artifact.

Todd Fasullo is a long time member of the Smartsheet
Engineering team, having joined in 2006 prior to the launch
of their very first offering. Most of Todd’s time is dedicated
to designing and scaling Smartsheet’s application to ensure
a seamless experience for each of Smartsheet’s 100,000 paid
accounts. When not improving the Smartsheet back-end
infrastructure you can find Todd improving development/build/
testing infrastructure which has been running on Docker since
early 2014 (originally on version 0.9). In his spare time you can
find Todd tooling around the Pacific Northwest mountains with his
family by bike, ski, or on foot.





https://github.com/docker/distribution
https://www.jfrog.com/artifactory/
https://www.sonatype.com/nexus-repository-oss
https://12factor.net/
https://docs.docker.com/engine/swarm/secrets/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://github.com/cockroachdb/cockroach#what-is-cockroachdb
https://github.com/smartsheet-samples/docker-java-hello-world
https://twitter.com/toddfas
https://www.linkedin.com/in/tfazz/

SPONSORED OP IN ION

https://sysdig.com/?dzone.com

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

1 7

More and more, companies are depending on their software

for revenue generation and differentiation. And in that case,

software running in production requires deep visibility for

monitoring, alerting, and troubleshooting to ensure a great

customer experience, high performance, and uptime.

Enterprises are moving to containers for the promise of faster,

more effective development that quickly creates more value in

software. The container movement promises developer agility,

software portability, and dynamic scaling of resources. They

also represent the building block for microservices, which in

turn promise more of these benefits.

Yet the operations of these environments get harder and more

complex, because microservices and containers break legacy

monitoring and analytics tools. These dynamic environments,

often built on black-box containers, need a different approach

to understanding how your application is doing.

How do you see not just containers, but the services they

comprise? How do you see inside your containers, to see how

your applications are performing? Can you actually determine

what your containers are doing?

“Sysdig is the first and only solution that is
purpose-built for container native monitoring
and troubleshooting.”

OUR SOLUTION:
Sysdig is the first and only solution that can natively monitor

any infrastructure and app, including container-based ones.

We are creating solutions delivering monitoring, alerting, and

troubleshooting in a microservices-friendly architecture. Our

open source Sysdig technology has attracted a community

of over a million developers, administrators, and other IT

professionals looking for deep visibility into systems and

containers. Learn more at sysdig.com

WRITTEN BY APURVA DAVÉ
VP MARKETING, SYSDIG

What’s Inside Your
Containers? Sysdig,
Purpose-built for
Containers

“The kernel-level approach that Sysdig uses is pretty powerful. We see everything, without

sidecar containers, even when Kubernetes moves things.” – BRIAN AZNER, DIR. ENG., MAJOR LEAGUE SOCCER

Sysdig Monitor

CASE STUDY
WayBlazer brings artificial intelligence to the travel industry. They

analyze travelers’ searches, yielding highly personalized travel

recommendations for customers.

Wayblazer runs AWS with EC2, Docker, and Kubernetes. They have

different Kubernetes prod, test, and project-specific namespaces that

they need to monitor, at a high level, then by service, infrastructure,

and application.

Sysdig has helped reduce costs and increase efficiency. Sysdig is the

out-of-the-box solution they wanted, built for container environments.

Once Sysdig was deployed and instrumented, it immediately started

bringing in tagging from Kubernetes and gathering metrics. Sysdig

provides the service, infrastructure, and application metrics they need

in one place and enabled them to visualize anything they want.

STRENGTHS

NOTABLE CUSTOMERS

• 	 ContainerVision: Deep, request‐level visibility inside

containers without invasive instrumentation.

• 	 Service-Oriented Performance Management: Measures

services, infra, & app performance

• 	 Application-Intelligent Monitoring: Auto-discover apps:

no plug-ins, no config

• 	 Trace-driven Troubleshooting: Dashboarding and alerts

integrated with deep troubleshooting.

• 	 Automatic leveraging of orchestration metadata

• 	 Comcast

• 	 McKinsey

• 	 UK Government

• 	 TD Bank

• 	 Major League Soccer

• 	 Cisco

CATEGORY
Container Monitoring

and Troubleshooting

NEW RELEASES
Continuous

OPEN SOURCE
Open source and

commercial solutions.

WEBSITE sysdig.com BLOG sysdig.com/blogTWITTER @sysdig

SPONSORED OP IN ION

https://sysdig.com/
https://sysdig.com/
https://sysdig.com/blog/
https://sysdig.com/blog/
https://twitter.com/sysdig

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

1 8

Application Routing
With Containers

BY CHRISTIAN POSTA
CHIEF ARCHITECT CLOUD APPLICATIONS, RED HAT

Understanding the challenges
and complexity when building
services architectures.

How a service mesh fits with
containers.

How a service mesh can help
you manage and operate your
services architecture.

01

02

03

Q U I C K V I E W

Containers have changed how we think about
building, packaging, and deploying our applications.
From a developer’s perspective, they make it
easier to package an application with its full set of
dependencies and reliably recreate that application
on another developer’s workstation. It also allows
us the more reliably deliver applications from dev
to test to production (possibly in a CI/CD pipeline).
Lastly, in this world of microservices, containers help
deliver microservices to production at scale. With
the move to cloud-native applications and services
architectures like microservices, we gain some
advantages in our deployment and management
infrastructure, but our applications need to be
designed with different principles in mind compared
to traditional design: design for failure, horizontal
scaling, dynamically changing environments,
etc. Interestingly enough, services implemented
with these considerations in mind invariably find
themselves dealing with more complexity in the
interactions between services than the services
themselves. Can containers help here?

COMPLEXITY HAS MOVED TO SERVICE
INTERACTION
First, we should decide what the problem is and how this

complexity in the interactions between services manifests

itself. Services will need to work with each other in a

cooperative way to provide business value and thus will

need to communicate. In these cloud architectures, this

communication will happen over the network. This is the

first source of complexity that traditional applications

with colocated components don’t usually have to confront.

Any time a service has to make a call over the network to

interact with its collaborators, things can go wrong. In our

asynchronous, packet-switched networks, there are no

guarantees about what can and will happen. When we put

data out onto the network, that data goes through many

hops and queues to get to its intended destination. Along

the way, data can be dropped completely, duplicated, or

slowed down. Moreover, these behaviors make it difficult to

determine whether our communication with our collaborators

is failing/slow because of the network or because the service

on the other end has failed/is slow. This can lead to unsafe

consequences, like services unable to deliver service to

their customers, collaborations partially succeeding, data

inconsistencies between services, and more. Related to

problems that occur because of network failure/degradation

(or perceived failure/degradation) are things like, how does

a service find and talk to its collaborators? How does it load

balance across multiple instances of its collaborators?

When we build these cloud-native services with containers,

we now need to account for the complexity introduced by

communication over the network. We need to implement

things like service discovery, load balancing, circuit breakers,

timeouts, and retries so that our services stay resilient in the

face of this uncertain network behavior. This sounds like a lot

of responsibility for our applications. We could create reusable

libraries to help with this. Indeed, that’s the approach many

of the big internet companies took. Google invested massive

engineering work to implement an RPC library that helps with

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

1 9

these things (Stubby, now gRPC). Twitter did as well with their

Finagle framework. Netflix was even nice enough to open

source their efforts with their Netflix OSS libraries like Ribbon,

Hystrix, and others. To make this work, we need to restrict our

frameworks and languages to only those for which we can

implement and maintain these cross-cutting concerns. We’d

need to re-implement these patterns for each language and

framework we’d like to support. Additionally, every developer

would need the discipline to apply these libraries and idioms

consistently across all the code they wrote. In many ways,

folks like Netflix had to write these tools because they had no

other choice; they were trying to build resilient services on top

of IaaS cloud infrastructure. What choices do we have today?

CONTAINER PLATFORMS
For basic service discovery and load balancing, we should

be able to leverage our container platform. For example, if

you’re packaging your application as Docker containers and

you’re using Kubernetes, things like load balancing and basic

service discovery are baked in. In Kubernetes, we can use the

“Kubernetes service” concept to define application clusters

(each instance running in a container or Kubernetes “pod”)

and assign networking (like virtual IPs) to these clusters. Then

we can use basic DNS to discover and interact with the cluster

of containers even if the cluster evolves over time (addition of

containers, etc).

SERVICE MESH FOR CONTAINERIZED SERVICES
What if we could implement these resilience concerns and

more across our services architectures without requiring

language and framework-specific implementations? That’s

where a “service mesh” fits into the picture. A service mesh

sits between our services and solves these issues without

having to use frameworks or libraries inside the application.

With a service mesh, we introduce application proxies that

handle communicating with other services on behalf of our

application. The application or service talks directly to the

proxy and is configured with appropriate timeouts, retries,

budgets, circuit breaking, etc. for communicating with

upstream services. These proxies can either be implemented

as shared proxies (multiple services use a single proxy) or

application-specific “sidecar” proxies. With a sidecar proxy,

the proxy is deployed alongside each instance of the service

and is responsible for these horizontal concerns; that is,

the application gains this functionality without having to

instrument their code directly.

Linkerd and Lyft Envoy are two popular examples of proxies

that can be used to build a service mesh. Linkerd is an open-

source project from startup Buoyant.io, while Envoy is an

open-source project from ride-hailing company Lyft. In a

container environment, we can implement sidecars by either

deploying the proxy in the same container as your application

or as a sidecar container if you can specify container-affinity

rules like with Kubernetes pods. In Kubernetes, a pod is a

logical construct that considers an “instance” to be one or

more containers deployed together. Implementing sidecar

proxies in Kubernetes becomes straightforward.

With these sidecar (or shared) proxies in place, we can reliably

and consistently implement service discovery, load balancing,

circuit breaking, retries, and timeouts regardless of what’s

running in the container. With containers, we abstract away

the details of the container for the purposes of uniform

deployment and management, and with a service mesh, we

can safely introduce reliability between the containers in a

uniform way. Since these application proxies are proxying

traffic, doing load balancing, retries, etc, we can also collect

insight about what happens at the network level between our

services. We can expose these metrics to a central monitoring

solution (like InfluxDB or Prometheus) and have a consistent

way to track metrics. We can also use these proxies to report

other metadata about the runtime behavior of our services,

including things like propagating distributed tracing to

observability tools like Zipkin.

Lastly, we can introduce a control plane to help manage these

application proxies across the service mesh. For example, a

newly announced project, Istio.io, provides just that. With the

control plane, not only are we able to understand and report

what’s happening between our services, we can control the

flow of traffic as well. This becomes useful when we want

to deploy new versions of our application and we want to

implement A/B style testing or canary releases. With a control

plane, we can configure fine-grained interservice routing rules

to accomplish more advanced deployments.

Containers enable a new paradigm of cloud-native

applications and container platforms help with the

management and deployment of those containers. From a

services architecture point of view, however, we need to solve

some of the complexity that has now been moved between

our services. Service meshes aim to help with this and

application proxies help remove horizontal, cross-cutting code

(and their dependencies) from our application code so that

we can focus on business-differentiating services. Containers

and container environments help us naturally implement this

service-mesh pattern.

Christian Posta (@christianposta) is a Principal Architect at Red

Hat and well known for being an author (Microservices for Java

Developers, O’Reilly 2016), frequent blogger, speaker, open-source

enthusiast, and committer on Apache ActiveMQ, Apache Camel, Fabric8,

and others. Christian has spent time at web-scale companies and now

helps companies creating and deploying large-scale distributed architectures

- many of which are now called microservices-based. He enjoys mentoring,

training, and leading teams to be successful with distributed systems concepts,

microservices, DevOps, and cloud-native application design.





http://www.twitter.com/christianposta
https://twitter.com/christianposta
https://www.linkedin.com/in/ceposta/

SPONSORED OP IN ION

http://www.jfrog.com/?utm_source=dzone&utm_campaign=DZone_Containers_Guide

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

2 1

WRITTEN BY BARUCH SADOGURKY - DEVELOPER ADVOCATE, JFROG

Docker has enjoyed meteoric growth over the last

few years and is used by many software development

organizations. However, while this technology is widely

used in early phases of the development pipeline, it is

rarely used in production. The question is: “why?”

Consider a typical software delivery pipeline. A build

from the development CI server is promoted through

the pipeline, provided it passes the respective quality

gates at each phase before it gets to production. This

guarantees that the same binary originally built is the

one deployed to production. So why odesn’t it work like

this for Docker?

It’s because building a Docker image is so easy: you just

run $ docker build. Consequently, the image I rebuilt

at each phase of the pipeline. Why is this a problem?

The answer is dependencies. Because each phase of the

delivery pipeline is executed at a different time, you can’t

be sure that the same version of each dependency used

for the build in the development version was also used

when building the production version, and (almost) every

line in your Dockerfile is resolving a dependency! From

the FROM line, via apt-get or yum install and all the

way to COPY or ADD your application files – we get some

versions of some files, hoping they are the right versions

for us. It’s fragile and the chances we get the exact same

set of files every build, let’s be frank, are slim.

So you end up with this:

While what you should be doing is this:

You should be promoting your development build as an

immutable and stable binary, through the quality gates to

production. The problem is that a Docker tag limits you to

using one registry per host. How can you build a promotion

pipeline if you can only work with one registry? The

answer is by using Artifactory virtual repositories.

An Artifactory virtual repository aggregates any number

of repositories into a single entry point for both upload and

download of Docker images. This allows us to:

•• Deploy our build to a virtual repository which functions as

our development Docker registry

•• Promote the build within Artifactory through the pipeline

using testing and staging repositories

•• Resolve production ready images from the same (or even

a different) virtual repository now functioning as our

production Docker registry

•• You can even take it a step further and expose your

production Docker image to customers through another

virtual repository.

That’s it. You build a Docker image, promoted it through

all phases of testing using virtual repositories, and once it

passed all those quality gates, the exact same images you

created in development is now available for download in

your production servers.

Taking Docker to Production is a
Matter of Promotion, Not Rebuilding

SPONSORED OP IN ION

https://www.jfrog.com/confluence/display/RTF/Virtual+Repositories

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

2 2

Is Docker the End of

Traditional Application

Release Management?

BY LARRY SALOMON JR.
TECHNICAL EVANGELIST

Application release is
more than packaging the
deliverables into an easy-to-
manage format.

Integration with external
solutions is an essential
component of application
release.

Automating application
release provides long-standing
benefits, such as accelerated
releases, that are compliant
with internal standards and
lower operational risk.

01

02

03

Q U I C K V I E W

Ever since its release in 2013, Docker has quickly

catapulted into the enviable position of being

the darling of every operations manager’s eye. If

you’ve been vacationing on Mars since then, here

is what you’ve missed.

Docker is a partitioning capability within the address space

of an operating environment. By allowing the partition to

use the host OS directly, even though that OS resides outside

of the partition (known as a container), the start-up time is

substantially reduced, as is the resource requirements for the

management of the container (those of you who are familiar

with z/OS will find this concept to be “somewhat familiar”).

APPLICATION A

GUEST OPERATING
SYSTEM

BINARIES/LIBRARIES

APPLICATION B

HYPERVISOR

HOST OPERATING SYSTEM

SERVER

GUEST OPERATING
SYSTEM

BINARIES/LIBRARIES

Financial people love this because the cost of acquiring licenses

for the operating environment can be substantially reduced

since, theoretically, every component that is not part of the

application itself can reside outside of the container. This means

only one Windows license needs to be procured versus one per

VM (which is the required process if Docker is not used).

THE CONCEPT IS SIMPLE, BUT HOW DOES IT
WORK?
Essentially, a special file (called a dockerfile) contains one or

more instructions on how a container is to be created. The

dockerfile is used as part of a process to generate the container

on the file system, which can contain as little as a single

application and its associated binaries. This container

 (a subdirectory in the file system) is then transferred to the

target environment as any set of files would be and is started

there using the Docker run time, which can be invoked via the

command line interface or an API (typically REST based, but

there are other implementations).

APPLICATION A

BINARIES/LIBRARIES

APPLICATION B

DOCKER ENGINE

HOST OPERATING SYSTEM

SERVER

BINARIES/LIBRARIES

System Administrators love this because containers are easy

to deploy (XCOPY anyone?) and maintain (REST interfaces

can be easily integrated into any modern Infrastructure

Management platform).

THE REQUIREMENTS OF AN ENTERPRISE-CLASS
RELEASE AUTOMATION SOLUTION
Unfortunately, this concept falls down when people try to use it

as a substitute for true application release management. More

specifically, we can describe application release management

using five of the six question words that everyone learned in

high school English:

Who. Not just anyone in an organization should be able to deploy

an application to an environment. In fact, even for those allowed

to do so, there should frequently be others who have to approve

the deployment decision.

Application release is
more than packaging the
deliverables into an easy-to-
manage format.

Integration with external
solutions is an essential
component of application
release.

Automating application
release provides long-standing
benefits, such as accelerated
releases, that are compliant
with internal standards and
lower operational risk.

01

02

03

Q U I C K V I E W

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

2 3

What. For organizations that truly embrace the concept of

business agility, deploying a complete application every time is

unacceptable. Artifacts deemed as low risk (e.g. content updates)

may be deployed immediately while higher risk artifacts will

be queued up to be released after a lot of testing and other

validations. Docker falls into this category but has limitations,

which will be touched on below.

Where. The target environment of a deployment is frequently

different from every other possible target environment that an

application will touch during its journey from development

to production. These differences are typically addressed by

making changes to the configuration of the application after it

has been deployed.

When. Release windows are not a new concept. Even in

non-production environments, a case for establishing a

release window could be made since environments are often

shared among multiple teams within the same function or even

across functions (i.e. testing and development may use the

same environment).

How. Probably the most problematic process to fully integrate

into an organization’s operational capabilities, the process of

deploying an application is far more than simply understanding

how to install and configure it. For example, integration with

an ITSM application to ensure that change requests have been

entered and are in the correct state has to be incorporated into

the process of deployment so that the state of the operating

environment is always well understood. This is discussed in

more detail below.

Of the five question words above, Docker only addresses one of

them, and not in the most effective manner possible. Consider

the scenario of a well-known bank based in Europe. They

currently have in excess of a thousand production releases

every month. This was accomplished by recognizing that not all

production releases are high risk. In the example under What, it
was noted that certain types of artifacts had minimal impact. As

a result, the release of those artifact types could be expedited,

which helped ensure that this bank’s customer facing assets

were always meeting the needs of their clientele.

If they were using Docker, however, the entire application

would need to be rebuilt regardless of the types of artifacts that

were actually approved for production release. The risk that

unapproved binaries could be released into production is simply

unacceptable for most companies. And this is only for one of the

five items above - Docker does nothing to address the other four.

APPLICATION RELEASE MANAGEMENT IS MORE
THAN THE APPLICATION
It is tempting to think of application release management

in terms of the application only, while forgetting that the

application, from the business’s perspective, is part of the bigger

picture. In the How section above, ITSM was mentioned, but this

is not the only technology with which the release process must

integrate. In fact, the SDLC toolchain is littered with a whole

host of solutions that fit specific needs: Hudson and Jenkins

for Continuous Integration; Git and Subversion for Source Code

Management; Nexus and Artifactory for Artifact Management;

Chef and Puppet for Configuration Management; etc.

Additionally, the process of releasing an application during

its entire lifetime often includes governance that is specific to

the process but isn’t part of the process, per se. However, these

stages through which the build must traverse are essential to

ensuring minimal risk while releasing with a high cadence. They

include approvals, validations, and other types of activities.

AUTOMATION IS THE KEY TO EVERYTHING
Everything we’ve spoken about is critical to an application

release, but, in the end, results are what matter. End users

need new functionality, and the speed at which the application

development team can both produce the new functionality and

deliver it to the end users determines how quickly that new

functionality will translate to additional revenue.

Furthermore, repeatability in the process ensures a much

higher rate of application deployment success. Conversely,

failed deployments cost your company money while production

instances of your application are down during triage and

remediation. Two studies by major analyst firms in the past

3 years determined that the cost amongst Fortune 1000

companies for application outages that were due to change,

configuration, or other handoff related issues was in the range

of $200k-400k per hour.

Each of the tools in the previous section has relevance within

only a small portion of the application build and release process.

Similarly, Docker addresses the management of the artifacts

associated with application release in such a way that it eases

the deployment of those artifacts, but that’s it. The coordination

of these and other solutions’ capabilities is something that must

be managed by an orchestration solution, specifically one that

was purpose built for application release automation.

SUMMARY
To summarize, Docker is an exciting technology that should be

viewed as simply another mechanism that exists within the

greater whole of the application release cycle. But it should not

be viewed as a replacement for a well-defined methodology that

not only includes the “what,” but also includes “who,” “where,”
“when,” and “how.”

Investing in an enterprise-class automation solution built

specifically to automate the release of your mission-critical

applications will not only increase the speed with which you

deploy your applications but will also increase the rate of your

company’s digital transformation as more applications are

deployed using the solution, providing dividends for years to come.

Larry Salomon Jr brings 18 years of IT experience focused on

application development and delivery. Coupled with his strong focus

on the business relevance of technology, Mr. Salomon is a recognized

thought leader in the application delivery and IT automation spaces. You

will find him both in several LinkedIn discussion groups and in his blog

on business related topics (larrysalomon.blogspot.com). Mr. Salomon

holds a Bachelor of Computer Science degree from Clemson University

and holds certifications in DevOps v2, ITIL v3, and Six Sigma.





https://twitter.com/foolomon
https://www.linkedin.com/in/lsalomon/

While containers have been a part of Linux for years, it wasn’t until 2013, when

the Docker platform hit the scene, that developers and IT teams everywhere

started to explore the benefits of using them. But, in a sea of hype and

excitement, it’s easy to miss the basics: what are containers, and why do

people use them in the first place? In this infographic, we’ll go diving for some

introductory knowledge on the subject, what the benefits are,

and what challenges lurk ahead.

WHAT’S IN A CONTAINER?
Containers are virtualized pieces of software

that run on top of an OS kernel. Containers

can include application code, system tools,

libraries, settings, databases, and any other

dependencies. Since they don’t include the OS,

they are very easy to spin up and down and

use fewer resources.

HOW ARE THEY USED?
 In general, containers solve the problem of

getting applications to run reliably between

computing environments. Since there is no OS in a

container, di�erences between OS’s or networks are

abstracted away. Containers can also help put

microservices architectures into practice by

containerizing pieces of an application.

HOW DOES ORCHESTRATION
 HELP?

 Containers by themselves

can become troublesome to manage.

Orchestration tools help dev teams by automating

the deployment, management, and scaling of

containers, so they can quickly adapt to the

changing needs of an application.

COPYRIGHT DZONE.COM 2017

WHAT’S NEXT?
Running contain-

ers e�ectively and

safely in production is probably

the most well-known challenge

to conquer. It can also take a long

time to educate developers on

how to use containers and then use

them, particularly with legacy apps

that need to be refactored. As with

most technologies, security is

incredibly important, and a balance

needs to be found between securing

systems and giving developers

freedom to do what they need to.

WHAT’S THE PORPOISE
OF CONTAINERS?

Automic, the leader in business automation software owned by CA Technologies,
helps enterprises drive competitive advantage by automating their IT and
business systems - from on-premise to the Cloud, Big Data and the Internet
of Things. With offices worldwide, Automic powers 2,700 customers across all
industry verticals including Financial Services, Manufacturing, Retail, Automotive
and Telecommunications.

Drive Agility, Empower
DevOps with Automic V12

Automic is a leader in Automation and DevOps, empowering
digital transformation at large enterprise IT organizations across
all industry verticals. Customers rely on our Application Release
Automation product to drive the agility, speed and reliability
required for businesses to stay competitive in the digital age.
The goal is to provide consistent, repeatable and auditable
deployments across the Continuous Delivery pipeline.

Find out more at automic.com

SPONSORED OP IN ION

http://automic.com/?utm_campaign=AMER%20Online%20Syndication%20DZone%20Platinum%20Sponsorship%20Ads%20JULY-2017&utm_source=Dzone%20Container%20Guide%20Ad

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

2 7

1. VISUALIZE YOUR DEPLOYMENT PROCESSES AND
MONITOR THEM LIVE
A powerful workflow engine lies at the core of the Automic

platform, so the first benefit new users get is a visual

workflow creator. Whether you start by simply wrapping

Automic around your existing scripts, or you go in and

create your first workflows using our guided wizards, you’ll

immediately start to (literally) see the execution and any

rules in progress; what happens in parallel and what doesn’t;

and the output of each step, on any number of targets.

2. USE BUILT-IN ROLLBACK
Ensure that you employ a rollback framework that enables

package developers to handle rollback rules as part of the

action. This way rollback does not have to be designed by

you as part of a deployment. Most Automic-provided actions

are auto-rollback enabled and users developing their own

actions can leverage the rollback framework to make their

own actions equally robust.

3. ORCHESTRATE CONTAINER SERVICES LIKE DOCKER AND
AUGMENT THEM WITH METADATA DRIVEN RULES
Containers are on the rise, and Automic supports Docker-

based container service orchestration. A key use case for

Automic customers who run container services is the

augmenting of Docker files with metadata. For example,

data related to the capacity required for each service,

which is used to determine the underlying VM capacity and

orchestrate deployments of hybrid applications and services

that utilize container and non-container based services.

You can read the full article here.

WRITTEN BY RON GIDRON
PRODUCT MARKETING DIRECTOR OF RELEASE AUTOMATION, AUTOMIC SOFTWARE

3 Ways To Bolster
Your DevOps and
Continuous Delivery
Initiatives Using
Release Automation

Automic V12 has been designed for the hybrid enterprise to drive agility
across operations, while empowering new DevOps initiatives.

Automic Release Automation v12

CASE STUDY
TASC uses Automic Release Automation to simplify administration

and gain extra flexibility by abstracting its process flows. The

company relies on Automic to orchestrate their deployment

pipeline, integrating with Sonatype Nexus, Maven, and Subversion

(SVN) as they promote their apps through their JBoss-based

development, QA, staging, and production environments.

“Automic has helped us grow and become agile for our customers,

both internally and externally. It’s also helped us grow into areas

that, quite frankly, other companies and other organizations haven’t

been able to move into.”

- TOM FLITTER, DIRECTOR OF APPLICATIONS AND INTEGRATION AT TASC

STRENGTHS

NOTABLE CUSTOMERS

• 	 V12 allows agents to auto-update with zero business

impact

• 	 V12 removes maintenance windows

• 	 V12 makes managing core business applications agile

• 	 V12 drives intelligent insights across automation silos

• 	 Bosch

• 	 Netflix

• 	 AMC Theatres

• 	 ExxonMobil

• 	 Vodafone

• 	 NHS SBS

• 	 General Electric

CATEGORY
Release Automation/

Service Orchestration

NEW RELEASES
Bi-annually

OPEN SOURCE

Yes

WEBSITE Automic.com BLOG automic.com/blogTWITTER @automic

SPONSORED OP IN ION

https://automic.com/blog/ten-things-automic-release-automation-can-do-out-of-the-box
https://automic.com/
https://automic.com/
http://automic.com/blog
http://automic.com/blog
https://twitter.com/automic

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

2 8

5 Docker Logging
Best Practices

BY JEFFREY WALKER
FOUNDER AND OWNER, STARTUPLABS

Microservices have gotten
a boost through Docker,
which is the most popular
“containerization” model
for building independently
deployable services.

Unlike traditional application
logging, Docker logging
effectively means not only
logging the application and the
host OS, but also the Docker
service.

The major approaches to Docker
logging are: app-based logging,
using data volumes, the Docker
logging driver, dedicated
logging container, and sidecars.

01

02

03

Q U I C K V I E W

Containers have become a huge topic in IT,

and especially in DevOps, over the past several

years. Simply stated, containers offer an easy

and scalable way to run software reliably when

moving from one environment to another.

Containers do this by providing an entire

runtime environment in one package, which

includes the application, plus all dependencies,

libraries and other binaries, and configuration

files needed to run it.

Closely aligned with containers are microservices, which

represent a more agile way of developing applications. A

microservices architecture structures an application as a

set of loosely coupled services connected via functional

APIs that handle discrete business functions. Instead of a

large monolithic code base, microservices primarily offer a

“divide and conquer” approach to application development.

Leading the charge in the world of container infrastructures

is Docker, a platform for deploying containerized software

applications. The real value of containers is that they allow

teams to spin up a full runtime environment on the fly.

Docker is arguably the most influential platform today for

getting businesses to adopt microservices.

Similar to how virtual machines streamlined software

development and testing by providing multiple instances

of an OS to end-users from one server, containers add an

extra abstraction layer between an application and the

host OS. The big difference is that containers don’t require

a hypervisor and only run one instance of an operating

system; overall, this equates to far less memory and faster

run time.

As with developing any application, logging is a central

part of the process and especially useful when things go

wrong. But logging in the world of containerized apps is

different than with traditional applications. Logging Docker

effectively means not only logging the application and the

host OS, but also the Docker service.

There are a number of logging techniques and approaches

to keep in mind when working with Dockerized apps. We

outline the top five best practices in more detail below.

APPLICATION-BASED LOGGING

In an application-based approach, the application inside the

containers uses a logging framework to handle the logging

process. For instance, a Java application might use Log4j 2 to

format and send log files to a remote server and bypass the

Docker environment and OS altogether.

While application-based logging gives developers the most

control over the logging event, the approach also creates a

lot of overhead on the application process.

This approach might be useful for those who are working

within more traditional application environments since

it allows developers to continue using the application’s

https://www.docker.com/what-container
https://opensource.com/business/14/12/containers-microservices-and-orchestrating-whole-symphony
https://www.docker.com/

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

2 9

logging framework (i.e., Log4j 2) without having to add

logging functionality to the host.

USING DATA VOLUMES
Containers by nature are transient, meaning that any files

inside the container will be lost if the container shuts

down. Instead, containers must either forward log events

to a centralized logging service (such as Loggly) or store

log events in a data volume. A data volume is defined as “a

marked directory inside of a container that exists to hold

persistent or commonly shared data.”

The advantage of using data volumes to log events is that

since they link to a directory on the host, the log data

persists and can be shared with other containers. The

advantage of this approach is that it decreases the likelihood

of losing data when a container fails or shuts down.

Instructions for setting up a Docker data volume in Ubuntu

can be found here.

DOCKER LOGGING DRIVER
A third approach to logging events in Docker is by using

the platform’s logging drivers to forward the log events to

a syslog instance running on the host. The Docker logging

driver reads log events directly from the container’s stdout

and stderr output; this eliminates the need to read to and

write from log files, which translates into a performance gain.

However, there are a few drawbacks to using the Docker

logging driver: 1) it doesn’t allow for log parsing, only log

forwarding; 2) Docker log commands work only with log

driver JSON files; 3) containers terminate when the TCP

server becomes unreachable.

Instructions for configuring the default logging driver for

Docker may be found here.

DEDICATED LOGGING CONTAINER
This approach has the primary advantage of allowing log

events to be managed fully within the Docker environment.

Since a dedicated logging container can gather log events

from other containers, aggregate them, then store or

forward the events to a third-party service, this approach

eliminates the dependencies on a host.

Additional advantages of dedicated logging containers are:

1) automatically collect, monitor, and analyze log events; 2)

scale your log events automatically without configuration;

3) retrieve logs through multiple streams of log events,

stats, and Docker API data.

SIDECAR APPROACH
Sidecars have become a popular approach to managing

microservices architectures. The idea of a sidecar comes

from the analogy of a how a motorcycle sidecar is

attached to a motorcycle. To quote one source, “A sidecar

runs alongside your service as a second process and

provides ‘platform infrastructure features’ exposed via a

homogeneous interface such as a REST-like API over HTTP.”

From a logging standpoint, the advantage of a sidecar

approach is that each container is linked to its own logging

container (the application container saves the log events

and the logging container tags and forwards them to a

logging management system like Loggly).

 my-pod

Logging
Backend

logging-agent-pod

log-file.log

app-container

streaming container

stdout

stderr

logging-agent

See image inspiration here

The sidecar approach is especially useful for larger

deployments where more specialized logging information

and custom tags are necessary. Though, setting up sidecars

are more notably complex and difficult to scale.

Jeffrey Walker is the Founder and Owner of StartUPLabs, a

Boston-based company that provides Strategic Advising, Prototyping,

Web Design and Development, and Marketing Services to help guide

and launch successful businesses. He has worked in IT for the past

decade, including 3 years as an emerging technologies researcher for a

Fortune 100 company in Boston. During 2009-2010 he served as founder

and CEO of a small startup specializing in open source human-robot

interaction (HRI). Jeffrey holds multiple master’s degrees, including an

Ed.M. from Columbia University.



Logging Docker effectively

means not only logging the

application and the host OS,

but also the Docker service.

https://www.loggly.com/
http://www.tricksofthetrades.net/2016/03/14/docker-data-volumes/
https://www.digitalocean.com/community/tutorials/how-to-work-with-docker-data-volumes-on-ubuntu-14-04
https://www.slideshare.net/sematext/docker-logging-webinar
https://docs.docker.com/engine/admin/logging/overview/
https://www.slideshare.net/TrevParsons/optimizing-your-container-environment-monitor-pets-and-cattle
https://www.voxxed.com/blog/2015/01/use-container-sidecar-microservices/
https://www.loggly.com/blog/introducing-the-field-guide-for-docker-logging-new/
http://startuplabs.co/
https://www.linkedin.com/in/jeffreypwalker/

SPONSORED OP IN ION

https://www.instana.com/library/six-pillars-modern-dynamic-apm/

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

3 1

Agile development, CI/CD, and the use of containers create

constant application change in code, architecture, and even which

systems are running.

This constant change, especially in containerized applications,

makes Continuous Discovery a must-have feature for in order for

effective monitoring tools to:

• 	 Discover and map the components that make up the application

• 	 Automatically monitor the health of each component on its own

and as part of the app

Configuring Agents is a key obstacle to achieving continuous

discovery. To be specific, agent configuration has always been

difficult, but dynamic applications make any configuration work

obsolete almost as soon as it’s complete.

The key to making continuous discovery work within monitoring

tools is automation.

Automating agent configuration requires a change in the way agents

are built and deployed, especially the way agents collect and transmit

information through technology sensors, such as:

• 	 Configuration data

• 	 Events

Agents should automatically recognize every component and

deploy the proper monitoring sensors, automatically collect the

right data, and provide a real-time health score.

This goes beyond code. Every technology component needs its own

expert monitoring. So far at Instana, we’ve expanded that list to

nine languages and almost 70 unique technologies.

Why is this essential for Continuous Delivery?

1.	 Speed: Nobody has time to configure (and reconfigure) tools with

the rate of change.

2.	 Real-time Mapping: Containerized applications are constantly

changing so data flow and interactions can’t be known in

advance. Application maps must be built in real time.

3.	 Instant Feedback: Results from changes (including deployments)

should be known in seconds. A delay of even a few minutes could

be devastating.

You’ve created an agile development process. You’re investing

in containers. Don’t let your monitoring tools prevent you from

achieving your ultimate goals of Continuous Delivery.

WRITTEN BY PAVLO BARON
CO-FOUNDER AND CHIEF TECHNOLOGY OFFICER , INSTANA

Continuous Discovery:
The Key to Continuous
Delivery

Dynamic APM for Containerized Microservice Applications

Instana

CASE STUDY
To go mobile, a real-time service provider moved from a monolithic environment

to containerized microservices. They got their scalability, but they now had to

manage 25 different technologies. Both the APM and Infrastructure monitoring tools

struggled to keep up with application changes.

Enter Instana. Instana automatically mapped the entire app and infrastructure in

just 15 minutes, instantly providing health reports for each component. Metrics were

provided along with all the meta information from Docker and Mesosphere.

DevOps finally has what they need to manage infrastructure, components, and the

application from one place — without any human configuration. The best part?

They’re ready for the next big architectural change, too.

STRENGTHS

NOTABLE CUSTOMERS

• 	 Containerized application discovery and

mapping

• 	 Automatic health monitoring of 60+ technologies

— with no-touch configuration

• 	 Full stack tracing of every request through every

technology component

• 	 One-second granularity for real-time

performance data

• 	 AI-assisted service quality management and

troubleshooting

• 	 Douglas Online

• 	 Conrad.com

• 	 DriveNow

• 	 Booxware

CATEGORY
Application Performance

Management for

Containerized Applications

NEW RELEASES
Several times per year

OPEN SOURCE
No

WEBSITE instana.com BLOG instana.com/blogTWITTER @InstanaHQ

• 	 Traces
• 	 Metrics

SPONSORED OP IN ION

https://www.instana.com/library/six-pillars-modern-dynamic-apm/
https://www.instana.com/library/six-pillars-modern-dynamic-apm/
https://instana.com/blog
https://instana.com/blog
https://twitter.com/InstanaHQ

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

3 2

How Does IT Ops
Spell T-R-O-U-B-L-E?
Container-Driven
Technology Diversity
BY PAVLO BARON
FOUNDER AND CTO, INSTANA

Containers make it easier
for Dev teams to create
massively diverse application
architectures.

Classic Ops teams aren’t built
to handle the polyglot of
application languages or the
sheer number of deployed
technologies.

Automation is the only way
Operations can keep up with
the pace of Agile and CD.

Even Container Orchestration
tools are missing key
performance metrics to
optimize user experience.

01

02

03

04

Q U I C K V I E W

CONTAINERS ARE GREAT!

You already know this, since you’re reading

this report and this article, but even the most

ardent fan of containers probably doesn’t

understand just what they’ve enabled in

the world of application development and

application operations.

Essentially, they make it easier to deploy almost

anything. Yes, there are the efficiency benefits of

containers, inching closer to using (and paying

for) only the resources you need. But it’s the ease

of deployment of practically any application or

IT system that can truly change the IT world.

Unfortunately, being able to easily deploy almost

anything means that it’s especially easy to

deploy almost EVERYTHING.

AGILITY + CONTINUOUS DELIVERY + TECHNOLOGY
DIVERSITY = OPERATIONAL NIGHTMARE
While that ability, in itself, is nothing to worry about, the

embraced concepts of extreme agility and Continuous

Delivery from development teams — coupled with this

insanely easy method of deploying any and everything

— has put an onerous burden on the shoulders of IT

Operations. As the CTO of a SaaS company, I live in this

space between Development and Operations every day,

since I manage both.

Now what do we mean by everything? Of course, there

are hundreds of different technology components that

are being used to build applications quickly, more

efficiently, and more responsive to users. But in reality,

most of us are using some combination of about 80 things:

different languages, database systems, middleware app

servers, messaging technology, storage, web servers, and

much more.

From the Development perspective, when you couple the

enabled ability to use whatever technology platform and/

or language you want with the drive to do things faster and

more continuously, you get each team (and each developer)

making the optimal decision for themselves regarding

technology usage. So, while 60 percent of development uses

MySQL for their database, 20% might be using SQL Server,

another 20% might be using MongoDB, and the other 20%

might be using another three different databases.

For Operations, the Developer’s “paradise” has become

the Operator’s nightmare. It will no longer be sufficient

to have a MySQL expert on the team with everyone else

understanding the basics of configuring and maintaining

a MySQL Server. Instead, everyone has to be able to handle

whatever might come up with a whole host of different

database systems.

Now multiply that problem by the number of systems

in operation: security, web server, app server, storage,

messaging, transactions, directories, search tools, and

more. With all of this mass diversity, how can Ops even

hope to cope?

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

3 3

AUTOMATION IN OPERATIONS
Automation isn’t a panacea to fix all problems. But

in this hyper-agile application world, it’s an absolute

requirement. This isn’t the automation of the nineties,

when we were all hypothesizing about dark room IT Ops.

No, this is automation that’s required simply so your

Operations team can actually do the things they need to

do over the lifecycle of your applications.

What should be automated? Some would like to say

“everything,” but let’s start with the most important

aspects of Operations: the ability to deliver application

services to end users at the proper scale and proper

performance levels (or service levels). So, monitoring has

to be one of the first things Operations should automate.

AUTOMATED CONTAINER MONITORING
Which brings us full circle back to those little containers.

Not only do they make it easy to overrun the operations

team with this mass diversity of systems, but they add a lay-

er that’s difficult to penetrate when it comes to understand-

ing how the overall system (or application) is performing.

The first thing to automate is understanding what’s

actually running in a container (the app technology),

how it fits within the overall application architecture

(dependency map), and how both the container and the

technology inside are executing their responsibilities to

deliver the appropriate service levels.

The next step in automation is monitoring the health

(again, both of the container and the thing that’s running

inside it). This is best done by machines, whether an

expert system (understanding what should be measured,

and what different metrics mean to the overall health

of the system) or further down the AI path to machine

learning, where the monitoring system gleans patterns

of execution, determines causal correlation between

end-user service levels and individual component

measurements, and other systemic ways to handle what

would be an impossible task for human operators.

SPEED KILLS (MONITORING EFFECTIVENESS)
The other thing that happens with containerized

applications, especially in an agile/Continuous Delivery

environment, is the rate at which containers are

provisioned and destroyed as they are needed (and then

not needed). Traditional monitoring tools (15-minute

metrics, 1-hour notifications) and APM tools (1-minute

metrics, 5-minute notifications) are going to miss

anywhere from 10-50% of containers that even execute.

And while container orchestration tools are a way to

better manage the deployment of individual (or even sets

of) containers, these tools aren’t considering the overall

performance of the application, nor can they take into

account outside influences (or resource suckers) that make

their allocations suboptimal.

A new breed of monitoring/performance management

tools are needed that recognize both the overall system

and the individual components running inside containers

(and even a look at the containers themselves). These

new tools should also be able to work hand-in-hand with

orchestration and other container management systems

to ensure that everything operationally works together to

meet the purpose of the containerized apps in the first

place — fantastic user experience.

The embraced concepts of extreme

agility and Continuous Delivery from

development teams — coupled with this

insanely easy method of deploying any

and everything — has put an onerous

burden on the shoulders of IT Operations.

Pavlo Baron is the co-founder and Chief Technology Officer
of Instana. Pavlo is a 25-year veteran of IT, especially regarding
application delivery and performance analysis. His experience includes
being an enterprise architect and engineering lead at companies
ranging from small to enterprise, such as Sixt and UniCredit. In
addition to his career as a technologist and entrepreneur, Pavlo has
authored a book on software support.





Automation isn’t a panacea

to fix all problems. But in this

hyper-agile application world,

it’s an absolute requirement.

https://twitter.com/pavlobaron
https://www.linkedin.com/in/pavlobaron/

SPONSORED OP IN ION

https://coreos.com/tectonic?utm_source=dzone&utm_medium=display

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

3 5

No one is happy when roadblocks and delays stand in

the way of getting your product to market. Much like a

marathon runner who loses a race because they have to

stop every mile to do the mundane task of tying their

shoes, each time your business needs to slow down to

manually service your IT infrastructure, the competition is

gaining, or worse, passing you. CoreOS Tectonic provides

automated operations for your container infrastructure,

which drastically reduces time-to-market and reduces the

risk of a service outage, all while freeing up your IT team

to focus on providing value to your organization.

IT teams spend time and resources to perform

infrastructure maintenance tasks, requiring personnel to

focus on mundane, repeatable processes which provide

no value.

The myopic view of automated infrastructure operations

is that it will take jobs out of the IT organization, but it

does no such thing: Tectonic augments the ops team’s

role. Automated operations liberate IT by automating

time consuming, repetitive tasks and allow the whole

organization to deploy as quickly as they innovate.

All companies are becoming more like software

companies in that they need to deliver more and better

products at a faster rate than was expected even just a

few years ago. The move to cloud-native, containerized

infrastructure delivers access to flexible and scalable

environments, bringing web-based offerings within reach

for many more organizations than before. By automating

the functions of infrastructure management and

maintenance with Tectonic, teams can adjust their focus

away from their old tasks of maintenance and fire-alarm

responses and onto innovating and creating value.

WRITTEN BY BY ROB SZUMSKI
TECTONIC PRODUCT MANAGER, COREOS

Automating
Operations With
CoreOS Tectonic

Tectonic is the enterprise-ready Kubernetes platform that delivers scalable,

resilient, and secure automated infrastructure

Tectonic by CoreOS

CASE STUDY
A large entertainment company is in the process of moving their entire

infrastructure to Kubernetes, and has chosen CoreOS’s Tectonic as their

enterprise-ready Kubernetes platform of choice. They began with their web

platform, which was containerized but with a clunky deployment mechanism.

It took over 20 minutes to deploy, and the team had low confidence with each

deployment. Since implementing Tectonic, deployment speed has improved 20

times, going from 20 minutes to 60 seconds, and it works every time, with a high

degree of confidence. Tectonic has allowed their team to deliver software on a

daily basis: The team does a standup in the morning, states their plans for the

day’s releases, and reconvenes at the end of the day to show the output.

Ultimately, Kubernetes and Tectonic empower the entertainment company’s

makers, creators and visionaries to continue to innovate and stay competitive in

a fast moving industry. The entertainment company is fostering a space for their

engineering and development teams to innovate and deliver great solutions to

the market.

STRENGTHS

NOTABLE CUSTOMERS

• 	 Built on the latest upstream Kubernetes

releases

• 	 Easy-to-use installer for Kubernetes

• 	 Intuitive, feature-rich dashboard for

efficient infrastructure management

• 	 Automated operations providing software

updates for the latest software and

security patches

• 	 Ticketmaster

• 	 Concur

• 	 Ebay

• 	 Time Warner Cable

• 	 Verizon

CATEGORY
Automated infrastructure

NEW RELEASES
Monthly

OPEN SOURCE
Yes

WEBSITE coreos.com BLOG coreos.com/blogTWITTER @CoreOS

SPONSORED OP IN ION

https://coreos.com/
https://coreos.com/
https://coreos.com/blog
https://coreos.com/blog
https://twitter.com/CoreOS

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

3 6

Five Things We’ve

Learned About Monitoring

Containers and Their

Orchestrators

BY APURVA B DAVE

Containers are ephemeral and
hard to instrument, and that
changes the monitoring game.

Manual instrumentation
isn’t feasible in a dynamic
environment.

Service-oriented data analysis is
critical to monitor and manage
the performance of apps in a
dynamic environment.

Monitoring data will be
exponentially larger in
containerized environments
and requires a scalable storage
solution.

01

02

03

04

Q U I C K V I E W

This article will cover how to build a scaled-out,
highly reliable monitoring system that works
across tens of thousands of containers. It’s based
on Sysdig’s experience building its container
monitoring software, but the same design
decisions will impact you if you decide to build
your own tooling in-house. I’ll share a bit about
what our infrastructure looks like, the design
choices and tradeoffs we’ve made. The five areas
I’ll cover are:

•• Instrumenting the system

•• Mapping your data to your applications, hosts,
and containers

•• Leveraging orchestrators

•• Deciding what data to store

•• Enabling troubleshooting in containerized
environments

Ok, let’s get into the details, starting with the
impact containers have had on monitoring
systems.

WHY DO CONTAINERS CHANGE THE RULES OF
THE MONITORING GAME?
Containers are pretty powerful. They are:

•• Simple: mostly individual process

•• Small: 1/10th of a VM

•• Isolated: fewer dependencies

•• Dynamic: can be scaled, killed, and moved quickly.

Containers are simple and great building blocks for

microservices, but their simplicity comes at a cost. The

ephemeral nature of containers adds to their monitoring

complexity. Just knowing that some containers exist is not

enough: deep container visibility is critical for ops teams

to monitor containers and troubleshoot issues. Let’s start

breaking down these monitoring challenges.

INSTRUMENTATION NEEDS TO BE TRANSPARENT
In static or virtual environments, an agent is usually run

on a host and configured for specific applications. However,

this approach doesn’t work for containerized environments:

•• You can’t place an agent within each container.

•• Dynamic applications make it challenging to manually

configure agent plug-ins to collect metrics.

In containerized environments, you need to make

instrumentation as transparent as possible with very

limited human interaction. Infrastructure metrics,

application metrics, service response times, custom

metrics, and resource/network utilization data should be

ingested without spinning up additional containers or

making any effort from within the container.

There are two possible approaches: First are pods, a concept

created by Kubernetes. Containers within each pod can see

https://sysdig.com/
https://sysdig.com/
https://kubernetes.io/

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

3 7

what other containers are doing. For monitoring agents,

this is referred to as a “sidecar” container.

This is relatively easy to do in Kubernetes, but if you

have many pods on a machine, this may result in heavy

resource consumption and dependency. This can wreak

havoc in your application if your monitoring sidecar has

performance, stability, or security issues.

Pod Instrumentation

CONTAINER CONTAINER

MONITORING
AGENT

CONTAINER

MONITORING
AGENT

CONTAINER

CONTAINER

CONTAINER
MONITORING

AGENT

Host

The second model is per-host, transparent instrumentation.

This captures all application, container, statsd, and host

metrics within a single instrumentation point and sends

them to a container per host for processing and transfer.

This eliminates the need to convert these metrics into

statsd. Unlike sidecar models, per-host agents drastically

reduce resource consumption of monitoring agents and

require no application code modification. In Sysdig’s case,

we created a non-blocking kernel module to achieve this.

That, however, required a privileged container.

Sysdig ContainerVision

Host

Transparent Instrumentation

CONTAINER
2

rkt

CONTAINER
3

Docker

Collection + analysis

Container +
app metrics

Custom
metrics

Host +
network metrics

CONTAINER
1

Docker

CONTAINER
AGENT

Docker

By introducing “ContainerVision,” Sysdig chose to do the

latter, and herein lies the biggest tradeoff we had to make.

Although running the monitoring agent as a kernel module

raises concerns and implementation complexities, this

allows us to collect more data with lower overhead — even

in high-density container environments — and reduces

threats to the environment. Finally, to address these

concerns as a third-party software provider, we open

sourced our kernel module as part of the Sysdig Linux and

container visibility command-line tool. This latter point

isn’t something you’re likely to deal with if you’re building

your own internal tooling.

HOW TO MAP YOUR DATA TO YOUR
APPLICATIONS, HOSTS, CONTAINERS, AND
ORCHESTRATORS
As your environment increases in complexity, the ability

to filter, segment, and group metrics based on metadata is

essential. Tags allow you to represent the logical blueprint

of your application architecture in addition to the physical

reality of where containers are running.

There are two tagging metrics: explicit (attributes to store)

vs. implicit (orchestrator) tags. Explicit tags can be added by

your team based on best practices, but implicit tags should

be captured by default. The latter is a key element for

orchestrators. Each unique combination of tags is a separate

metric that you need to store, process, and then recall on

demand for your user. We’ll discuss the major implications

of this in the “Deciding what data to store” section below.

LEVERAGING ORCHESTRATORS
Orchestrators radically changed the scheduling

management approach for containers and impacted users’

monitoring strategy. Individual containers became less

important, while the performance of a service became

more important. A service is made up of several containers,

and the orchestrator can move containers as needed to

meet performance and health requirements. There are two

implications for a monitoring system:

•• Your monitoring system must implicitly tag all metrics

according to the orchestration metadata. This applies to

systems, containers, application components, and even

custom metrics.

Your developers should output the custom metric, and the

monitoring system should keep the state of each metric.

You can read more about this topic here.

•• Your monitoring agent should auto-discover any

application and collect the relevant metrics. This may

require you to update your monitoring system to

provide these functionalities.

There are two methods to achieving this: depending on

the events started by the orchestrator to flag containers,

or determining applications based on the heuristics of a

container. Sysdig chose the latter approach, as it requires

https://www.sysdig.org/
https://www.sysdig.org/
https://sysdig.com/blog/how-to-collect-statsd-metrics-in-containers/

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

3 8

more intelligence in your monitoring system, but produces

more reliable results. You can read more on monitoring

Kubernetes and orchestrators here.

DECIDING WHAT DATA TO STORE: “ALL THE DATA”
Distributed systems increase monitoring data and the

resulting metrics. Although it is appealing to reduce your

metric count for cost and simplicity, you’ll find that the

more complex your infrastructure becomes, the more

important it is to have all the data for ad-hoc analysis and

troubleshooting. For example, how would you identify

an intermittent slow response time in a Node app with

missing metrics data? How can you figure out if it’s a

systemic problem in the code, a container on the fritz, or

an issue with AWS? Aggregating all that information via

microservices will not give you enough visibility to solve

the problem.

This means we will collect a lot of metrics and events data.

In order to have this data persisted and accessible to our

users, we decided to:

•• Build a horizontally scalable backend with the ability for

our application to isolate data, dashboards, alerts, etc.

based on a user or service.

•• Store full resolution data up to six hours and aggregate

thereafter.

Our backend consists of horizontally scalable clusters of

Cassandra (metrics), ElasticSearch (events), and Redis (intra-

service brokering). This provides high reliability and scalability

to store data for long-term trending and analysis. All the data

is accessible by a REST API. You will likely end up building the

same components if you create your own system.

Sysdig Architecture
COLLECTION INGEST STORE, PROCESS, ALERT VISUALIZE

DASHBOARDSAPP
CONTAINER

APP
CONTAINER

Transparent
Instrumentation

Host

Cassandra Elastic
Search

API

Visualize +
long-term trends

Alert

Redis

Orchestrator
Metadata

HOW TO ENABLE TROUBLESHOOTING IN
CONTAINERIZED ENVIRONMENTS
Containers are ideal for deployment and repeatability, but

troubleshooting them is challenging.

Troubleshooting tools — ssh, top, ps, and ifconfig — are

neither accessible in PaaS-controlled environments nor

available inside containers, and the ephemeral nature of

containers adds to this complexity. This is where container

troubleshooting tools come into play, with the ability to

capture every single system call on a host giving deep

visibility into how any application, container, host, or

network performs.

Interfacing with the orchestration master provides relevant

metadata that is not just limited to the state of a machine,

but also provides the ability to capture the state and

context of the distributed system. All this data is captured

in a file, allowing you to troubleshoot production issues on

your laptop and run post-mortem analyses at ease.

For example, when an alert is triggered by a spike in

network connections on a particular container, all system

calls on the host are recorded. Troubleshooting this alert via

cSysdig provides all the relevant context and helps identify

the root cause by drilling down to the network connections:

Check out Understanding how Kubernetes DNS Services

work for more on open source Sysdig.

CONCLUSION
Building a highly scalable, distributed monitoring system

is not an easy task. Whether you choose to do it yourself

or leverage someone else’s system, I believe you’re going to

have to make many of the same choices we made.

Apurva B Dave is the VP of marketing at Sysdig. He’s in

marketing and (gasp!) not afraid of a command line. He’s been

helping people analyze and accelerate infrastructure for the better

part of two decades. He previously worked at Riverbed on both

WAN acceleration and Network Analysis products, and at Inktomi

on infrastructure products. He has a computer science degree from

Brown University and an MBA from UC Berkley.





https://sysdig.com/blog/monitoring-kubernetes-with-sysdig-cloud/
https://sysdig.com/blog/monitoring-kubernetes-with-sysdig-cloud/
https://sysdig.com/blog/understanding-how-kubernetes-services-dns-work/
https://sysdig.com/blog/understanding-how-kubernetes-services-dns-work/
https://twitter.com/apurvabdave
https://www.linkedin.com/in/apurvadave/

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

3 9 DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS3 9

Comparing Container
Image Registries

BY RITESH PATEL

CO-FOUNDER AND VP OF PRODUCTS AT NIRMATA

DOCKERHUB
If you have used Docker containers, then
you probably know about DockerHub. It
is one of the most widely used tools, since
it is the default registry service for the
Docker engine. DockerHub’s collaboration
model is similar to that of GitHub: you
can create organizations and add add
individual collaborators to each repository.
Docker Hub provides major features like
image repository management, webhooks,
organizations, GitHub and BitBucket
integration with automated builds, etc.

PROS:
•• Uses a very familiar collaboration

model, and is therefore very easy to use,
especially for GitHub users

•• Provides public and private repositories

•• Quickly create organizations and add
users or create groups of users to
collaborate with your repositories.

•• Allows users to set permissions to
restrict access or set different permission
levels like read, ride, and admin to
different users.

•• Fairly inexpensive with usage-based
pricing.

•• Security scanning available at
additional cost.

CONS:
•• Lacks fine-grained access control.

•• Does not provide any insight into
registry usage.

•• Lacks LDAP, SAML, and OAuth support.

•• Registry performance can be

inconsistent.

AMAZON EC2 REGISTRY
No matter which architecture you

choose, you must think about mediation

and orchestration layers. Here’s a

list of the most popular integration

frameworks implementing EIP patterns:

PROS:
•• Familiar to AWS users and easy

to use.

•• Highly secure, as policies can be

configured to manage permissions

and control access to a user’s images

using AWS IAM without having to

manage credentials directly on

EC2 instances.

•• No upfront fees or commitments. You

pay only for the amount of data you

store in your repositories and data

transferred to the Internet.

•• Tight integration with Amazon ECS

and the Docker CLI, allowing you

to simplify your development and

production workflows.  

CONS:
•• Lack of insight into registry usage.

•• Difficult to use with the Docker

client, as it requires the creation of a

temporary token.

•• Potentially expensive if the deployed

containers are not on AWS.

JFROG ARTIFACTORY
JFrog Artifactory is an enterprise-ready

Universal Artifact Repository Manager

supporting secure, clustered, highly

available Docker registries. It integrates

with all major CI/CD and DevOps

tools, and provides an end-to-end,

automated, and bullet-proof solution for

tracking artifacts from development to

production.

PROS
•• Supports different artifacts created by

any language or tools.

•• Fairly easy to use.

•• Clustering and High Availability

are supported, which means that

replication to another instance of

Artifactory (multi-site) is easily

possible.

•• Flexible deployment options such as

SaaS and on-premise.

•• Out-of-the-box integrations with most

CI/CD and DevOps tools.

•• Security scanning is also available at an

additional cost.

CONS
•• The on-premise version needs to be

managed and upgraded by the end

user.

•• Could be more expensive compared to

hosted options.

SPONSORED OP IN ION

[root@production ~]#

hackers like containers too

increased server load

decreased transparency�
�
access all connected services

thank you!!!

your neighborhood hacker

Modern applications
require a new
approach to
connectivity.

Learn more at www.tigera.io/dzone

Tigera delivers it.

http://bit.ly/2udng0w

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

4 1

Imagine letting your development teams work in their

preferred programming language, or not having to worry

about having the right environment setup, or being able to

scale at a moment’s notice. Imagine being able to do all this,

and much more - faster.

Of course, you’ve probably already imagined this - and know

that many companies are working to make it a reality. After

all, compared to traditional monolithic systems - the benefits

of microservices are incredible!

However, like any new technology, microservice architectures

bring with them their own set of challenges. Moving away

from monoliths to containers means shifting focus from

maintaining your AS400 to deploying and orchestrating

hundreds to billions of constantly moving parts, while

managing your network and focusing on security.

These challenges are complicated by the speed containers

are being created at — 900x the speed of virtual machines

— with a 25x faster churn. Not to mention the significant

increase in attack surface and heavy reliance on web

services such as REST APIs.

This means you need to be well prepared, and understand

that while microservices bring real, tangible benefits - they

also bring inherent risks. Thankfully companies like Google,

IBM, and Tigera are working to mitigate them with solutions

such as Kubernetes (the most popular orchestrator), Istio,

and Project Calico. Along with these open source tools —

and Tigera’s expertise — you can ensure a successful move

to microservices in production.

To learn more about application connectivity, check out the

Secure Networking for Kubernetes checklist, or visit tigera.io.

WRITTEN BY MIKE STOWE
DIRECTOR OF COMMUNITY, TIGERA

Cloud Native:
Preparing for
Security & Scale

Production-ready, cloud native application connectivity

Tigera Essentials for Kubernetes

CASE STUDY
As a large multibillion dollar SaaS Provider moved from their

monolithic infrastructure to microservices, they found that

their existing network firewall was unable to scale and limited

growth - they also needed a dynamic security solution that would

enforce policy in both their Kubernetes environment as well as on

their existing bare metal servers. They decided to choose Tigera

Essentials for Kubernetes. With Tigera’s expertise and professional

grade SLA, they were able to do both confidently - increasing

not only their ability to scale, but maintain security within their

environment with greater insight and transparency.

STRENGTHS

DID YOU KNOW?

• 	 Builds on popular and proven open source

technologies

• 	 Policy query utility, auditing, and violation alerting

• 	 Expert advice and implementation support

• 	 Production Support 24x7 SLA with 30 Minute

Response Time

6 of the Forbes top 10 cloud operators are using

Tigera’s technologies.

CATEGORY
Application

Connectivity

NEW RELEASES
Every two months

OPEN SOURCE
Yes

WEBSITE tigera.io BLOG blog.tigera.io TWITTER @tigeraio

SPONSORED OP IN ION

60% of web services contain high
risk vulnerabilities.

http://tigera.io
https://tigera.io
https://tigera.io
https://blog.tigera.io
https://blog.tigera.io
https://twitter.com/tigeraio

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

4 2

To gather insights on how companies are currently

orchestrating and deploying containers, we spoke

with 15 executives who are familiar with container

deployment today. Here’s who we talked to:

MARK THIELE CHIEF STRATEGY OFFICER, APCERA

RANGA RAJAGOPALAN CTO AND CO-FOUNDER, AVI NETWORKS

CHANDRA SEKAR V.P. MARKETING, AVI NETWORKS

DUSTIN KIRKLAND UBUNTU PRODUCT AND STRATEGY, CANONICAL

PHIL DOUGHERTY CEO, CONTAINERSHIP

ANDERS WALLGREN CTO, ELECTRICCLOUD

LUCA RAVAZZOLO PRODUCT MANAGER, INTERSYSTEMS

RAJESH GANESAN DIR. OF PRODUCT MANAGEMENT, MANAGEENGINE

JIM SCOTT DIR. OF ENTERPRISE STRATEGY & ARCHITECTURE, MAPR

BROOKS CRICHLOW V.P. PRODUCT MARKETING, MONGODB

DEREK SMITH CEO, NAVEEGO

FEI HUANG CEO, NEUVECTOR

CHRIS BRANDON CEO, STORAGEOS

WEI LIEN DANG V.P. OF PRODUCTS, STACKROX

JOHN MORELLO CTO, TWISTLOCK

KEY FINDINGS
 01 The most important elements of orchestrating and deploying
containers are wide-ranging and require a platform, support
framework, infrastructure, or ecosystem. The elements of this
ecosystem should include: storage, network, security, management,
load balancing, provisioning, orchestration/scheduling, lifecycle

management, patch management, deployment, automation,

bursting, monitoring, log aggregation, and routing. It’s important

to understand these services are an integrated ecosystem that are

automatically managed with predetermined policies aligned with

the problems that need to be solved.

 02 Kubernetes was the most frequently mentioned tool

that respondents used to orchestrate and deploy containers. Go
and Java were the most popular programming languages for

applications built with containers. However, those were just three of

26 solutions mentioned.

 03 The automation of application deployment and developing
has accelerated the speed of the orchestration and deployment
of containers. This results in high-quality and secure applications

being deployed more quickly. Containers provide a standard unit of

packaging for applications, so developers can focus on individual

components and collaborate when building out the application.

Developers can move these standard units across a variety of

environments. Package lifecycles can be easily automated from

development to deployment to runtime to teardown. This results

in greater reliability and stability, as well as the ability to push new

apps quickly.

 04 Security of containers relies on best practices and scans, as

well as companies’ own solutions. Best practices include: a secure

operating system beneath the container, image scanning, host

security, trusted registries, access controls, and integration with

run-time security. Companies should only deploy what has passed

predetermined security protocols. Some companies

Executive Insights
on Orchestrating
and Deploying
Containers
BY TOM SMITH
RESEARCH ANALYST, DZONE

Containers improve speed to
market with automated, secure
development and deployment.
However, initial set-up can be
complicated.

Containers can be more
secure than traditional virtual
machines, with less developer
input, but they cannot be
forgotten or ignored since
you’re exposing a lot more data.

There’s a lot of hype around
containers, but the reality of
what’s available and actually
being done is lagging behind
the hype by a couple of years.

01

02

03

Q U I C K V I E W

http://www.apcera.com/
http://www.avinetworks.com/
http://www.avinetworks.com/
http://www.canonical.com/
http://www.containership.io/
http://www.electriccloud.com/
http://www.intersystems.com/
https://www.manageengine.com/
http://www.mapr.com/
http://www.mongodb.com/
http://www.naveego.com/
http://www.neuvector.com/
http://www.storageos.com/
http://www.stackrox.com/
http://www.twistlock.com/

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

4 3

have built their own platforms to secure containers, while others

are using Twistlock, Hashicorp Vault, 256bit AES encryption or TLS

for encryption of traffic between nodes, and SSL for frontend

web security.

 05 Containers are helping companies across many industries
accelerate software development and deployment at scale, while
reducing costs and saving IT departments time. Customers can
instantly launch, migrate, and scale applications based on granular
cost-benefit analysis. Solutions providers are reducing the time and
effort by reducing the IT workload environment by 85%, building
an infrastructure for log management, and reducing risk through
automation, which provides healthcare, financial services, telecom,
and entertainment companies with greater flexibility to deliver

against their business objectives.

 06 The complexity and speed of change around developers’
tools and security, are the most common issues affecting the
orchestration and deployment of containers. The rapid evolution of
container platform components such as orchestration,
storage, networking, and systems services like load balancing are
making the entire stack a moving target. This makes it difficult to
have a stable application or service on top of them. The industry will
need to standardize, consolidate, and simplify containers
for mass adoption.

Security and visibility are concerns as well. Containers are
great in a test environment, but they can be tougher to roll out
into production and scale for enterprise-grade services. The

orchestration platform is a substantial attack surface.

 07 The greatest concerns regarding the current state of containers
are complexity, security, and hype. Once it’s in place, a container-
based CI/CD pipeline is incredibly powerful; however, getting
there is not easy. Orchestration systems are not easy to set up and
automate. We need containers talking to each other via registries
and services in a standardized way.

Security is an unknown frontier. We need an ecosystem of
container technology companies to work together to make it
easier for the average enterprise to adopt containers securely. The
security exposure is at the application layer, which is frequently
changing and scaling. We need to think about how security is
architected and implemented from the beginning. We are very
concerned about security, high availability, disaster recovery, and
policy and roles management.

The actual capabilities lag behind the the hype by a couple of
years. This noise and misinformation makes it that much more
complicated for companies to pursue and implement a containers-
based infrastructure. An elementary technology has gotten

overcomplicated with too many vendors blowing smoke.

 08 We’re at an inflection point similar to where virtual machines
were 10 years ago. We have convenient development and packaging
tools for developers that are spreading into IT and operations.
Ultimately this will lead to a better user experience (UX). We are
moving toward the immutable image of deployment where we have
reliability and consistency. We’re making headway on the APIs and
the standards around them. Docker made containers so popular but
the addition of too many things resulted in stability problems and

tools like Rocket evolving from Docker. What happens to Docker
customers as they scale?

As everything scales, there is greater opportunity for hackers and
bots. Keys and security must be maintained, as well as access
policies. The declarative nature of containers will make securely
spinning up containers as easy as spinning up a cloud server
instance today. There’s still speed and efficiency to be rung out of
the application.

What’s next? Serverless with the lambda functionality
offered by AWS and Azure along with remotely scheduled
processes. Hosting constraints are bringing us very close to a
serverless environment. This will become a special discipline
within containers.

 09 Developers need to know a lot when working on orchestrating
and deploying containers. Start by working with the architect or
operations to map how the application will work from end-to-end.
Know the workflow of development, orchestration, and deployment.
Be aware of how the application will handle run-time situations in
a microservices architecture. Learn how to properly build a clean
Docker container without unnecessary components. Remember
to protect the data of your application – storage and data security
must be included in the initial design. Container systems do not
have native persistent storage. Containers can be more secure than
traditional virtual machines with less developer input; however,
security cannot be forgotten or ignored.

 10 Additional considerations involve security, data, and
automation:

•• There is no one solution to container security. The complexity
of virtualized environments requires multiple levels of security
to be in place. There are many best practices for preparing a
secure environment for containers, but the real challenge is
getting the security and visibility needed when containers
are actively running in production and there are suspicious
activities happening in real time. Ultimately, we’ll have active
penetration testing of containers in real time.

•• Data fabric and centralized data storage is overlooked
and developers are missing the benefits. How are people
managing their data when it’s in a container? How do
containers talk to each other? Data is the most critical piece
of the scaling platform you are building out. How are you
managing the central repository in the data center? When
there are multiple data centers, we mirror volumes of data
with data repositories; however, a lot of people overlook the
management of these repositories.

•• I’m not sure organizations realize the importance of
organizational change to get value from a cloud-native
approach. CI/CD is less about the build and orchestration
software you’re using and more about the mindset shift of
automating everything and tearing down the traditional friction
points in deployment.

Tom Smith is a Research Analyst at DZone who excels at gathering
insights from analytics—both quantitative and qualitative—to drive
business results. His passion is sharing information of value to help
people succeed. In his spare time, you can find him either eating at
Chipotle or working out at the gym.





https://twitter.com/ctsmithiii
https://www.linkedin.com/in/ctsmithiii/

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

4 4

This directory of container platforms, orchestration tools, cloud platforms, and registries provides

comprehensive, factual comparisons of data gathered from third-party sources and the tool

creators’ organizations. Solutions in the directory are selected based on several impartial criteria,

including solution maturity, technical innovativeness, relevance, and data availability.

Solutions Directory

COMPANY PRODUCT PRODUCT TYPE FREE TRIAL WEBSITE

Amazon EC2 Container Registry Container image registry Free tier available aws.amazon.com/ecr

Amazon EC2 Container Service Containers-as-a-Service Free tier available aws.amazon.com/ecs

Anchore Anchore Container image security
Demo available by

request
anchore.com

Anchore Anchore Navigator Container monitoring Free solution anchore.io

Apache Software
Foundation Mesos Cluster management software Open source mesos.apache.org

Apcera Apcera PaaS, container platform Free tier available apcera.com/platform

Apprenda Apprenda Platform
PaaS, container platform, Kubernetes-
as-a-Service

Available by
request

apprenda.com/platform

Aqua Aqua Container Security Platform Container image security
Demo available by

request
aquasec.com/products/aqua-container-security-
platform

Bitnami Stacksmith Containers-as-a-Service
Available by

request
stacksmith.bitnami.com

CA Technologies Automic Continuous Service Service orchestration
Available by

request
automic.com/products/automic-service-
orchestration

Canonical Ubuntu Core Container OS Open source developer.ubuntu.com/core

Cisco Contiv Container-defined networking Open source contiv.github.io

ClusterHQ FlockerHub Docker Volume Repository In open beta clusterhq.com/flockerhub/introduction

http://aws.amazon.com/ecr
http://aws.amazon.com/ecs
http://anchore.com
http://anchore.io
http://mesos.apache.org
http://apcera.com/platform
http://apprenda.com/platform
http://aquasec.com/products/aqua-container-security-platform
http://stacksmith.bitnami.com
http://automic.com/products/automic-service-orchestration
http://developer.ubuntu.com/core
http://contiv.github.io
http://clusterhq.com/flockerhub/introduction

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

4 5

Solutions Directory
COMPANY PRODUCT PRODUCT TYPE FREE TRIAL WEBSITE

Codefresh Codefresh CI/CD platform for containers Free tier available codefresh.io

CoreOS Quay Enterprise Private container image registry 30 days coreos.com/quay-enterprise

CoreOS Clair Container image security Open source coreos.com/clair/docs/latest

CoreOS Tectonic Containers-as-a-Service
Free up to ten

nodes
coreos.com/tectonic

CoreOS Flannel Container-defined networking Open source coreos.com/flannel/docs/latest

Datadog Datadog
Server monitoring, container
monitoring

14 days datadoghq.com

Diamanti Diamanti Container-defined storage hardware N/A diamanti.com/products

Docker Docker Container platform Free tier available docker.com/get-docker

Docker Docker Swarm
Container orchestration and
clustering

Open source github.com/docker/swarm

Docker Docker Compose Multi-container application tool Free solution docs.docker.com/compose/install

Docker Docker Hub Container image registry
Free for public

repos
hub.docker.com

Docker Docker Trusted Registry Private container image registry 30 days
docker.com/enterprise-edition#/container_
management

Docker Docker Cloud Containers-as-a-Service
Available by

request
cloud.docker.com

Docker Docker EE
Containers-as-a-Service, container
security

Free tier available docker.com/enterprise-edition

Google Kubernetes Container orchestration Open source kubernetes.io

Google Google Cloud Container Registry Container image registry Free based on use cloud.google.com/container-registry

Google Google Container Engine
Containers-as-a-Service, container
orchestration

$300 free credit cloud.google.com/container-engine

Hedvig
Hedvig Distributed Storage

Platform
Container-defined storage

Demo available by
request

hedviginc.com/product#hedvig-distributed

IBM Bluemix Containers
Containers-as-a-Service, Kubernetes-
as-a-Service

Free tier available ibm.com/cloud-computing/bluemix/containers

http://codefresh.io
http://coreos.com/quay-enterprise
http://coreos.com/clair/docs/latest
http://coreos.com/tectonic
http://coreos.com/flannel/docs/latest
http://datadoghq.com
http://diamanti.com/products
http://docker.com/get
http://github.com/docker/swarm
http://docs.docker.com/compose/install
http://hub.docker.com
http://docker.com/enterprise-edition#/container_management
http://cloud.docker.com
http://docker.com/enterprise-edition
http://kubernetes.io
http://cloud.google.com/container-registry
http://cloud.google.com/container-engine
http://www.hedviginc.com/product#hedvig-distributed
http://ibm.com/cloud-computing/bluemix/containers

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

4 6

COMPANY PRODUCT PRODUCT TYPE FREE TRIAL WEBSITE

Instana
Instana Infrastructure Quality

Management
Infrastructure monitoring 14 days instana.com/infrastructure-management

JFrog Artifactory Artifact Repository Manager 30 days jfrog.com/artifactory

Joyent Triton
Container networking and
management platform

$250 credit joyent.com/triton/compute

Kontena Kontena Platform Container platform Open source kontena.io/platform

Loggly Loggly Log management and analytics
Available by

request
loggly.com

Mesosphere DC/OS Container orchestration Open source dcos.io

Mesosphere Enterprise DC/OS
Container orchestration and
monitoring

Available by
request

mesosphere.com/product

Microsoft Windows Nano Server Container OS 180 days
docs.microsoft.com/en-us/windows-server/get-
started/getting-started-with-nano-server

Microsoft Azure Container Service
Containers-as-a-Service,
Orchestration-as-a-Service

Free tier available
azure.microsoft.com/en-us/services/container-
service

Nirmata Nirmata Container management platform Free tier available nirmata.com/product

Oracle Smith Microcontainer builder Open source github.com/oracle/smith

Oracle CrashCart Microcontainer debugging tool Open source github.com/oracle/crashcart

Oracle RailCar Rust-based container runtime Open source github.com/oracle/railcar

Oracle Wercker CI/CD platform for containers Free tier available wercker.com

Packet Packet Infrastructure-as-a-Service Free tier available packet.net/features

Pivotal Cloud Foundry PaaS, container platform Open source pivotal.io/platform

Platform9 Platform9 Managed Kubernetes Kubernetes-as-a-service Sandbox available platform9.com/managed-kubernetes

Portworx Portworx
Container data services and
networking

Demo available by
request

portworx.com

Prometheus Prometheus Container monitoring Open source prometheus.io

http://instana.com/infrastructure-management
http://jfrog.com/artifactory
http://joyent.com/triton/compute
http://kontena.io/platform
http://loggly.com
http://dcos.io
http://mesosphere.com/product
http://docs.microsoft.com/en-us/windows-server/get-started/getting-started-with-nano-server
http://docs.microsoft.com/en-us/windows-server/get-started/getting-started-with-nano-server
http://azure.microsoft.com/en-us/services/container-service
http://nirmata.com/product
http://github.com/oracle/smith
http://github.com/oracle/crashcart
http://github.com/oracle/railcar
http://wercker.com
http://packet.net/features
http://pivotal.io/platform
http://platform9.com/managed-kubernetes
http://portworx.com
http://prometheus.io

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

4 7

COMPANY PRODUCT PRODUCT TYPE FREE TRIAL WEBSITE

Rancher Labs Rancher Container management platform Open source rancher.com/rancher

Rancher Labs RancherOS Container OS Open source rancher.com/rancher-os

Rapid7 Logentries Log management and analytics 30 days logentries.com

Red Hat Atomic Host Container OS Open source projectatomic.io

Red Hat Atomic Registry Private container image registry Open source projectatomic.io/registry

Red Hat Atomic Scan Container image security Open source github.com/projectatomic/atomic

Red Hat OpenShift Container Platform PaaS, container platform Free tier available openshift.com/container-platform

Sematext Docker Agent
Container monitoring and log
management

30 days sematext.com/docker

Sematext Kubernetes Agent
Kubernetes monitoring and log
management

30 days sematext.com/kubernetes

Sensu Sensu Core Container monitoring Open source sensuapp.org

Splunk Splunk Cloud Log management and analytics 15 days splunk.com/en_us/products/splunk-cloud.html

Sumo Logic Sumo Logic Log management and analytics Free tier available sumologic.com

Sysdig Sysdig Falco
Behavioral activity monitor with
container support

Open source sysdig.org/falco

Sysdig Sysdig Monitor
Container Monitoring and
Troubleshooting

14 Days sysdig.com

Sysdig Sysdig Open Source Linux system level visibility Open source sysdig.org

Tigera Canal Container-defined networking Open source github.com/projectcalico/canal

Twistlock Twistlock Trust Container image security Free tier available twistlock.com

VMware Photon OS Linux container host Open source vmware.github.io/photon/

Wavefront Wavefront Cloud monitoring and analytics
Available by

request
wavefront.com/product

Weaveworks Weave Net Container-defined networking Open source weave.works/oss/net

http://rancher.com/rancher
http://rancher.com/rancher-os
http://logentries.com
http://projectatomic.io
http://projectatomic.io/registry
http://github.com/projectatomic/atomic
http://openshift.com/container-platform
http://sematext.com/docker
http://sematext.com/kubernetes
http://sensuapp.org
http://splunk.com/en_us/products/splunk-cloud.html
http://sumologic.com
https://www.sysdig.org/falco/
https://sysdig.com/
https://www.sysdig.org/
http://github.com/projectcalico/canal
http://twistlock.com
http://vmware.github.io/photon
http://wavefront.com/product
http://weave.works/oss/net

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

4 8

Diving Deeper
INTO CONTAINERS

TOP #CONTAINERS TWITTER ACCOUNTS

TOP CONTAINERS REFCARDZ TOP CONTAINERS VIDEOS TOP CONTAINERS RESOURCES

CONTAINER-RELATED ZONES

@ericschabell @rhatdan

@csanchez

@proudboffin

@nathankpeck

@RealGeneKim

@imesh

@JimBugwadia

@launchany

@siruslan

Cloud dzone.com/cloud
The Cloud Zone covers the host of providers and utilities that make
cloud computing possible and push the limits (and savings) with which
we can deploy, store, and host applications in a flexible, elastic manner.
The Cloud Zone focuses on PaaS, infrastructures, security, scalability,
and hosting servers.

Integration dzone.com/integration
The Integration Zone focuses on communication architectures,
message brokers, enterprise applications, ESBs, integration protocols,
web services, service-oriented architecture (SOA), message-oriented
middleware (MOM), and API management.

DevOps dzone.com/devops
DevOps is a cultural movement, supported by exciting new tools, that
is aimed at encouraging close cooperation within cross-disciplinary
teams of developers and IT operations. The DevOps Zone is your hot
spot for news and resources about Continuous Delivery, Puppet, Chef,
Jenkins, and much more.

Getting Started With Docker
Teaches you typical Docker workflows, building
images, creating Dockerfiles, and includes helpful
commands to easily automate infrastructure and
contain your distributed application.

Java Containerization
Java + Docker = separation of concerns the way it
was meant to be. This Refcard includes suggested
configurations and extensive code snippets to
get your Java application up and running inside a
Docker-deployed Linux container.

Getting Started With Kubernetes
Containers weighing you down? Kubernetes can
scale them. In order to run and maintain successful
containerized applications, organization is key.
Kubernetes is a powerful system that provides a
method for managing Docker and Rocket containers
across multiple hosts. This Refcard includes all you
need to know about Kubernetes including how to
begin using it, how to successfully build your first
pod and scale intelligently, and more.

What Are Containers?
Running containers in the AWS Cloud allows you to
build robust, scalable applications and services by
leveraging the benefits of the AWS Cloud such as
elasticity, availability, security, and economies
of scale.

Containers vs. Virtual Machines
VMs and Containers differ on quite a few
dimensions, but primarily because containers
provide a way to virtualize an OS in order for
multiple workloads to run on a single OS instance,
whereas with VMs, the hardware is being
virtualized to run multiple OS instances.

Indexed Containers
The search for an expressive calculus of datatypes
in which canonical algorithms can be easily written
and proven correct has proved to be an enduring
challenge to the theoretical computer science
community.

Introduction to Docker
and Containers

youtube.com/watch?v=IEGPzmxyIpo

Cloud Computing
Explained

youtube.com/watch?v=QJncFirhjPg

Demystifying Docker
youtube.com/watch?v=q1qEYM_SESI

https://twitter.com/ericschabell
https://twitter.com/rhatdan
https://twitter.com/csanchez
https://twitter.com/proudboffin
https://twitter.com/nathankpeck
https://twitter.com/RealGeneKim
https://twitter.com/imesh
https://twitter.com/JimBugwadia
https://twitter.com/launchany
https://twitter.com/siruslan
https://dzone.com/cloud-computing-tutorials-tools-news
https://dzone.com/enterprise-integration-training-tools-news
https://dzone.com/devops-tutorials-tools-news
https://dzone.com/refcardz/getting-started-with-docker-1
https://dzone.com/refcardz/continuous-integration
https://dzone.com/refcardz/java-containerization
https://dzone.com/refcardz/kubernetes-essentials
https://dzone.com/refcardz/getting-started-with-microservices
https://aws.amazon.com/containers/
https://dzone.com/refcardz/continuous-integration
https://newsroom.netapp.com/blogs/containers-vs-vms/
https://dzone.com/refcardz/continuous-integration
http://strictlypositive.org/indexed-containers.pdf
https://www.manning.com/books/the-tao-of-microservices
https://dzone.com/refcardz/continuous-integration
https://www.youtube.com/watch?v=IEGPzmxyIpo
https://www.youtube.com/watch?v=IEGPzmxyIpo
http://www.youtube.com/watch?v=IEGPzmxyIpo
https://www.youtube.com/watch?v=IEGPzmxyIpo
https://www.youtube.com/watch?v=QJncFirhjPg
https://www.youtube.com/watch?v=QJncFirhjPg
http://microservices.io/
http://youtube.com/watch?v=QJncFirhjPg
https://www.youtube.com/watch?v=q1qEYM_SESI
http://youtube.com/watch?v=q1qEYM_SESI
http://www.enterpriseintegrationpatterns.com/
https://twitter.com/ericschabell
https://twitter.com/rhatdan
https://twitter.com/JimBugwadia
https://twitter.com/proudboffin
https://twitter.com/siruslan
https://twitter.com/RealGeneKim
https://twitter.com/imesh
https://twitter.com/csanchez
https://twitter.com/launchany
https://twitter.com/nathankpeck
https://aws.amazon.com/containers/
https://newsroom.netapp.com/blogs/containers-vs-vms/
http://strictlypositive.org/indexed-containers.pdf
https://www.youtube.com/watch?v=IEGPzmxyIpo

DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

DZONE.COM/GUIDES DZONE’S GUIDE TO ORCHESTRATING & DEPLOYING CONTAINERS

4 9

APPLICATION PERFORMANCE

MONITORING (APM)

Combines metrics on all factors that

might affect application perfor-

mance (within an application and/

or web server, between database

and application server, on a single

machine, between client and server,

etc.); usually (but not always)

higher-level.

APPLICATION RELEASE AUTO-

MATION (ARA)
The process of packaging and de-

ploying software from development

to production, where software

is moved through different

environments and releases are

coordinated automatically.

BUILD ARTIFACT
The resulting application or object

created by a build process. Typically

this involves source code being com-

piled into a runtime artifact. In the

Java ecosystem, this involves Java

source code being compiled into a

JAR or WAR file.

CONTAINER
Resource isolation at the OS (rather

than machine) level, usually (in

UNIX-based systems) in user space.

Isolated elements vary by containeri-

zation strategy and often include file

system, disk quota, CPU and mem-

ory, I/O rate, root privileges, and

network access. Much lighter-weight

than machine-level virtualization and

sufficient for many isolation require-

ment sets.

CONTAINER IMAGE
A container image is a essentially

a snapshot of a container. They

are created with a build command

and produce a container that you

can later run.

CONTINUOUS DELIVERY
A software engineering approach

in which continuous integration,

automated testing, and automated

deployment capabilities allow

software to be developed and

deployed rapidly, reliably, and

repeatedly with minimal human

intervention.

DATA VOLUME
A marked directory inside of a con-

tainer that exists to hold persistent

or commonly shared data.

DEVOPS
An IT organizational methodology

where all teams in the organization,

especially development teams

and operations teams, collaborate on

both development and deployment

of software to increase software

production agility and achieve

business goals.

DOCKERFILE
A file that contains one or more

instructions that dictate how a con-

tainer is to be created.

DOMAIN NAME SERVICE (DNS)
A hierarchical naming system for

computers and systems

EVENT-DRIVEN ARCHITECTURE
A software architecture pattern

where events or messages are pro-

duced by the system, and the system

is built to react, consume, and detect

other events.

INFRASTRUCTURE AS CODE
Process for managing and deploy

your hardware and software infra-

structure through machine automa-

tion rather than manual

configuration.

LOG FILES
A document that records events that

happen in a piece of software or

messages between different

pieces of software.

METADATA

Set of structured logic that provides

context and information to

analyze data.

MICROSERVICES ARCHITECTURE
A development method of designing

your applications as modular servic-

es that seamlessly adapt to a highly

scalable and dynamic environment.

ORCHESTRATION
The method to automate the man-

agement and deployment of your

applications and containers.

PRIVATE CONTAINER REGISTRY
A private and secure location to

publish, store, and retrieve container

images for software you use in your

infrastructure.

PROXY
An agent that intercepts and for-

wards traffic.

RESILIENCE
The ability for a system or server

to recover from equipment failures,

timeouts, and power outages.

SERVICE MESH
A set of proxies providing resilience

and other network capabilities to

applications without application

interference.

SIDECAR

An application or proxy co-deployed

with the main application or service

to provide enhanced functionality to

the main application.

GLOSSARY

COGNITIVE COMPUTINGMACHINE LEARNING DEEP LEARNINGCHATBOTS

Visit the Zone

https://dzone.com/artificial-intelligence-tutorials-tools-news

