
Overview
The promise of microservices is the ability to increase developer agility

by breaking the application into smaller, more manageable components

with clear interfaces. As a result, making changes to a microservice

requires less coordination between components and less testing. These

smaller components significantly improve the agility, scalability, and

availability of applications, which offers significant benefits to devel-

opers as they seek to deploy new application features rapidly to meet

customer demands.

While unquestionably adding to agility, microservices aren't for every ap-

plication. When starting with microservices, it's important to remember

that it's not something you can adopt in a vacuum. Microservices require

significant development and delivery skills, including security built in

and automated at every layer of development, a mature DevOps environ-

ment, and a high degree of standardization and automation using tech-

nology such as containers and Kubernetes for container orchestration.

While microservices can be used in any industry, right now it makes the

most sense to adopt them in organizations that use Agile development

methodologies and need to make changes to customer facing applica-

tions quickly. Highly regulated industries and those that use Waterfall

development methodologies and have less frequent software releases,

such as healthcare, government, oil and gas, and manufacturing, may

not benefit from a move to microservices architectures. Other indus-

tries, such as financial services, already have an agile development

environment and a customer base that demands innovation and rapid

delivery and, therefore, benefit greatly from the adoption of microser-

vices. Industries that require services to always be available, reliable,

and responsively scalable based on real-time demand benefit from a

move to microservices.

Microservices and FinTech: A Use Case
Financial organizations have been facing significant competition and

disruption due to the introduction, and now expectation, of technol-

ogy that allows end users to rapidly make mobile payments, transfer

Managing
Microservices

CONTENTS

öö Overview

öö Microservices and FinTech: A Use
Case

öö Microservices Benefits and
Requirements

öö How to Manage Microservices

öö DevOps + Microservices

öö Conclusion

BROUGHT TO YOU IN PARTNERSHIP WITH

1

WRITTEN BY ARIFF KASSAM
CHIEF TECHNOLOGY OFFICER, NUODB

https://kubernetes.io/
https://www.nuodb.com/dev-center/community-edition-download?utm_medium=display&utm_source=dzone&utm_campaign=dzone-microservices-ref-card&utm_content=box-ad

Your microservices are portable,
flexible, and scalable.

Is your database?

NuoDB’s cloud-native distributed SQL database helps enterprise
organizations overcome the complex challenges faced when trying to
move enterprise-grade, transactional applications to the cloud.

Learn more at nuodb.com.

Learn why NuoDB is the database to build your future on:
www.nuodb.com/financial-services

https://www.nuodb.com/nuodb-financial-services?utm_medium=display&utm_source=dzone&utm_campaign=dzone-microservices-ref-card&utm_content=full-page

3 BROUGHT TO YOU IN PARTNERSHIP WITH

MANAGING MICROSERVICES

money, make or request loans, conduct fundraising, and access wealth

management tools. FinTech, or financial technology, encompasses any

type of technology in financial services, from mobile payment apps to

cryptocurrency.

FinTech originally referred to technology applied to financial institutions'

back-end systems, but today includes many more consumer-focused

applications, including smartphone apps to manage funds and make

payments, trade stocks, exchange cryptocurrency, and make budgets.

FinTech isn't just for consumers, however. It can also provide better

financial services to businesses, such as expense tracking, accounting

software, employee payment, and even sales tracking and invoicing.

Many banks and early FinTech companies were built on legacy systems,

which they've relied on as they build new apps and interfaces, but the

shift towards digital services necessitates greater flexibility and agility.

Microservices are a perfect fit, as financial services organizations seek

agility and scalability, but may require significant cultural and archi-

tectural shifts. A few important Agile and DevOps competencies for

application delivery teams looking to make the transition to microser-

vices include:

•	 Security embedded in DevOps processes.

•	 Continuous Integration and Continuous Delivery (CI/CD).

•	 Automation of Core Infrastructure and Releases.

Microservices Benefits and Requirements
PROGRAMMING LANGUAGE AGNOSTIC
Microservices do not force any specific programming model, style, or

language due to their technology independence. As each microservice

communicates with other services through standard channels like APIs,

they don't rely on technology-related restrictions. This enables devel-

opment teams to choose the programming language that works best for

each microservice, as well as choosing a particular pattern or database

based on what's best for their use case. Using microservices and con-

tainers, a single instance can host native code, .NET, Java, or any other

programming language that is the best fit for the particular microservice.

REGULATIONS
New regulations are emerging to address the evolving digital payment

economy, which aim to address questions about the use and ownership of

data, operational resilience and business continuity, and increasing com-

petition. In the European Union, the Payment Services Directive version

2, or PSD2, aims to bring banking into the open API economy, which will

drive interoperability and integration through open standards. In order to

meet these standards, financial services will benefit from the advantages

microservices bring to APIs, integration, and open data requirements.

LOGGING AND MONITORING
Logging and monitoring go hand in hand with security, and are essential

for successful microservices deployment. Since microservices architec-

ture is highly distributed, it can be hard to determine where a failure

occurred and what caused it without logging and monitoring tools. Due

to the fact that microservices break an application into many smaller

components, logging generates a lot of data, so it's helpful to choose

tools that help you parse or visualize the results. Prometheus is an open

source application used for event monitoring and learning.

CONTINUOUS INTEGRATION (CI)/CONTINUOUS DELIVERY (CD)
There are many continuous integration build systems available that pro-

vide access to pipeline builds, such as TeamCity, Bamboo, and Jenkins.

Microservices scale extremely well, accommodating increasing numbers

of users and transactions and delivering new functionality rapidly.

Responding in real time to demand isn't an option without an effective

implementation of a CI/CD solution.

INTEGRATION
Microservices make it easier to manage and secure the API layer through

isolation, scalability, and resilience. The APIs enable easy communica-

tion with both internal and external services. Well-defined APIs enable

you to prevent dependencies between microservices while still enabling

the exchange of data.

SECURITY
When deploying microservices, it's important to build security into

your development processes. By embedding security processes and

automating them, it's possible to bolster security in your applications.

The platform used to deploy microservices should provide developers

with options for identity and access control and authorization (such

as OAuth), certificate management capabilities, automated security

updates, periodic automated vulnerability and security scanning, and

control over the container images available for use to limit security risks.

DATA PERSISTENCE
A microservices architecture isolates each microservice from the others,

so you have a choice when addressing data storage and data persistence.

This is not the place to permit open access to a single monolithic

database, which traditional monolithic development environments fre-

quently allow. If your microservices can communicate with one another

through the database, you're likely to see unexpected coupling. Different

microservices each own the data related to the business functionality

supported by that service, and they may require different options. Some

will best use a NoSQL storage system, while others require a SQL-based

relational database. Regardless, each microservice should use unique

credentials and access should be limited to that microservice's data.

Some examples of databases that pair well with microservices are:

•	 MongoDB, an open source NoSQL database.

•	 NuoDB Community Edition (CE), a free distributed SQL database.

CONTAINERS
Containers are the most common deployment mechanism for micro-

services, in part because they deliver many of the same benefits that

microservices offer, such as platform independence, scalability, isolation,

https://prometheus.io/
http://mongodb.com
https://www.nuodb.com/dev-center/community-edition-download

4 BROUGHT TO YOU IN PARTNERSHIP WITH

MANAGING MICROSERVICES

resource efficiency, and speed. Because containers can easily be scaled

out and back, it's relatively simple to spin up a number of instances of

a specific version of your service for development, test, staging, and

production environments.

DISTRIBUTED SYSTEMS
Microservices architecture enables the concept of decentralized data

management, supporting distributed deployment. Microservices de-

ployed in containers allow you to reprovision any container individually,

or replace, deprecate, or add new microservices when there's a new

feature to release, a vulnerability to patch, a bug to resolve, or any other

change that you want to roll out rapidly. They're also simple to scale

independently and responsively, so you can scale out based on demand

for a particular service without scaling the entire application.

LOAD BALANCING AND RESILIENCY
In a microservices environment, load balancing functionality is typically

moved into the software layer, performing the load balancing logic at

the distributed edge. Microservices also provide resiliency by handling

errors through retries, queuing, deadlines, and default and caching

behaviors. When done correctly, microservices architecture can help

you deliver self-healing applications that operate even when there are

partial outages, automatically deploying new containers that allow your

application to recover quickly and seamlessly.

MANAGING SERVICES
When first starting with microservices, your microservices architecture

is likely to be small, and managing them seems simple. However, as the

number of microservices grows, you need to start thinking about the

macro-architecture of your microservices environment. There are many

solutions that offer infrastructure, often referred to as service meshes.

Service meshes provide a control plane, which sets the policy that will

be enacted by the data plane through configuration files, API calls, and

user interfaces, and a data plane, which translates, forwards, and ob-

serves every network packet that flows to and from a service instance.

•	 Linkerd is an open source service mesh that acts as a proxy

between services and provides load balancing, circuit breaking,

service discovery, dynamic request routing, HTTP proxy integra-

tion, retries and deadlines, TLS, transparent proxying, distrib-

uted tracing, and instrumentation. Protocol support includes

HTTP/1.x, HTTP/2, gRPC, and anything TCP-based.

•	 Istio is another widely used open source service mesh and

provides automatic load balancing, fault injecting, traffic shaping,

timeouts, circuit breaking, mirroring, and access controls for HTTP,

gRPC, WebSocket, TCP traffic, automatic metrics, logs, and traces,

and infrastructure level run-time routing of messages.

How to Manage Microservices
With the rise of popularity of microservice architectures, containers are

now the best deployment mechanism for microservices. As noted above,

containers provide many benefits, including platform independence,

resource efficiency, speed, and isolation. They also enable flexibility and

scalability for organizations deploying applications, because containers

can easily be scaled out and back individually based on demand for

those services.

As containers have grown in popularity, managing them at scale is the

next real challenge, which created a need for container orchestration. In

response to this need, Google released Kubernetes as an open source

platform for automating deployment, scaling, networking, managing,

and maintaining availability for container-based applications. Using

microservices, containers, and container orchestration tools together

can simplify running applications in the cloud, which greatly improves

business agility.

Using microservices, containers, and container orchestration, develop-

ers now have on-demand access to IT resources and the architectural

paradigms that help them speed up the process of both development

and moving code from the dev environment to production. This signifi-

cantly improves your ability to transform slowly maturing applications

into adaptable containerized microservices. This is particularly true

when building applications that are stateless.

Building and deploying stateless applications in containers is relatively

easy. Every time you start a stateless application it has the same infor-

mation that it does every time you start it, which makes them easy to

scale horizontally to accommodate increased user demands (add more

instances) and protect against failures (start new instances).

Many applications, however, require persistent state. That means that

these applications require the ability to store data to protect against fail-

ures so that the application will not lose any data. Traditionally, stateful

applications have been much harder to fit into the world of containers.

While databases are the standard for managing state for applications,

traditional databases have a number of issues when managed by a

container orchestration solution, typically Kubernetes.

EXTERNAL PROCESS LIFECYCLE MANAGEMENT
Kubernetes automatically distributes running containers across the

cluster, which is one of the advantages it provides. If a machine fails, any

containers running on that system are automatically restarted on other

nodes in the cluster. Kubernetes also automatically rebalances container

distribution periodically; it's fairly common for containers to be stopped

and then restarted on different nodes. Kubernetes controls the lifecycle

management of container processes.

It's important to note that this lifecycle management is simple for

stateless containers. Stateless containers can be started and stopped at

any time, and stateless containers can be run on any node in the cluster.

As long as you have at least one instance of the container running at any

time, the service that application provides is always available.

Stateful containers aren't as flexible, partly because the state informa-

tion needs to be accessible on any node to which the container can be

https://linkerd.io/
https://istio.io/

5 BROUGHT TO YOU IN PARTNERSHIP WITH

MANAGING MICROSERVICES

moved. Kubernetes recently added container-native storage solutions

to allow the state to be accessed in this way. Issues related to container

lifecycle management remain, such as: to migrate a container from one

node to the other, Kubernetes shuts down the current container and

starts a new container. It's possible that the two container instances

(new and old) briefly run concurrently during this time, which means

that applications could connect to either instance.

Traditional databases can't handle this scenario, because there can only

be a single "active" instance of the database at any given time. All data

written to the database instance being shut down is lost while the new

container becomes the active one. To work in containers and the Kuber-

netes orchestration environment, databases must be capable of handling

multiple processes running at the same time without any data loss.

SCALE OUT
By design, Kubernetes addresses performance issues by deploying more

containers, thus enabling horizontal scale out. This horizontal scale out

is simple for stateless applications. However, because traditional data-

bases only support a single "active" process, they require scale up, not

scale out. Scale up doesn't translate well to the Kubernetes environment.

Kubernetes and containers are built to scale out based on demand,

using as many or as few processes as necessary to handle throughput.

Traditional relational databases can't spawn new Kubernetes pods; that

would require a more expensive machine or necessitate that you shard

your database. To work well in Kubernetes, you need a database that

can scale out for both reads and writes on demand, not one limited by a

single server.

CONSISTENCY
In scale out architectures, there are multiple instances of the container.

For stateful containers, it's important that clients are able to connect to

any instance of the container and receive a consistent view of the data.

Different scale out databases have different consistency models. It's im-

portant for application developers to understand the consistency model

supported by the database they are using.

For some applications, eventual consistency works. Some databases

are able to achieve high availability in distributed environments using

eventual consistency. With this consistency model, the application must

be able to handle consistency conflicts. This may require significant

application changes to support that ability. Many applications being mi-

grated to the cloud and containers require a stricter consistency model,

particularly applications handling business-critical data.

DevOps + Microservices
DevOps is an evolving philosophy, and its goals are to tightly link the

development of

software and its delivery to IT Operations, thus improving the quality

of the software systems as a whole. Much like microservices, a DevOps

approach accomplishes this by segmenting the system into manageable

components, which are owned by teams that can resolve issues that

prevent the system from operating properly.

Most DevOps advocates consider CI and CD defining attributes of

DevOps. Continuous Integration allows developers to integrate changes

into the source code mainline as soon as they're completed, which is

easier when creating microservices because there's less testing needed

when each component is built to operate independently. Likewise, Con-

tinuous Delivery allows microservices to be updated as needed.

Automating the process using CI/CD tools is also essential for successful

adoption of DevSecOps, which is when security is automated and inte-

grated within DevOps. Including (and automating) security tools into the

DevOps process is essential, because there simply isn't time in a mature

microservices environment for security to be an afterthought. To build

an environment in which microservices and security co-exist, you must

develop both a plan and a framework for development, governance, and

management of microservices.

OPERATORS
Kubernetes Operators help encode the human operational logic

normally required to manage services running of a Kubernetes-native

application and aim to make day-to-day operations easier. Operators

on application container platforms, such as Red Hat OpenShift and

Rancher, can help end users experience the next level of benefits from a

Kubernetes-native infrastructure, with services designed to work across

any cloud where Kubernetes runs. As microservices are typically deliv-

ered via containers, Operators are an important part of the deployment

process for deploying stateful applications in Kubernetes.

Kubernetes Operators and operator catalogs, such as the new OpenShift

OperatorHub and OperatorHub.io, take complicated technical solutions

and make deploying them simple. When Operators were first made

public in a 2016 CoreOS blog post, the goal of Operators was to make the

software itself include operational knowledge that previously resided

outside of the Kubernetes cluster. Operators simplify that process by

implementing and automating the most common Day-1 and Day-2 activ-

ities in a piece of software running inside the Kubernetes cluster.

Operators make the process of modernizing existing applications and

building new applications a lot easier. While Kubernetes has made it

pretty easy to manage and scale web apps, mobile backends, and API

services, until recently it's been more difficult to manage stateful appli-

cations such as databases, caches, and monitoring systems. The new

application domain knowledge contained in Operators makes it possible

to scale, upgrade, and configure these types of applications in Kuberne-

tes in multiple pods across the cluster.

Using the Operator Lifecycle Manager (OLM), users can subscribe to an

Operator --- including individual channels, such as stable vs. beta releas-

es, so subscribers are continuously updated to the latest version and its

new capabilities.

https://www.openshift.com/
https://rancher.com/what-is-rancher/overview/
https://operatorhub.io/
http://innovate.tricentis.com/forrester-devops

6 BROUGHT TO YOU IN PARTNERSHIP WITH

MANAGING MICROSERVICES

Conclusion
Cloud-native applications built on cloud-native infrastructure make it

possible to increase the velocity of software delivery, enable devel-

opers to be more agile, and allow greater application scalability. By

developing and delivering applications using microservices, contain-

ers, and Kubernetes, technology innovators can deliver the agility,

scalability, and availability of applications that modern businesses and

consumers demand.

In this Refcard, we've reviewed how microservices require the right infra-

structure and technical skills within your organization. While microser-

vices provide many advantages, there's a lot to consider when deploying

your microservices-based infrastructure. From the considerable benefits

of providing a programming language agnostic framework to the ability

to respond quickly to changing regulations to the tools and skills es-

sential for effective logging, monitoring, and integration, microservices

enable a new degree of flexibility that many developers and engineers

will be quick to embrace.

Using microservices deployed in containers, application container

platforms, Kubernetes, and Operators, you bring many powerful tools

together. These solutions enable applications to scale well to accom-

modate increasing numbers of users and transactions and deliver new

functionality rapidly, which is essential for distributed systems. As you

build new applications and redesign legacy applications, microservices

will serve you well, provided you select solutions that portable, flexible,

and scalable.

Devada, Inc.

600 Park Offices Drive

Suite 150

Research Triangle Park, NC

888.678.0399 919.678.0300

Copyright © 2019 Devada, Inc. All rights reserved. No part of this

publication may be reproduced, stored in a retrieval system, or

transmitted, in any form or by means electronic, mechanical,

photocopying, or otherwise, without prior written permission of

the publisher.

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects, and de-

cision makers. DZone offers something for everyone, including

news, tutorials, cheat sheets, research guides, feature articles,

source code, and more. "DZone is a developer’s dream," says PC

Magazine.

Written by Ariff Kassam, Chief Technology Officer, NuoDB
Ariff is responsible for defining and driving NuoDB’s product strategy. Kassam brings 20 years of database and
infrastructure experience to NuoDB to help the company achieve its vision of a distributed database that can manage
an organization’s most valuable data while exploiting the emerging benefits of modern infrastructures such as cloud
and containers.

