
������� � �� � ��� � �� � ���� �� ���� ��� �� ���

����������
�����
� � �
	� ��� ��� � ��

�������� �� ��� � ��� � �� ����

DZONE.COM/GUIDES

PAGE 2 OF 38THE DZONE GUIDE TO CONTAINERS

Table of ContentsDear Reader,

Containers have come a very long way in the past couple of decades.

Believe it or not, the concept of containers first emerged back in 1979

when the chroot system call was introduced to isolate processes

and segregate files. It wasn’t until 2000 that we saw the next major

development — FreeBSD jails — and from there, container maturity has

sped up drastically.

From the introduction of Docker to LXC to Kubernetes, the world of

containers has been constantly evolving — and it is not going to slow

down any time soon. This burgeoning interest, of course, has given way to

myriad new developments, engineering hurdles, and security flaws.

Container security in particular has become important to a greater extent

as container adoption has increased. The Docker Hub security breach of

April 2019 revealed the usernames and passwords of 190,000 accounts

using the repository to store database container images. The Dirty COW

vulnerability was an 11-year-old bug that was reportedly resolved but

got committed in October 2016 and resulted in attackers being able to

possibly acquire remote root access to a computer. A runC vulnerability

discovered in February 2019 would allow an attacker to gain root-level

code execution.

As the adoption of containers and their counterparts increases

drastically, engineers and enterprises have had to increasingly put work

into ensuring not only container security but also general functionality

and maintenance.

This means more concerted efforts toward the scalability, interoperability,

and optimization of containers. As you’ll learn in our key research

findings, container adoption rates rose from 83% in 2018 to 89% in 2019,

and container adoption rates within operation teams saw a huge increase

from 38% to 60%. We’ve seen similar increases in terms of container

usage throughout all stages of the SDLC as well as in the number of

containers being run by organizations.

In addition to more key research on the growth of containers, DZone’s

third Guide to Containers dives into enhancing deployment containers

on Kubernetes, explores how to use containers with serverless, and

looks into major container orchestration trends. We’ll also take a look at

distributed microservices with containers, Kubernetes security, and key

players in the realm of containers.

Thanks for reading and we hope you enjoy!

DZone is...

WRITTEN BY SARAH DAVIS
CONTENT MARKETING SPECIALIST AT ROI REVOLUTION

3	 Executive Summary
	 BY KARA PHELPS

4	 Key Research Findings
	 BY JORDAN BAKER

7	 Diving Deeper Into Containers

10	 The Essential Challenge of Kubernetes Security
	 BY BOB RESELMAN

14	 Containers and Serverless: Powerful Abstractions in
	 Exchange for Developer Velocity
	 BY SIMONA COTIN

18	 Why Should Developers Care About a Service Mesh?
	 BY NEERAJ PODDAR

22	 Case Studies for Deploying Containers in Your _ 	
 	 Organization
	 BY STEFAN THORPE

25	 Are Containers Still Relevant in 2019?
	 BY LOU BICHARD

30	 Executive Insights on the State of Containers
	 BY TOM SMITH

34	 Containers Solutions Directory

BUSINESS & PRODUCT
Matt Tormollen
CEO

Terry Waters
Interim General Manager

Jesse Davis
EVP, Technology

Kellet Atkinson
Media Product Manager

SALES
Kendra Williams
Sr. Director of Media Sales

Chris Brumfield
Sales Manager

Jim Dyer
Sr. Account Executive

Tevano Green
Sr. Account Executive

Brett Sayre
Account Executive

Alex Crafts
Key Account Manager

Eniko Skintej
Key Account Manager

Craig London
Key Account Manager

Jordan Scales
Sales Development Rep.

MARKETING
Susan Wall
CMO

Aaron Tull
Dir. of Demand Gen.

Waynette Tubbs
Dir. of Marketing Comm.

Ashley Slate
Sr. Design Specialist

Colin Bish
Member Marketing Spec.

Suha Shim
Acquisition Marketing Mgr.

Cathy Traugot
Content Marketing Mgr.

PRODUCTION
Chris Smith
Director of Production

Billy Davis
Production Coordinator

Naomi Kromer
Sr. Campaign Specialist

Jason Budday
Campaign Specialist

Michaela Licari
Campaign Specialist

EDITORIAL
Matt Werner
Publications Coordinator

Mike Gates
Content Team Lead

Kara Phelps
Content & Comm. Manager

Tom Smith
Research Analyst

Jordan Baker
Content Coordinator

Andre Lee-Moye
Content Coordinator

Lauren Ferrell
Content Coordinator

Lindsay Smith
Content Coordinator

Sarah Sinning
Staff Writer

http://dzone.com/guides
https://dzone.com/articles/security-breach-compromises-190k-docker-hub-userna
https://dirtycow.ninja/
https://seclists.org/oss-sec/2019/q1/119

DZONE.COM/GUIDES

PAGE 3 OF 38THE DZONE GUIDE TO CONTAINERS

Software developers use containers for almost everything. They’ve continued

to find new ways to use containers ever since Docker began to build a wave

of excitement around the technology in 2013. From Docker to Kubernetes to

container-specific operating systems, container-related tools have become

more or less indispensable to software development. We surveyed 464 tech

professionals about their positive and negative experiences with containers,

their expectations for the technology, and their choice of tools.

MUCH MORE WIDESPREAD THIS YEAR, ESPECIALLY IN QA/
TESTING
DATA

When asked whether their organizations currently use container technolo-

gies, 70 percent of survey respondents said yes, a jump up from 45 percent

last year. Among those who replied yes to this question, 60 percent said

their organizations use container technologies in the QA/Testing depart-

ment, increasing from 46 percent last year. 79 percent of these respondents

also said their organizations use container technologies in their QA/testing

environments, increasing from 63 percent last year.

IMPLICATIONS

Developers have shown their organizations the value of containers in their

work. Containerized application platforms are designed to improve speed,

reliability, and performance over virtual machines. As containers grow more

widespread, that argument becomes easier and easier to prove with data.

Container technology is particularly crucial for quality assurance and test-

ing. As teams work toward continuous testing and continuous deployment,

they need to stay nimble as their workflow becomes more non-linear.

Testers use containers to run multiple tests simultaneously, for example, as

well as to reduce test times and improve consistency.

RECOMMENDATIONS
Container technology makes modern DevOps possible. The dramatic increase

in adoption from 2018 to 2019 marks an important shift — a new majority of

those surveyed are now using containers. Containers are no longer new, and

their adoption has become a matter of keeping up with the competition.

GROWING ADOPTION, GROWING CHALLENGES
DATA

When asked what challenges containers present to their organization, 63 per-

cent of survey respondents currently using containers said a major concern was

refactoring or re-architecting legacy applications. That’s a significant increase

from last year, when 50 percent of those using containers reported this as an

issue. The next top concern this year is a lack of developer experience with

containers, a challenge shared by 58 percent of respondents using containers.

In 2018, that percentage was negligibly smaller, at 56 percent.

IMPLICATIONS

Refactoring and re-architecting legacy applications has vaulted over a lack

of developer experience to become the most widespread challenge among

organizations using containers. As the adoption of container technology

expands rapidly, so does the need to refactor and re-architect organiza-

tions’ legacy systems — although many organizations choose to build new

applications rather than refactor old ones. At the same time, a lack of devel-

oper experience is unavoidable for organizations just starting the transition

to containers.

RECOMMENDATIONS

The challenge of refactoring and re-architecting is certainly a daunting one.

With a focus on building new applications, however, and a commitment

to move toward continuous integration and continuous deployment, your

organization’s efforts can be re-channeled. The issue of insufficient developer

experience can be solved by taking some time each day to make sure your

team is educated. The best education may be to simply dive in.

DOCKER AND KUBERNETES STILL DOMINATE
DATA

When asked which container technologies their organizations use, 94 per-

cent of survey respondents using containers replied that they use Docker,

followed (distantly) by LXC with just 4 percent. Docker use continues to

increase — it’s up from 91 percent last year.

When asked which container orchestration/management technologies

their organizations use, 70 percent of respondents using containers said

that they use Kubernetes, with Docker Swarm and Amazon ECS trailing at

33 percent and 31 percent, respectively. Kubernetes use is up substantially

from 53 percent in 2018.

IMPLICATIONS

Docker and Kubernetes are closing in on total market domination of their

own niches. Docker spearheaded the gradual move away from virtual

machines to containers. The growth of Kubernetes (now one of the largest

open source communities in the world) may be related to its ability to han-

dle any cloud environment, as well as several well-publicized use cases. For

example, Kubernetes helped the mobile app Pokemon Go scale extremely

quickly when its popularity exploded over the course of a few days.

RECOMMENDATIONS

If you haven’t yet learned your way around these technologies, now is the

time. Docker and Kubernetes will grant you the most flexibility in terms of

choosing a career path, considering the number of organizations that depend

on both. There’s an especially high probably that your future company will be

using Docker. In terms of container orchestration, Docker Swarm and Amazon

ECS are reasonable alternatives for the enterprise. Still, Kubernetes is the way

to go if you’re looking to upskill and teach yourself a tool on your own time.

Executive
Summary
BY KARA PHELPS CONTENT & COMMUNITY MANAGER, DEVADA

http://dzone.com/guides

DZONE.COM/GUIDES

PAGE 4 OF 38THE DZONE GUIDE TO CONTAINERS

Demographics
For the 2019 DZone Guide to Containers, we surveyed 559

developers, with a 79% completion rating. Below, we’ve given a

quick demographic breakdown of these respondents.

•	 Respondents live in three main geographical areas:

–– 35% reside in Europe

–– 26% live in the USA

–– 14% call South Central Asia home

•	 Respondents, on average, have 18 years of experience in the

software/IT industry.

•	 Most respondents work for enterprise-level organizations:

–– 23% work for organizations with 100-999 employees

–– 22% work for organizations with 1,000-9,999 employees

–– 22% work for organizations with 10,000+ employees

•	 Respondents reported three main job roles:

–– 29% work as developers/engineers

–– 25% are architects

–– 20% make their living as developer team leads

•	 Survey-takers reported working on three main types of

software development projects:

–– 84% are currently developing web applications/services

–– 52% are working on developing enterprise business

applications

–– 30% are developing native mobile apps

How Orgs Use Containers
To set a baseline for the rest of the report, let’s begin by examining

the organizational use of containers, and how it has changed over

time. When we asked respondents if their organization currently

uses container technologies, 70% answered yes. This is a rather

astounding number, as last year, in our 2018 Containers Guide

Survey, only 45% of respondents reported that their organization

used containers. Additionally, that percentage of respondents

who told us that their organizations are not using containers fell

from 25% in 2018 to 10% in this year's survey.

Taking a more granular look at these statistics, we find that every

department within a typical software company’s organizational

structure witnessed large increases in container adoption. Among

development teams, container adoption rates rose from 83% in

2018 to 89% in 2019; container use among DevOps teams grew

from 77% to 82%; QA/Testing teams’ adoption of containers went

from 46% to 60%; and operations teams’ container adoption rates

climbed from 38% to 60%. These statistics represent a dramatic

shift in the ways in which containers and container technologies

are used throughout the SDLC.

If we zoom in even farther, going from the departmental level

to the environmental level, we see the same pattern occurring.

In 2018, 87% of respondents reported using containers in

development environments; this year, this number rose to 90%.

Production/deployment environments saw a 7% percent increase

Key Research
Findings
BY JORDAN BAKER
CONTENT COORDINATOR, DEVADA

SURVEY RESPONSES

What percentage of your organization’s workload is containerized? Do you believe your organization has achieved Continuous
Delivery?

�

��

��

��

��

����

�����

������

������

�������

��

��

�

���

��

��������

http://dzone.com/guides

DZONE.COM/GUIDES

PAGE 5 OF 38THE DZONE GUIDE TO CONTAINERS

in container use over the past year, with 80% of this year’s

survey-takers using containers in production/deployment. The

containerization rates of QA/Testing environments jumped from

63% in 2018 to 79% in 2019; and staging environments witnessed

a similar growth in containerization rates, going from 54% in 2018

to 71% this year.

All this is to say that container adoption has increased

dramatically over the past year. This growth was not only

reflected in the number of organizations, teams, and projects

adopting container technologies but also the number of

containers being run by those organizations. In last year’s

survey, 61% of respondents reported that their organizations ran

1-100 containers in production; this year, 46% of respondents

reported thusly. Interestingly, the growth in larger containerized

environments in production was spread out rather evenly among

the different sizes. As this type of statistical breakdown does not

lend itself to compelling prose, here are the numbers reflecting

the year-over-year changes our respondents reported in terms of

the number of containers their organization uses in production:

•	 2018:

–– 1-100: 61%

–– 101-250: 13%

–– 251-500: 6%

–– 501-1,000: 2%

–– 1,001-5,000: 3%

–– 5,000+: 1%

•	 2019:

–– 1-100: 46%

–– 101-250: 16%

–– 251-500: 9%

–– 501-1,000: 6%

–– 1,001-5,000: 4%

–– 5,000+: 4%

Containers as a DevOps Tool
Not much has changed over the past year in terms of the tools

that developers use in their containerization efforts; the field

is still dominated by Docker (and its other products like Docker

Swarm, Docker Enterprise, and Docker Hub) and Kubernetes.

Thus, rather than belabor the point of Docker’s and Kubernetes’s

astronomical adoption rates, in this section, we’ll evaluate the role

that containers play as a means to achieve a more streamlined

development process.

MICROSERVICES ADOPTION

As noted in DZone’s Guide to DevOps: Implementing Cultural

Change, microservices have become an important facet of

DevOps-based development — so much, in fact, that 58%

of respondents to our 2019 DevOps survey reported using

microservices in some capacity (either in production or

development). In this year’s containers survey, we also found

a widespread adoption of microservices among respondents.

When we asked survey-takers if their organizations have adopted

microservices, 70% responded yes. This was a rather large year-

over-year change from our 2018 Containers Guide survey, in

which 57% of the respondents reported that their organization

had adopted microservices. When we compare this year’s data

on microservices adoption to those organizations that are

currently using containers, we find that the two are a popular

pairing. Among those respondents who work for organizations

that use container technology, 60% have adopted microservices.

Additionally, only 10% of survey-takers who reported using

microservices have not adopted container technologies.

CI/CD

Continuous integration and continuous delivery constitute

possibly the most well-known DevOps concepts, and thus seems

like a good barometer with which to measure containers’ effects

on the DevOps process. When we asked survey takers whether

SURVEY RESPONSES

Have containers made your job easier or harder? What benefits do container technologies offer your
organization?

��

�

��

���������������
��������������
�������������
��
������
�	

���������������
��������
�	�������

����������������
��������
�	�������

� �� �� �� �� �� �� �� ��

��

��

��

��

��

��

��

��

��

��

��

����������

�����������

�������������
���

�
����������

	�������
����������

	�
����
�����������������

���������������

�����������

��
��������
��������������

���������������������

���������
��������

http://dzone.com/guides
https://dzone.com/guides/devops-implementing-cultural-change
https://dzone.com/guides/devops-implementing-cultural-change

PAGE 6 OF 38THE DZONE GUIDE TO CONTAINERS

they believe their organization has achieved continuous delivery,

54% said no and 39% responded yes. Interestingly, when we

correspond this data to the data on organizational container

adoption, we get a different story. Among those respondents

whose organizations are using container technologies, 33%

reported that their organization has achieved continuous delivery

and another 33% reported that their organization has not. Thus,

while containers are not the silver bullet for achieving CD, it seems

they may alleviate some of the roadblocks along the way.

In terms of continuous integration, we see a similar story. 62%

of respondents said that they believe their organization has

achieved CI, while 32% told us they have not. Comparing these

numbers to our data on organizations that currently use container

technologies, we find that the rate of organizations both achieving

and not achieving continuous integration fall. Among respondents

who work for organizations that use containers, 50% believe

their organization has achieved CI, while 16% say they have not

achieved CI. Thus, much like in the case of continuous delivery,

containers seem to act more as an impediment remover to the CI

process than an active agent in CI’s success.

EXPECTATIONS VS. REALITY

Containers have received a fair amount of hype over the past

several years. In an attempt to peer through the buzz, in this

section, we’ll be using the data we collected from developers on

what they expected from containers and what they’ve actually

found working with containers to be like.

We began by simply asking respondents what benefits they were

expecting container technologies to offer their organization. The

top answers were as follows: scalability (72%), faster deployment

(69%), ease of maintenance (54%), environmental consistency

(51%), modularity (48%), and portability (42%). Out of all these

potential benefits, ease of maintenance (52%) was the only one

where expected and actual benefits (more or less) matched up.

When we asked respondents what benefits containers actually

brought to their organization, all the other factors enumerated

above exceeded expectations (and, in some cases, by quite a

wide margin). The benefits of containers that survey-takers

reported actually witnessing in their organization were as

follows: scalability (77%), faster deployment (77%), modularity

(66%), environmental consistency (61%), and portability (60%).

Modularity and portability seem to be the most unforeseen

benefits offered by containers, with each garnering an 18%

difference between expected and actual benefits.

When it comes to the expected versus actual challenges of

containers, we saw equally interesting results. Unlike the

potential benefits listed above, respondents only reported four

main concerns regarding container adoption: lack of developer

experience (80%, up from 71% in 2018), refactoring/re-architecting

legacy applications (70%), ensuring application and network

security (43%), and application performance monitoring (31%,

down from 38% in 2018). Again, much like we saw with the

benefits of containers, only one of these challenges actually

matched respondents’ expectations, with ensuring application

and network security reported as a real challenge faced by 46%

of respondents. The other three potential challenges proved less

daunting than feared. 63% of respondents told us refactoring/

re-architecting legacy applications was an obstacle, 58% reported

challenges with a lack of developer experience, and 41% said

application performance monitoring proved a challenge (up from

33% in 2018). Out of these four main road blocks, however, only

two were reported as a primary reason why organizations opted

against container adoption: lack of developer (41%) experience

and refactoring/re-architecting legacy applications (21%).

All in all, the benefits of container adoption seem to outweigh the

negatives, as 79% of respondents told us they feel containers have

made their jobs easier (up from 75% in 2018).

SURVEY RESPONSES

Do you believe your organization has achieved Continuous
Integration?

��

��

�

���

��

��������

Is your organization planning to increase the numer of containers
they use?

�

��

��

���

PAGE 7 OF 38THE DZONE GUIDE TO CONTAINERS

@kelseyhightower

@LibbyMClark

@lstoll

@MayaKaczorowski

@brendandburns @BrandonPhilips

@sKriemhild @clare_liguori

@jessfraz @abbyfuller

Diving Deeper
Into Containers

Twitter

Podcasts

Refcardz

Zones

Books

CI/CD for Containers
Containers and orchestration tools have often been cited as ways to

facilitate continuous delivery and continuous integration. Download

this Refcard to learn about the challenges and solutions to utilizing

containers in your DevOps pipeline.

Java Containerization

This Refcard focuses on the design, deployment, service discovery,

and management of Java applications on the open-source project

called Docker so that you can get your Java application up and

running inside a Docker-deployed Linux container.

Persistent Container Storage

Containers are great for building applications with ephemeral data.

But what if you need your data to persist? Download this Refcard to

learn what you need for container storage, discover the benefits of

cloud-native storage.

The Docker Book: Containerization Is the New Virtualization
Dive into how to install, deploy, manage, and extend Docker, as well as how

to use Docker to build containers and services for your specific needs.

Microservices and Containers
Get an analysis of how Docker containers plus microservices can aid in agile

and scalable app development and deployment.

Kubernetes Cookbook: Building Cloud-Native Applications
Learn about successfully using Kubernetes to automate the deployment,

scaling, and management of containerized applications.

Containerization and Why Everyone Loves Docker So Much
Learn about what containerization is, containerization software solutions,

what the appeal of containers is, and how containerization is used.

Tom’s Tech Notes: What You Need to Know About Containers
Get advice from nine industry experts on what you need to know about

containers for modern application development.

Pod as a Service: Containerization & Container Orchestration
Learn about prominent container technologies and their benefits,

considerations, orchestration, and management.

Cloud dzone.com/cloud
The Cloud Zone covers the host of providers and utilities that make cloud

computing possible and push the limits (and savings) with which we can

deploy, store, and host applications in a flexible, elastic manner. The

Cloud Zone focuses on PaaS, infrastructures, security, scalability, and

hosting servers

Microservices dzone.com/microservices
The Microservices Zone will take you through breaking down the

monolith step-by-step and designing microservices architecture

from scratch. It covers everything from scalability to patterns and

anti-patterns. It digs deeper than just containers to give you practical

applications and business use cases.

DevOps dzone.com/devops
DevOps is a cultural movement, supported by exciting new tools, that is

aimed at encouraging close cooperation within cross-disciplinary teams

of developers and IT operations. The DevOps Zone is your hot spot for

news and resources about Continuous Delivery, Puppet, Chef, Jenkins,

and much more.

https://twitter.com/kelseyhightower
https://twitter.com/LibbyMClark
https://twitter.com/lstoll
https://twitter.com/MayaKaczorowski
https://twitter.com/brendandburns
https://twitter.com/BrandonPhilips
https://twitter.com/skriemhild
https://twitter.com/clare_liguori
https://twitter.com/jessfraz
https://twitter.com/abbyfuller
https://dzone.com/refcardz/cicd-with-containers?chapter=1
https://dzone.com/refcardz/java-containerization?chapter=1
https://dzone.com/refcardz/persistent-container-storage
https://www.amazon.com/Docker-Book-Containerization-new-virtualization-ebook/dp/B00LRROTI4/ref=sr_1_1?keywords=The+Docker+Book%3A+Containerization+is+the+new+virtualization&qid=1555959052&s=digital-text&sr=1-1-catcorr
https://www.amazon.com/Microservices-Containers-Parminder-Singh-Kocher-ebook/dp/B07BHQP1QD/
https://www.amazon.com/Kubernetes-Cookbook-Building-Native-Applications/dp/1491979682
https://www.safe.com/blog/2017/12/podcast-containerization-docker/
https://dzone.com/articles/toms-tech-notes-what-you-need-to-know-about-contai
https://www.podbean.com/media/share/pb-78wdy-8e3478
https://dzone.com/cloud-computing-tutorials-tools-news
https://dzone.com/cloud-computing-tutorials-tools-news

DZONE.COM/GUIDES

PAGE 8 OF 38THE DZONE GUIDE TO CONTAINERS

Hello Operator!
Can you get me 99.999?

couchbase.com/kubernetes

Streamline database operations and orchestrate
your enterprise with the most powerful NoSQL.

http://dzone.com/guides
http://couchbase.com/kubernetes

DZONE.COM/GUIDES

PAGE 9 OF 38THE DZONE GUIDE TO CONTAINERS

Flexible microservices are essential to today’s enterprise architecture

because they enable applications to evolve faster and more easily.

However, their flexibility is greatly reduced when database clusters

must be managed in silos because of a lack of standards among

cloud providers.

Leverage Cloud Portability Across Platforms and Providers
The Couchbase Autonomous Operator for Kubernetes increases

flexibility and decreases complexity and cost for the Couchbase NoSQL

database in cloud environments. By enabling cloud portability and

automating operational best practices, Couchbase makes it easy to take

advantage of critical Kubernetes features like centralized management,

persistent storage, auto-scaling, and auto-recovery.

Key Features of Couchbase
1.	 Full-featured Database

Native integration with Kubernetes provides a comprehensive

NoSQL database that supports critical applications with unpar-

alleled performance. The Operator manages all the data services

you expect from a NoSQL database, including rich SQL-based

query and analytics, data synchronization with mobile, and full-

text search.

2.	 Deploy at Will

Couchbase doesn’t force you to choose between on-premises,

private cloud, or a specific public cloud deployment. You can

easily deploy Couchbase within a managed private or public

cloud to maximize flexibility, customizability, and performance.

3.	 Use What You Know

Couchbase has developed strategic partnerships with the most

popular enterprise providers, including Red Hat OpenShift Con-

tainer Platform, and IBM Cloud Kubernetes Service. As cloud ven-

dors build more ways to integrate with their container platforms,

we make it easier to take advantage of their latest advancements.

Couchbase NoSQL Database
The only NoSQL database for business-critical applications

WRITTEN BY ANIL KUMAR
DIRECTOR OF PRODUCT MANAGEMENT AT COUCHBASE

Category NoSQL Database

Case Study
Couchbase's mission is to provide the database that

revolutionizes digital innovation. To make this possible,

Couchbase created the world's first database specifically

designed to help deliver ever-richer and ever-more-personalized

customer and employee experiences. Built with the most

powerful NoSQL technology, Couchbase was architected on

top of an open-source foundation for the massively interactive

enterprise. Our geo-distributed database provides unmatched

developer agility and manageability, as well as unparalleled

performance at any scale, from any cloud to the edge.

Couchbase has become pervasive in our everyday lives;

our customers include industry leaders Amadeus, AT&T, BD

(Becton, Dickinson and Company), Carrefour, Cisco, Comcast,

Disney, DreamWorks Animation, eBay, Marriott, Neiman

Marcus, Tesco, Tommy Hilfiger, United, Verizon, Wells Fargo,

as well as hundreds of other household names. For more

information, visit couchbase.com.

Strengths

New Release Annual Open Source? Yes

Easily Scale Your NoSQL
Database Autonomously on
Kubernetes With Couchbase

•	 Built for change at scale – Support millions of interactions and easily

respond to ever-changing business requirements

•	 Memory-first speed – Rich data access, in-memory replication, 99.999%

availability

•	 Security across the stack – Encrypt, audit, protect, and secure your data

anywhere

•	 Cloud-native, available anywhere – Cross datacenter replication (XDCR) in

any cloud

•	 Fully synced and offline-first – Real-time data sync even when users are offline

Notable Customers
•	 AT&T

•	 PayPal

•	 eBay

•	 Tesco

•	 United

Website

Twitter

Blog

couchbase.com

@couchbase

blog.couchbase.com

PARTNER SPOTLIGHT

http://dzone.com/guides
http://www.couchbase.com
https://www.couchbase.com/
https://twitter.com/couchbase
https://twitter.com/couchbase
https://blog.couchbase.com/

DZONE.COM/GUIDES

PAGE 10 OF 38THE DZONE GUIDE TO CONTAINERS

Kubernetes is fast becoming the way to design and deploy applications in-

tended to run at web scale. It's a big piece of software, filled with hundreds

of details that need to be understood and accommodated. High on the list

of details is security. However, unlike traditional distributed applications of

the past, in which code and environment are somewhat static, the promise

of Kubernetes is that it can support ephemeral systems. In Kubernetes,

applications can be revised on demand and scaled up or down to meet

the need of the moment. Thus, any approach to Kubernetes security must

accommodate both the Kubernetes cluster and its host environment in a

dynamic, comprehensive manner.

This is not an easy undertaking. Fortunately, creating a secure Kubernetes

computing environment is quite achievable once an essential challenge is

met. This challenge is to put tools, policies, and procedures in place that

continuously monitor and secure both the Kubernetes cluster and the host

environment in which it runs.

Allow me to elaborate.

Kubernetes Really is Very Cool
The beauty of Kubernetes is that it takes care of all the details that go with

deploying, accessing, and upgrading the containers that make up a compo-

nentized distributed application. First, you submit declarative manifest files

to Kubernetes, which indicate the repository where relevant container images

are stored. In addition, there are manifest files that describe how to configure

the services that will use those containers as well as the security infrastruc-

ture necessary to access the services and pods in which the containers

reside. Once Kubernetes receives the manifests, it creates the required pods,

including its containers. These pods are created in one or a mix of several

virtual or physical machines that make up the nodes in a given Kubernetes

cluster. Then, Kubernetes creates the services and security mechanisms that

are defined in the relevant manifest file. Once the pods and services are up

and running in the cluster, Kubernetes ensures that state of that deployment

for as long as the application runs. Should a pod malfunction, Kubernetes will

automatically replenish it. If a node fails, Kubernetes will replenish the failing

node's pods in another node. All in all, it's pretty cool.

Security Inside and Outside the Cluster
Kubernetes takes a lot of human labor out of administering a multi-node

distributed application. But, as powerful as Kubernetes's automation is, it

creates problems in terms of security. These problems can be segmented

into two types, those inside the cluster and those outside the cluster.

One example of an inside-the-cluster problem is the recent security

vulnerability found in RunC, which is the container runtime used in many

Kubernetes clusters. The security vulnerability made it possible for a

malicious container to overwrite RunC in order to get root-level access to

the host. Once RunC has root level access, it can wreak havoc on the hosting

machine. The result can be catastrophic.

Another inside-the-cluster problem is based on the very nature of container

architecture. A container is realized at runtime using a container image. Just

about all Kubernetes applications use container images downloaded from

a public or private repository on the internet. While most container images

are safe to use, the fact is you can never really be sure. Container architec-

ture makes it possible for one container image to reference another con-

tainer image, which in turn can reference yet another container image, ad

BY BOB RESELMAN
INDEPENDENT DEVELOPER AND INDUSTRY ANALYST

The Essential Challenge
of Kubernetes Security

QUICK VIEW

01. Security Kubernetes is maturing
as the technology becomes more
commonplace in enterprise IT.

02. Effective Kubenernetes Security is
about what happens inside and outside
of the cluster.

03. Tools and techniques are only as
good as the policies and procedures
they support.

http://dzone.com/guides
https://blog.docker.com/2015/06/runc/

DZONE.COM/GUIDES

PAGE 11 OF 38THE DZONE GUIDE TO CONTAINERS

infinitum in an image chain that can be very long. Trusting that all images in

a chain are secure is a big assumption. Yes, there are tools out there that will

help safeguard things. But, the important thing to understand is that the

risk is there, and bad things have happened due to a malicious container

making its way into a cluster.

Outside-the-cluster problems take many forms. Of course, there are the

security problems that go with any computer, virtual or real, that is connect-

ed to the internet, such as DDoS attacks, injected malware, or out-and-out

invasion. However, a security issue that particular to Kubernetes has to do

with the way pods (and the containers they host) are assigned to a node.

Let me explain.

Remember, unless precautions are taken otherwise, Kubernetes decides

where to create a pod. Imagine that you have a cluster that's made up of

two hundred nodes (virtual machines). These days no human is going to

hand configure two hundred VMs. Instead, it's done automatically.

A script will create the two hundred VMs, which may be in one data center

or in 15 in a variety of locations around the planet. The VMs are made part

of the Kubernetes cluster, either by humans or by automation, as is typical

when spinning up a Kubernetes cluster in a native cloud environment, such

as Google Cloud.

After the cluster is created, either a sysadmin or script will run the Kuberne-

tes manifests required to make the particular distributed application. Then,

the application comes online. No big deal, right? It happens every day. Well,

not so fast.

Let's say that the application of interest is a financial application subject to

a regulation that requires the application to always run on hardware in the

USA. Now, imagine that one of the machines in a data center in the USA fails.

As described above, Kubernetes will replenish the pods that were running

on the failed node elsewhere. Thus, Kubernetes function as designed: it

will replenish the pods on another VM in the cluster. However, in this case,

Kubernetes replenishes the pods on a virtual machine that is running in a

data center in Ireland! The application is now is in violation of a regulatory

requirement and the application's security is compromised. While this

violation is not an overt, malicious assault, it is nonetheless a problem,

potentially a serious one, particularly if the company that owns the financial

application is subject to fines.

Take note, in the example described above, there was nothing wrong with

the internal workings of the cluster. The issue at hand was outside the cluster.

While automation makes large scale VM provision and Kubernetes deployment

possible, it also obscures situations that are or might become hazardous.

So, what's to be done?

Security is Policy and Practice
Kubernetes has moved well beyond being an experiment in container

management. What started out as an internal project at Google is now

a mainstay technology for many companies large and small, and more

are joining the fold every day. As a result, Kubernetes security is now a

first-class concern. As a result, there's a lot of activity taking place in the

Kubernetes Security space.

The Center for Internet Security keeps releasing updates to the Kubernetes

Benchmarks, which is an exhaustive 253 page book, covering over 100

points of concern. The Benchmark describes exactly how to configure,

deploy, and maintain a secure Kubernetes Cluster.

Also, the number of tools available to ensure a secure Kubernetes environ-

ment inside and outside the cluster keeps growing. These tools provide the

continuous scanning and proactive prevention features that are necessary

to ensure that everything is safe and secure, inside and outside the cluster.

For example, Docker Hub, the go-to repository for container image storage of-

fers security scanning for its enterprise customers in its Trust Registry. Another

example is Anchore, an open source tool you can use to scan OS packages,

container images, and Dockerfile configuration. (For those you who want

more information about container security solutions, Rancher Labs provides a

useful list of tools that focus on inside and outside the cluster.)

Tools are necessary, no doubt. But, as history has proven more than once,

all the tools in the world won't matter unless a company has policies and

procedures in place that foster effective security practices and, most impor-

tantly, are easy to follow.

These kinds of policies and procedures lend themselves well to automation

that increases consistency and effectiveness. (Automation never sleeps, hu-

mans do.) For example, DivvyCloud, a platform the specializes in hybrid and

multi-cloud management, has automated policy definition and procedural

support for the CIS Kubernetes Benchmarks. The platform has the ability to

ensure that pods don't go astray. In addition, there are open-source tools

such as, Kube-Bench and Kube-Hunter that put automation at the forefront.

But, regardless of whether your company takes an old school approach, man-

ually inspecting and approving every cluster in force, or goes with state-of-the-

art automation techniques, the important thing is to implement continuous,

comprehensive security measures that focus inside and outside the cluster

into the fabric of the software development process. Creating and maintaining

a secure Kubernetes infrastructure must be as second nature to an IT Depart-

ment as creating and maintaining a sterile operating room is to a hospital.

What happens outside the patient is just as important as what happens on the

inside. Whether it's an operating room in a hospital or the Kubernetes cluster

in your company's data center, there's a lot on the line. Meeting the challenge

of keeping things safe and secure inside and outside the cluster is essential for

any company using Kubernetes in mission-critical, production environments.

BOB RESELMAN is a nationally-known software developer,

system architect and technical writer/journalist. Bob

has written four books on computer programming and

dozens of articles about topics related to software development

technologies and techniques, as well as the culture of software

development. Bob lives in Los Angeles. In addition to his work on

in a variety of aspects of software development and DevOps, Bob

is working on a book about the impact of automation on human

employment. LinkedIn Twitter

http://dzone.com/guides
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://www.cisecurity.org/benchmark/kubernetes/
https://www.cisecurity.org/benchmark/kubernetes/
https://docs.docker.com/datacenter/dtr/2.4/guides/admin/configure/set-up-vulnerability-scans/
https://anchore.com/
https://rancher.com/container-security-tools-breakdown/
https://en.wikipedia.org/wiki/DivvyCloud
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-hunter
https://www.linkedin.com/in/bobreselman/
https://twitter.com/reselbob

DZONE.COM/GUIDES

PAGE 12 OF 38THE DZONE GUIDE TO CONTAINERS

https://aspenmesh.io/?utm_source=dzone&utm_medium=full_ad&utm_campaign=container_guide

https://aspenmesh.io/?utm_source=dzone&utm_medium=full_ad&utm_campaign=container_guide

http://dzone.com/guides
http://aspenmesh.io

DZONE.COM/GUIDES

PAGE 13 OF 38THE DZONE GUIDE TO CONTAINERS

The self-contained, ephemeral nature of microservices comes

with some serious upside, but keeping track of every single one

is a challenge, especially when trying to figure out how the rest

are affected when a single microservice goes down. If you’re op-

erating or developing containerized applications, there’s a good

chance that part of your days are spent wondering what your

services are up to.

Problems like security, load balancing, monitoring, and rate

limiting that had to be solved once for a monolith, now have to be

handled separately for each service. The technology aimed at ad-

dressing these microservice challenges has been rapidly evolving:

1.	 Containers facilitate the shift from monolith to microser-

vices by enabling independence between applications and

infrastructure.

2.	 Container orchestration tools solve microservices build and

deploy issues but leave many unsolved runtime challenges.

3.	 Service mesh addresses runtime issues including observ-

ability, traffic management, and security.

Improving Container Security with Service Mesh
A service mesh provides an advanced toolbox that lets users add

observability, resiliency, and security to containers. One of the

most valuable applications of a service mesh is bolstering cluster

security. There are three distinct capabilities provided by the mesh

that enable a more secure architecture.

TRAFFIC ENCRYPTION

Service mesh allows operators to leverage mTLS to encrypt

traffic between services. The mesh automatically encrypts and

decrypts requests and responses, removing the burden from

application developers. A service mesh helps platform operators

understand and enforce how services are communicating and

prove it cryptographically.

SECURITY AT THE EDGE

A service mesh adds a layer of security at the perimeter Kuber-

netes clusters so any compromising traffic can be addressed as it

enters the mesh. Service mesh route rules help manage compro-

mising traffic at the edge. Egress capabilities allow you to dictate

that network traffic does not go places it shouldn't.

ROLE BASED ACCESS CONTROL (RBAC)

In distributed organizations, an app should only have the mini-

mum amount of permissions and privilege it needs to get its job

done. A service mesh enables fine-grained RBAC so developers can

continue to develop quickly within the security and compliance

standards set by the platform.

Sidecar is a Great Place for Security
Microservices are an opportunity to improve your security posture

but also present challenges around consistency. The best organiza-

tions manage this with the principle of least privilege. That's easier

to apply when a small, single-purpose microservice has clear and

narrowly-scoped API contracts. But there's a challenge as applica-

tion count increases that this principle can be unevenly applied.

Microservices, when managed properly, can increase feature

velocity and enable security teams to fulfill their charter without

becoming the Department of No.

A sidecar service mesh provides a great way to balance the need to

move quickly with the need for an architecturally sound security

posture. Sidecar-based service meshes like Istio put their datapath

functionality into a separate container and then situate that con-

tainer as close as possible to the application they are protecting. A

sidecar service mesh provides the opportunity to get security right

once in the sidecar, and then distribute the sidecar everywhere,

and get back to adding business value instead of duplicating secu-

rity efforts for every service. Check out this blog for more details

on how a sidecar service mesh adds mTLS, perimeter security and

fine-grained RBAC to Kubernetes clusters.

WRITTEN BY ZACH JORY
HEAD OF MARKETING AT ASPEN MESH

Securing Containerized Applications With Service Mesh

WRITTEN BY ANDREW JENKINS
CTO AT ASPEN MESH

http://dzone.com/guides
https://aspenmesh.io/2019/05/securing-containerized-applications-with-service-mesh/

DZONE.COM/GUIDES

PAGE 14 OF 38THE DZONE GUIDE TO CONTAINERS

Much like high-level programming languages are an abstraction of

machine code, serverless is an abstraction for cloud infrastructure.

And knowing when to choose high-level abstraction over low-level im-

plementation (and vice versa) can be quite a challenge sometimes. In

this article, we'll put serverless and containers side-by-side and work

through the advantages and challenges for each. We'll also explore

some of the most common use cases for both technologies and leave

you with some tips that will help you choose more easily.

What Are Containers?
Containers are a form of virtualization that is more lightweight than

the usual virtual machine. The basis of their implementation is LXC

(LinuX Containers), which is a form of kernel-level virtualization

available starting with the Linux Kernel v2.26.4. It is using a feature

called cgroups that allows for better isolation levels and memory

partitioning. In the current ecosystem, containers are the most basic

element of building a cluster of services for your modern micro-

service-based apps. There are multiple implementations of LXC;

however, the brand that has become synonymous with containers

is Docker, and we will focus on Docker containers because they are

most often used in the wild.

Although Docker implements LXC concepts, it also extends the func-

tionality and makes the containers and deployments more portable.

Docker containers are application-centric; allow for automatic builds,

Git-style versioning and operations, and incremental build sharing;

and provide a rich tooling ecosystem for managing your containers.

The tools available allow you to manage and orchestrate your services

in multiple containers with docker-compose, and in more complex

scenarios, you can use kubernetes for even more fine-grained con-

trol over the way your infrastructure behaves in scenarios where your

services need to scale.

What Is Serverless?
You might already be using some serverless components. When your

application relies on managed services like S3, Azure Storage, or Azure

CosmosDB, you're already benefiting from using a serverless architec-

ture. Fully managed and highly scalable services are core tenets of any

serverless system. They clear the path for us to focus on features that

are truly relevant to our business by removing the need for us to learn

how to install, configure, and host them.

At the core of serverless computing are cloud functions. They enable

us to run code in ephemeral containers in reaction to an event. The

execution can be triggered by any managed services integrated with

the platform or some custom sources you might define.

In serverless functions, there's a couple of things you need to be aware

of. You'll end up writing code mostly in the same way you did before,

using the programming languages that you normally use. But because

serverless is abstracting away the server management for you, it also

means that you don't have access to any of the low-level OS APIs. To

BY SIMONA COTIN
SENIOR CLOUD DEVELOPER ADVOCATE

Containers and Serverless:
Powerful Abstractions in
Exchange for Developer Velocity

QUICK VIEW

01. What are containers?

02. What is serverless?

03. What is infrastructure abstraction?

http://dzone.com/guides

DZONE.COM/GUIDES

PAGE 15 OF 38THE DZONE GUIDE TO CONTAINERS

communicate with some of them, you'll need to use a platform API.

Remember, in serverless, you share a physical machine with other users,

so the platform needs to ensure perfect isolation for your environment.

Because your code is running in ephemeral containers, and to allow

your applications to scale out infinitely, you'll need to write stateless

code. This means that you cannot rely on any state being preserved

between function calls. If you do end up having to save state, then you'll

have to use a data store like a message queue or a database.

As documented in the Serverless Working Group whitepaper, the

anatomy of a serverless processing model is:

•	 Event sources or triggers cause the function to run.

•	 Serverless controllers deploy, control, and monitor function

instances and their sources.

•	 Function instances are single functions/microservices that can

be scaled with demand.

•	 Managed services include data stores, authentication provid-

ers, and events.

With serverless, the platform will automatically scale by dynamically

adding and removing resources based on the number of incoming

events. A scale controller will use heuristics for each event type. For

example, when you're listening to queue events, it scales based on

the queue length and the age of the oldest queue message. When no

events are triggering your code to run, the scale controller will reduce

the number of instances running to zero. Scalability is a hard problem

to solve. By outsourcing the job of monitoring and spinning up new

instances, we get to focus on understanding how components in our

system communicate and optimize for that.

Infrastructure Abstraction
The goal of having containers as the building blocks for your infra-

structure is to replace VMs. The advantages of using containers over

VMs help you when prototyping by allowing you to quickly boot up

your machines as opposed to the heavyweight VM. The resulting Dock-

er containers can be easily redistributed as base images or packaged

intermediate layers. You can build a library with these images and use

them as required to construct your microservice-based application

using a cookie-cutter approach for your service containers. Using

orchestration tools like docker-compose and kubernetes, you

can build and configure your microservices cluster locally along with

the network configuration that allows you to specify the way your

microservices communicate. This allows you to replicate your cloud

architecture locally and version the building blocks. This helps with

tracking down dependencies, facilitates debugging, and enables you

to create a CD pipeline for complex microservice-based architectures.

In a sense, it is very similar to having your own cloud available on your

localhost. The orchestration tools allow you to have containers that

fulfill the functionality of both the managed containers and serverless

functions that you have available in your cloud provider of choice.

As your application architecture grows in complexity, so will the chal-

lenge of managing it using the Docker tools. Starting from the con-

tainers, as your microservices evolve, the images can start to become

bulkier and may require trimming of the unnecessary cruft. Otherwise, it

is likely to slow down your CI/CD pipeline speed. So, a periodic optimiza-

tion of your Docker images could be a good practice. This would ensure

that images are as lightweight as they need to be to keep your image

storage requirements under control. Besides the containers that are

part of the app, other challenges arise from the fact that the architec-

ture is essentially that of a distributed system and as such, it requires

mechanisms that enable communication between the services. Luckily,

there are prebuilt Docker images for message queues like kafka, rab-

bitmq, and prepackaged database images for managing your cluster's

persistent state. In normal conditions, the bulk of your services should

be quite well-behaved. But more often than not, some parts of the

system can run into unexpected errors. This is when having a centralized

logging solution is very useful for diagnosing the issue. Again, there are

various pre-built images for enterprise-grade centralized logging, like

logstash and fluentd. These are valuable for tracking down issues

that are causing failures; however, in more specific cases, you can run

into performance issues like suspicious memory or CPU spikes. In these

cases, a more specific type of tool can be used to troubleshoot.

Serverless is the latest step on the path of taking away the burden

of infrastructure. It frees you up from spending time on planning,

configuring, and managing servers. With serverless technologies, what

we lose in controlling infrastructure we gain in developer velocity and

fast, incremental iterations.

Both containers and serverless are key technologies in our cloud-na-

tive adoption journey. Containers will allow for full flexibility in migrat-

ing your existing workloads without needing to change a single line of

code. Serverless, while requiring refactoring, will allow for the auto-

scaling of services that have spiky traffic and reduction of cost. We’ve

walked through the fundamentals and given you the foundation you

need to decide if, when, and how to use containers and serverless in

your projects. To learn more, see “Create Serverless Applications” and

“Deploy and Run a Containerized Web App with Azure App Service” for

step-by-step interactive training and sandbox environments.

SIMONA COTIN is a web developer with a passion for

teaching. She spends most of her time tinkering with

JavaScript in the cloud and sharing her experience

with other developers at community events like meetups and

conferences or online. As a Cloud Developer Advocate, Simona

engages with the web community to help create a great developer

experience with Azure. She loves shipping code to production

and has built network data analytics platforms using Angular,

Typescript, React, and Node.js. LinkedIn Twitter

http://dzone.com/guides
https://docs.microsoft.com/en-us/learn/paths/create-serverless-applications/?WT.mc_id=dzone-article-sicotin
https://docs.microsoft.com/en-us/learn/modules/deploy-run-container-app-service/?WT.mc_id=dzone-article-sicotin
http://Node.js
https://www.linkedin.com/in/simona-cotin-2ba8747/
https://twitter.com/simona_cotin

DZONE.COM/GUIDES

PAGE 16 OF 38THE DZONE GUIDE TO CONTAINERS

Container Infrastructure
in 15 Minutes

SIMPLICITY
■ Easy to buy
■ Easy to deploy
■ Easy to manage
■ Easy to scale

EFFICIENCY
■ 50% less

infrastructure
■ 70% lower capex
■ Integrates

with modern
workflows

SPEED
■ 15-minute

container
infrastructure
deployment

■ 2,400,000+
IOPS

■ 100µs latency
across cluster

CONTROL
■ Developer-

managed
infrastructure

■ Predictable
performance

■ Container-
granular QOS

Diamanti is an enterprise-class platform that integrates Kubernetes, Docker, compute,
network, and persistent storage in one easy-to-deploy solution. With Diamanti, you get:

www.diamanti.com

EMERGING
VENDORS

2018

http://dzone.com/guides
http://www.diamanti.com

DZONE.COM/GUIDES

PAGE 17 OF 38THE DZONE GUIDE TO CONTAINERS

VMware has dominated the virtualization space since it intro-

duced the technology 19 years ago. But experts now cite the rise

of containers as an existential risk to VMware. The Docker contain-

er format, popularized by developers, is taking the datacenter by

storm as enterprises move containers into production.

But what’s driving this transformation? Pressure to modernize

applications and accelerate time-to-market is greater than ever.

That means more frequent releases, straining the old ways of

deploying software and putting the monolithic application stack

under siege. In contrast, many of today’s most advanced distrib-

uted systems are built using frameworks that are deployed as

containers and designed to run on clusters of bare-metal servers

 — without virtual machines.

However, this runs contrary to VMware CEO Pat Gelsinger’s recent

keynote speech at VMworld. In it he stated that virtual machines

are still the best place to run Kubernetes and containers.

What should we make of this? In short, it’s self-serving and

customers know better. VMware’s acquisition of Heptio for $550

million suggests VMware is eager to build IP around contain-

ers, and to figure out how to reduce the risk of virtual machine

obsolescence.

Here’s why VMware should be on the defensive: VMs require

excessive overhead, because inside each VM you have to boot up

an OS. So when you run containers on a VM, you're running a VM

and an OS and a container. Running each container on a VM also

introduces two layers of orchestration — one to manage the virtu-

alization environment, and Kubernetes to manage the container

environment. That means two layers of networking topology to

architect, and two layers of storage to manage.

Many cloud-native apps are not meant to run on VMs, they're

meant to run on bare metal. Most are I/O bound when it comes to

performance. And with VMs, I/O performance — and more impor-

tantly TPS (transactions per second) — suffers.

If containers replace virtual machines and the enterprise data-

center standardizes on Kubernetes, what will the net impact be

on the vendor ecosystem? We’re on the cusp of a revolution much

like VM revolution two decades ago. But at the time, no one knew

how to operate VMs. No one knew how to optimize storage or

manage networks so VMs would work efficiently. It was all new,

and it was all far from optimal.

If containers replace
virtual machines and the
enterprise datacenter
standardizes on Kubernetes,
what will the net impact be
on the vendor ecosystem?

Today, the first attempts at containerized infrastructure from

the hyperconverged players have largely been about trying to

squeeze containers into an obsolete virtualization model. But

next-generation infrastructure vendors like Diamanti are focused

on deploying Kubernetes and containers on bare metal without

VMs — lessons learned from the most sophisticated container

production environments in the world.

WRITTEN BY TOM BARTON
CEO AT DIAMANTI

Why Containers Are an Existential Threat to VMware

http://dzone.com/guides

DZONE.COM/GUIDES

PAGE 18 OF 38THE DZONE GUIDE TO CONTAINERS

Developers are the New Kingmakers of the modern business world. The

meteoric rise in developer status is largely due to the emergence of SaaS

platforms and self-service sales motions. Today's products built by devel-

opers are sold directly to end users via platforms (also built by developers),

thereby reducing the need to maintain a large and expensive salesforce.

This change creates opportunities for businesses to reallocate funds to

development teams that are the new drivers for growth. Modern busi-

nesses require that developers spend most (if not all) of their time adding

business value to the organization.

A major innovation driver across industries is the creation of new appli-

cations built on microservices. Microservices solve many of the resiliency

and scaling challenges of modern applications. However, as microservice

architectures grow, organizations often struggle to manage the complexity

involved with securing (e.g. mutual TLS) and understanding the commu-

nication (e.g. tracing, telemetry) between services. The natural inclination

for solving these problems is to embed more complicated logic in the mi-

croservice itself, which increases complexity and also takes away precious

developer time from adding business value. Additionally, the operations

team in charge of the overall security and uptime of the solution now has

to rely on the developers to enforce security policies or add observability,

which creates a need for the development and security teams to become

more aligned.

These are the problems that a service mesh is designed to solve. Service

mesh is an infrastructure layer for managing communication between

microservices in an application-agnostic way. It allows developers to move

various communication, security, and visibility-related functionalities from

application code to the infrastructure configuration managed by the oper-

ations team. In doing so, it decouples the two teams, reducing the burden

on developers and shifting the entirety of infrastructure concerns to the op-

erator. Developers should care about a service mesh as it reduces the set of

things they have to maintain and build. So, let's explore the service mesh

architecture to understand how it provides these advanced capabilities.

The Advantages of Service Mesh for Developers
Service meshes like Istio work by adding a proxy in the communication

path, which can intercept all traffic (HTTP 1.1, 2.0, gRPC requests, etc.)

going in and out of microservices. As the proxy observes the traffic it

can take various actions like retries, timeouts, adding mutual TLS, and

exporting telemetry on behalf of the application. There are various archi-

tectural options depending on where and how you deploy these proxies,

each with benefits and drawbacks. Istio uses a sidecar deployment

model where the proxies (Envoy) are deployed as a separate container

which can be managed and controlled outside the application container

ensuring the decoupling of operations and development teams. As the

sidecar proxy augments the traffic flowing through your microservices,

it is important for developers to know how to offload functionality to the

proxy and update their application. Let's examine some of the capabili-

ties provided by Istio and how developers can leverage these functional-

ities in their environments.

ADVANCED TELEMETRY
Gathering time series telemetry data is one of the best ways to under-

stand how your application is performing and for getting alerts when user

experience or performance degrades. Istio provides a rich set of metrics

out-of-the-box, which can be easily used to infer the health and perfor-

mance of your microservices. The sidecar proxy collects various request

BY NEERAJ PODDAR
ENGINEERING LEAD AT ASPEN MESH

Why Should Developers

Care About a Service Mesh?

QUICK VIEW

01. Developers are becoming a key
consideration and driver of the business
strategy in a software-driven world.

02. Developers are tasked with helping
the business find more efficient tools
and ways of working.

03. One of the key technologies
that can help developers enable
organizations to gain a competitive
advantage through software delivery is
microservices.

 04. Managing the infrastructure for
microservice architectures can be a
burden to developers, but service mesh
removes infrastructure concerns from
them, so they can spend more time on
feature delivery that drives value for the
business.

http://dzone.com/guides
https://redmonk.com/sogrady/2017/10/20/new-kingmakers-then-now/
https://aspenmesh.io/2018/03/service-mesh-architectures/
https://aspenmesh.io/2018/03/service-mesh-architectures/
https://istio.io/docs/concepts/what-is-istio/#architecture
https://istio.io/docs/concepts/what-is-istio/#architecture
https://www.envoyproxy.io/
https://istio.io/docs/reference/config/policy-and-telemetry/metrics/

DZONE.COM/GUIDES

PAGE 19 OF 38THE DZONE GUIDE TO CONTAINERS

and connection-level statistics and combines them with a user configu-

ration, such as a Kubernetes service and deployment, to add context to

the telemetry without changing the application code. This is beneficial for

the operations team, as they can create advanced SLO dashboards and

alerts in a consistent way without relying on application code. At the same

time, developers are no longer required to generate service-level metrics

if they have Istio in their environment and can focus on adding imple-

mentation-specific metrics which can aid in debugging and diagnosing

application-level problems.

DISTRIBUTED TR ACING
In a microservices architecture, it is often difficult to understand why a

request was made from one microservice to another, as one incoming

request from the end user can generate many internal requests between

microservices. The volume of requests and the lack of context can make it

difficult to pinpoint and debug failures in the system. Distributed tracing

solves this problem by adding special HTTP tracing headers on every

request which are propagated across microservices.

These headers contain the hierarchical context, which can be correlated to

understand the dependencies between microservices. In Istio, the sidecar

proxy when intercepting the traffic automatically adds these headers, creates

the appropriate context (root/child spans) and sends the data asynchronous-

ly to the tracing backend system. This is great as the developers don't have

to write additional logic to export this information, and the metadata asso-

ciated with the spans is guaranteed to be consistent across microservices.

However, to get the full view of the microservice dependencies you will need

to propagate tracing headers from incoming requests to outgoing requests

as described here in your applications. It is important to update your applica-

tion to leverage the full benefit of distributed tracing in Istio.

REQUEST RETRIES
Failures in microservices are common, and sometimes retrying the request

gets a successful response. Traditionally, retry logic has been embedded

in the application code, which over time gets more complicated as routing

logic is added to handle various scenarios. Istio allows you to configure

advanced retry settings for a microservice, which can be customized for

various paths and failures types. This enables operators to easily control

this behavior independent of the application code.

MUTUAL TL S
Securing microservices is an ever-increasing challenge due to the distribut-

ed deployment model, complex communication patterns, and the difficulty

in establishing trust among peers. To solve this issue, developers often end

up implementing complicated security protocols like mutual TLS in their

application, which makes the microservice code harder to maintain. This

makes it difficult for operations to enforce uniformity across microservices

and easily apply critical security patches, as it might require updating all

applications. Istio provides mutual TLS out-of-the-box, which ensures all

traffic between microservices is always encrypted and the identity of the

peers are mutually verified without any modification of the application

itself. The traffic between the application and the sidecar proxy contin-

ues to be in plaintext, the sidecar encrypts traffic before sending it to the

destination, where the sidecar proxy on that side decrypts the traffic before

forwarding it to the application. Additionally, the Istio control plane han-

dles certificate rotations automatically, relieving some manual work from

operations. This means if you're using Istio in your environment you can

achieve your security goals without updating the applications!

SERV ICE DECOMPOSITION
Most microservices often (ironically) start as macro services, and develop-

ers break them apart over time when a natural separation emerges either

in APIs or policy requirements for data access. While you can always break

them apart in code, service meshes like Istio enable a way to decompose

these services without code changes, test the multiple services, and then

split your code and build system to produce several smaller microservices.

Istio also provides advanced pathbased routing, which can be leveraged

to route traffic to different instances of your unified service based on API

request paths. Using Istio telemetry you can verify the performance and

behavior of API-separated instances before actually splitting them apart in

code. This enables a more phased approach to decomposing your services

into smaller, well-defined microservices.

Apart from the above-mentioned benefits, there are a few additional

factors that developers should take into account before adding a service

mesh like Istio in their environments. Adding a sidecar or any form of

proxy outside your application introduces latency, which might not be

acceptable for various latency-sensitive applications. In Istio, as the sidecar

proxy is added on both the client and server, even a small amount of

latency persidecar can add up if you have hard restrictions on the latency

requirements for your service. Another tricky issue which I have often seen

is that your application requires customized load balancing (i.e. some

sort of stateful communication) or has a clustering protocol, and adding

a sidecar (which by default handles load balancing and service discovery)

breaks the existing behavior. There are ways to work around this and still

get other benefits by adding a service mesh but understanding this caveat

and configuring it correctly can ensure a smoother transition. In order to

successfully adopt a service mesh, it is important for developers to have

these conversations with their operations team so that they can minimize

surprises and maximize benefits.

I hope this article simplifies the service mesh landscape for developers,

informs them on why they should care about it, and how to easily embrace

it to drive business value for their organization.=

NEERAJ PODDAR is the Engineering Lead at Aspen Mesh.

He has worked on various aspects of operating systems,

networking, and distributed systems over the span of his

career. He is passionate about developing efficient and performant

distributed applications. At Aspen Mesh, he is currently leading the

efforts to build an enterprise service mesh and their hosted SaaS

platform. In his free time, you can find him playing racquetball

and gaining back the spent calories by trying out new restaurants.

LinkedIn

http://dzone.com/guides
https://cloud.google.com/blog/products/gcp/sre-fundamentals-slis-slas-and-slos
https://aspenmesh.io/2018/07/distributed-tracing-istio-and-your-applications/
https://istio.io/docs/reference/config/networking/v1alpha3/virtual-service/#HTTPRetry
https://istio.io/docs/tasks/security/authn-policy/
https://istio.io/docs/reference/config/networking/v1alpha3/virtual-service/#HTTPMatchRequest
https://istio.io/docs/concepts/performance-and-scalability/#latency
https://www.linkedin.com/in/neeraj-poddar-bb392a9/

DZONE.COM/GUIDES

PAGE 20 OF 38THE DZONE GUIDE TO CONTAINERS

Why Time Series matters
for metrics, real-time, and
sensor data

“MySQL is not intended for time series data… I can testify it is like

pounding nails with a screwdriver. It’s definitely not what you

want to do in any relational database.”

John Burk, Senior Software Developer

DOWNLOAD THE E-BOOK

May 2019

http://dzone.com/guides
https://www.influxdata.com/resources/why-time-series-matters-for-metrics-real-time-and-sensor-data/?utm_campaign=containersguide&utm_medium=partner&utm_source=dzone

DZONE.COM/GUIDES

PAGE 21 OF 38THE DZONE GUIDE TO CONTAINERS

Containers are a game-changer for everyone. Another abstraction

between the infrastructure and the application layers, containers are a

group play and concern IT System Ops, NetOps, and DevOps. However,

professionals in different roles approach container monitoring from

different perspectives, all valid, important, and necessary to build a

complete monitoring strategy.

With the fragmentation of applications into containerized microservices

running in clusters, each container packages the necessary resources to

execute its part of the deal. However, unless its workload, counterparts,

and the network putting the pieces together are equally performant,

the sum of the parts will fall short from delivering a satisfactory whole.

New paradigm requires new perspectives
Container monitoring from the infrastructure perspective went a long

way with platforms like Kubernetes, where an orchestration logical layer

was added to the mix to commoditize infrastructure layer on which

microservices run, while automating deployment and optimizing resource

assignment. However, a misbehaving or underperforming microservice,

even if running on a compliant declared state cluster, can still create a

dismantling effect on network and overall application performance.

Therefore, unless the health of the microservices and their inter-container

activities in a proliferous meshed network is also kept close to heart,

containerized application monitoring will suffer from short-sightedness.

It is clear that monitoring only from the outside will not fit the bill.

InfluxData and its partner ntop are taking the next step in monitoring

containerized application environments with extended Berkeley Packet

Filter (eBPF): shedding some more light from the inside to guide IT to

find out where things are broken or breaking, and who is causing it.

Bringing all together
eBPF opens one more channel to reach deeper in the inner

observation required to make the link between anomalous behavior

and performance variations to what is causing them in a distributed

containerized environment.

However, not only all data, but all eyes and hands should come to the

same place and reduce the burden from setting up, learning ramp up,

managing, and gathering information pieces from multiple monitoring

sources. The complexity of the container era demands one platform

for all types of data, one integrated data source, and one UI for all

visualizations. Bringing these all together will compound insights

and perspectives, leading to a monitoring solution that enables more

intelligent alerts and actionable information.

InfluxData is the leading time series platform and comes out of the box

ready to use. Learn more.

InfluxData
Act in Time

WRITTEN BY DANIELLA PONTES
SR. PRODUCT MARKETING MANAGER AT INFLUXDATA

Category Time Series Data Platform

Why Use InfluxData to Gain More Visibility Into
Network Monitoring
Learn how to use InfluxData for your network

monitoring to gain the necessary visibility in the

status, performance and responsiveness of your

enterprise, cloud or hybrid application environments.

Get a faster and easier tool to start collecting data

from multiple sources and quickly perform root-

cause analysis reducing your MTTR.

Strengths

New Release Quarterly release cycles Open Source? Yes

Monitoring in the Era of
Containers

•	 Developer happiness

•	 Faster Time to Awesome

•	 Ease of scaleout and deployment

•	 Centralized and integrated full stack monitoring

Notable Customers
•	 Coupa

•	 PayPal

•	 Wayfair

Website

Twitter

Blog

influxdata.com

@InfluxDB

influxdata.com/blog

PARTNER SPOTLIGHT

http://dzone.com/guides
https://www.influxdata.com/customers/use-cases/
https://www.influxdata.com/
https://www.influxdata.com/
http://twitter.com/InfluxDB
http://twitter.com/InfluxDB
https://www.influxdata.com/blog/
http://influxdata.com/blog

DZONE.COM/GUIDES

PAGE 22 OF 38THE DZONE GUIDE TO CONTAINERS

At Cherre, we use a combination of Helm Charts and Helmfile

to enhance container deployments on Kubernetes according to

development best practices. This methodology, in union with high

internal DevOps standards, allows our team to:

•	 Deploy containers at scale

•	 Use the same continuous integration and delivery pipeline

for every application

•	 Keep secrets and passwords within app code (through Helm

Secrets and Kubernetes' Key Management System)

•	 Roll out complete versioned replicas of all our apps for

backup and during disaster recovery

This article will outline and examine the benefits of this method-

ology through examples — beginning by highlighting the combi-

nation of technologies used, then examining how we link them,

and, finally, underscoring the advantageous results we realize

through implementing these processes to make our pipeline

more efficient.

The continuous integration (CI) and continuous delivery (CD)

pipeline we've generated at Cherre is designed so that it can be

replicated over and over. Process iteration through the technol-

ogies and tools we employ means that we can deploy containers

at scale using a uniform method without reinventing the wheel

every time. The automated process, once designed and set

up, requires little in the way of modifications each time, even

if alternate services are employed. The tools we employ in our

container deployment pipeline are Helm Charts, future simple/

helm-secrets, roboll/helmfile, and CircleCI. The final process

template we have created is a collection of templates that will

then work for any application.

Helm
Helm is the base technology of the process which helps us render

and lint template files using configurations from values.yaml. Then

it's about simply applying the rendered Kuberentes manifest to-

gether with corresponding metadata. Helm is the apt-get/yum of

Kubernetes. Created by the folks from Deis, it's a package manager

for deploying applications to Kubernetes. As well as making it su-

per easy to version, package, and release deployments, Helm does

so in a manner that allows users to deploy, delete, upgrade, and

even rollback those deployments as flexible Helm Charts — Charts

being the terminology that Helm uses to describe a package of

configured Kubernetes resources.

BY STEFAN THORPE
HEAD OF DEVOPS AND SECURITY AT CHERRE AND CTO AT CAYLENT

Case Studies for
Deploying Containers in
Your Organization

QUICK VIEW

01. Get an in-depth use case looking at
Cherre’s continuous integration (CI) and
continuous delivery (CD) pipelines.

02. Explore a discussion of the
combination of technologies used
within the pipeline and supporting
arguments for their usage.

03. Take a look at the benefits that
Cherre enjoys by iterating this pipeline
repeatedly.

http://dzone.com/guides
https://cherre.com/
https://helm.sh/
https://deis.com/

DZONE.COM/GUIDES

PAGE 23 OF 38THE DZONE GUIDE TO CONTAINERS

Within the Cherre deployment pipeline, Helm is leveraged specif-

ically for its Charts feature. Building a Chart starts with creating a

skeleton structure chart which establishes a directory. Within this

directory are the three files we are most interested in: Chart.yaml,

values.yaml, and NOTES.txt.

•	 The Chart.yaml file outlines the chart's purpose through its

name, description, and version.

•	 Values.yaml describes the variables necessary for the

template files directory. For complex deployments that sit

outside the default templates capability, it's just a case of

editing the Go template files in this directory.

•	 Finally, NOTES.txt provides information post-deployment to

whoever deployed the chart. For example, it could outline

how to use the chart, or deliver default settings, etc.

For multiple, reiterated deployments, it's just a case of rewriting

the chart involved as well as writing a helmfile. The Helm aspect of

our pipeline pretty much follows the tool's standard best practices

as outlined here. We don't do anything particularly special other-

wise. Here is our app example chart.

Helm secrets allow us to
combine the simplicity of
Google Cloud's KMS system
and the straightforward
functionality offered by
Helm deployments.

HELM -SECRETS

When faced with secrets management in Kubernetes, there aren't

a lot of good built-in options, so we turn to helm-secrets for lever-

aging secret keys. What we've traditionally seen is that developers

create Kubernetes secrets manually. This is because encrypting

and versioning configuration within code has previously been

difficult, time-consuming, and, at times, unachievable. Helm

secrets allows us to combine the simplicity of Google Cloud's KMS

system and the straightforward functionality offered by Helm

deployments. To make this even easier, we organize our values

and secrets file into named production-type environments. See

the outlined configuration example below from the GitHub repo

for this case study.

•	 values.yaml

•	 secrets.yaml

•	 sandbox/values.yaml

•	 sandbox/secrets.yaml

•	 production/values.yaml

•	 production/secrets.yaml

One common mistake we see here, though, is that people often

try to duplicate an entire values file. This does not conform to DRY

best practices (Don't Repeat Yourself), and leads to an inability

to test and safely deploy into different environments. That's why

we enforce the principle of only adding a value to an environment

— such as production — if it overrides a default set in the pre-con-

figured default values file. What this means is that when you are

reviewing a secret or an environmental secret file, you're only

seeing default overrides. This makes it clearer to view any differen-

tials for that environment.

Secondly, KMS also means that we can use our cloud Identity

Access Management (IAM) to configure encryption — and, more

specifically, decryption.

HELMFILE

Another integral part of the Cherre pipeline is the tool helmfile,

which encompasses secrets and helm differently. The helmfile.

yaml is a declarative configuration file that makes it simpler to

deploy and manage a large number of different Helm Charts.

The GitHub repo page provides many examples of how best to

utilize the tool for different Charts. The benefits of optimizing

this tool are:

•	 Multi ad-hoc dev branch deployments from the developer's

local machine

•	 Unique sandbox branch deployments for full integrated

testing.

•	 Staging deployments

•	 Automated production deployments

In order to achieve a standard pipeline and execution with CI and

CD, we standardized our Helm file. An example of that can be

found here.

http://dzone.com/guides
https://helm.sh/docs/chart_best_practices/
https://github.com/futuresimple/helm-secrets
https://caylent.com/devops-and-dry/
https://github.com/roboll/helmfile
http://enterprisedevops.org/article/ephemeral-environment-why-what-how-and-where

DZONE.COM/GUIDES

PAGE 24 OF 38THE DZONE GUIDE TO CONTAINERS

CircleCI
CircleCI is renowned as the second largest continuous integration

system in use at GitHub. All our workflows at Cherre run through

the tool. We leverage .yaml anchors to template out the main

flows, i.e. docker_build to docker_deploy to helm_chart_

build and helm_chart_deploy. It is possible to use CircleCI Orbs

(which optimizes pre-written scripts), but we had already created

templates before its release and have no need to revisit them just

yet. CircleCI triggers a helmfile command which in turn launches

the Helm Chart deployment. The flow of the pipeline in its entirety

looks like the following image:

Within the workflow, as you can see, we do quick unit tests

followed by Docker image builds. The images are then retagged

before being pushed to the correct location in the cloud. Finally,

we implement our Helm Chart builds, followed by the Helm

Chart deployment.

The pipeline can then be adjusted according to necessary depen-

dencies. For example, with helm_build for PostgreSQL, there is

no Docker dependency, as it's part of another service. This means

it doesn't have to wait until a particular point in the process, so

we can deploy that early on. GraphQL is another example of an

external Helm Chart, so once again, we don't build it out — we just

deploy it early.

An advantage of establishing a CI/CD pipeline as outlined above

is the ability to release a new version alongside the old version,

then switch traffic on the application. By adopting the blue/green

deployment procedure here, we are able to roll out complete

versioned replicas of all our apps for backup. After ensuring that

the new version meets requirements through testing, we update

the Kubernetes Service object that is playing the role of the load

balancer to reroute traffic to the new version by replacing the

version label in the selector field. We can also roll back to an older

— safer — version for disaster recovery quickly and with minimal

risk when necessary.

Wrapped around the whole process is our Cherre library, which

describes additional wrappers according to each function. These

functions help to outline and set up additional environments

and variables as required. Building a source library of template

Helm Charts only improves the efficiency and productivity of

the process. Furthermore, it becomes increasingly easier to save

time within the launch process by being able to refer to previous-

ly used configurations.

CI and CD improve the
velocity, productivity, and
sustainability of software
development teams and help
organizations respond to
market changes better.

Good CI and CD is not about a set of tools or a single process,

though. They are ongoing development practices that involve

following the key principles and ensuring team responsibility for

building quality into every application that you deploy. CI and CD

improve the velocity, productivity, and sustainability of software

development teams and help organizations like us — of all sizes —

respond to market changes better.

STEFAN THORPE Head of DevOps and Security at Cherre,

CTO at Caylent, Cloud Solutions Architect ▻ DevOps

Evangelist. Stefan is an IT professional with 20+ years

management and hands-on experience providing technical and

DevOps solutions to support strategic business objectives. LinkedIn

Twitter

http://dzone.com/guides
https://www.linkedin.com/in/stefanthorpe/
https://twitter.com/stefanthorpe

DZONE.COM/GUIDES

PAGE 25 OF 38THE DZONE GUIDE TO CONTAINERS

That's the question we're answering today.

The cloud market continues to expand. AWS (the dominant cloud

solution) has viable competition in big players like Google with GCP

and Microsoft with Azure.

The market for packaging and deploying compute services is no dif-

ferent. Container-based tools such as Docker have matured beyond

"new technology" and are often considered a "safe bet."

But how are the market trends looking? Will containers continue to

dominate? And do innovations in cloud offerings like AWS Fargate

(the hostless container platform) make container orchestration tools

like the successful Kubernetes redundant?

Today, we'll go through the data on how containers are currently

used and what our predictions are for how we're likely to use them

in the future.

By the end of this article, you should know for sure which compute

services you should be betting on in 2019 and beyond.

Container Trends: What the Data Tells Us
To better understand the trends with containers, let's dive into the data.

But what data, exactly? We're going to look at the high-level trends

from Google to give us the broad picture. After that, we'll drill into

what percentage of companies as a whole are using containers. And

finally, we'll look at what technologies these container-adopting

companies are running and what their languages of choice are.

Let's start with the best high-level indicator for market changes:

Google Trends. Since the key term "container" can be ambiguous

and skew our data, we can instead search data related to the biggest

container platform, Docker, for a reasonable look at the data.

Google searches for "Docker" since 2012

As expected, search interest in containers has been growing since

Docker's inception in 2014, with no signs of slowing into 2019 and no

hallmark fad signs of rises and crashes in popularity.

But Google only gives a basic indication. To get more understanding of

how many technology companies are using containers, let's cast an eye

over DataDog's report on the emerging trends in container orchestration

from December 2018. DataDog is a leading APM platform, with a wide

range of integrated companies using its product to monitor their tech-

nology. DataDog's report therefore gives us some interesting stats about

how containers are currently used in the market. Let's take a peek.

Currently, 25% of the DataDog userbase is reported to be using Dock-

er containers somewhere within their technology stack. Additionally,

20% of overall hosts that are monitored are also running Docker

technologies. The data is also supported by research conducted by

Digital Ocean that shows 49% of developers are now using contain-

BY LOU BICHARD
JAVASCRIPT FULL STACK ENGINEER AT DAZN

Are Containers Still
Relevant in 2019?

QUICK VIEW

01. Containers continue to be very
popular among developers — even
with those who have yet to use
containers.

02. For orchestration, Kubernetes
shows continued dominance overall
whereas Docker Swarm seems to be
the winner for smaller companies.

03. Serverless proves to be very
popular with developers who have
used it, but greater exposure will
likely influence trends towards the
technology.

http://dzone.com/guides
https://aws.amazon.com/fargate/
https://www.datadoghq.com/container-orchestration/
https://www.digitalocean.com/currents/june-2018/
https://www.digitalocean.com/currents/june-2018/

DZONE.COM/GUIDES

PAGE 26 OF 38THE DZONE GUIDE TO CONTAINERS

ers — a staggering statistic. 78% of those who aren't using containers

say they "plan to adopt them in the future." And lastly, the IDC's 2018

report on the rise ofenterprise container platforms found that 85% of

container adopters are using containers for production apps.

DataDog Docker adoption

Number of hosts running Docker (DataDog)

From the data, we can see that containerization still proves very

popular, even in 2019. But the next natural question is: If we're using

containers so much, what are we using them for? What types of tech-

nology are we running on them?

Nicely, DataDog reports on this data, too. The DataDog report shows

NGINX, a load balancer/web server, as the most popular containerized

technology, followed by Redis and Postgres. Interestingly, the top

technologies for container technology are a mixed bag of web servers,

databases, and messaging brokers. From the data, we can really see

just how versatile containers are and the breadth of their usage.

DataDog reveals half of Docker environments are orchestrated

From the above chart, we can see what out-of-the-box technologies

are being run on containers. Yet, we know that not all companies are

running these types of technologies, and some are running their own

applications, written in their language of choice. So that leaves us with

the question: What language is used with container technologies? And

luckily, we have that data, too!

Digital Ocean's cloud trends report showed the most frequently used

languages for those using containers. They report JavaScript to be

topping the chart followed by Python, PHP, and then Go.

What the Digital Ocean data tells us is that lighter-weight scripting lan-

guages seem to be favorable alongside container usage. Which raises

the question: Why?

One reason for the correlation (more on this topic later) could have

to do with the increased adoption of microservices and microser-

vice-type architecture. These architectures encourage small, simple,

testable, and independently deployable software components that

can be achieved with these lightweight scripting languages.

Language popularity according to Digital Ocean cloud trends report.

And that concludes our look at the container market. It seems on the

face of it that Docker continues to be a very popular choice for pack-

aging and deploying code in 2019. As you may already know, it's very

common for container runners to use an orchestration tool to manage

their running containers. And if containers are still going strong, what

does that mean for their orchestration counterparts?

Container Orchestration Trends
So, we know that container usage is strong, and growing. But what

about their orchestrators? Well, DataDog's survey shows that half of

the companies running Docker use some form of orchestration tool.

http://dzone.com/guides
https://goto.docker.com/IDC-Enterprise-Container-Platform.html
https://www.datadoghq.com/docker-adoption/
https://www.datadoghq.com/docker-adoption/
https://www.digitalocean.com/currents/june-2018/)

DZONE.COM/GUIDES

PAGE 27 OF 38THE DZONE GUIDE TO CONTAINERS

DataDog reveals half of Docker environments arerchestrated

Seeing over half of container users also using orchestration tooling is

a lot. And I know what question you're going to ask now: What orches-

tration tool are they running?

The cloud trends survey by Digital Ocean reveals that nearly half of

container users use Kubernetes as their container solution, with Dock-

er Swarm coming in second and the competitors paling in significance.

Interestingly, most Docker Swarm users were smaller companies,

possibly due to the simpler nature of Docker Swarm setup.

Popular orchestrators

We can clearly see that containers (in particular, Docker) prove to be

very popular, and if you're looking for an orchestration tool, it seems like

either Kubernetes or Docker Swarm are the key technologies to consider.

However, when discussing trends for containers, there is an elephant

in the room: serverless. Serverless is a newer technology than contain-

ers, which allows compute resources to be provisioned in the cloud

on an on-demand basis. While not strictly a direct competitor to con-

tainers, greater adoption in the serverless tech would (ceteris paribus)

see a decline in numbers for container usage. Therefore, our research

would be incomplete if we didn't also assess the trends surrounding

serverless — so let's do that now.

Will Serverless Kill Containers?
To be uniform with our review of containers, let's start by looking

at the Google Trends. We can see that searches regarding server-

less, like containers, have grown over time. Rather surprisingly, the

current Google search volume for the keyword "serverless" matches

the term "Docker."

Google searches for "serverless" in the past five years

But does that mean that developers are starting to use serverless as

much as they are containers? Let's find out. A survey completed by

The New Stack asked developers how they would prefer to standardize

their infrastructure and 53% voted for containers, compared with 33%

for serverless (with the rest of the respondents opting for regular VMs

or even bare metal).

So, what does the data show us? One thing is for sure: It doesn't show

containers as the outright winner, when compared with serverless

for the standardization of infrastructure, which is interesting given

containers' aforementioned adoption rates.

However, it should be noted that The New Stack found that most de-

velopers are still fairly naive in their understanding of serverless. This

means that over time, as more developers are exposed to serverless,

their preferences might lean toward the technology as their standard-

ization platform of choice.

Are Containers Still a Good Bet?
That concludes our look at the container market for 2019.

As we go through 2019, I predict we're going to continue to see many

more companies tending towards cloud-native. When fears are allayed

over vendor lock-in, technologies like serverless will rise in adoption

and popularity. However, since containers and serverless aren't direct

competitors per se, technology choice will likely not be the differ-

entiating factor for success. Rather, success will be determined by a

company's curiosity to explore and embrace new technologies.

LOU BICHARD is a JavaScript full stack engineer

with a passion for culture, approach, and delivery.

He believes the best products emerge from high-

performing teams and practices. Lou is a fan and advocate of

old-school lean and systems thinking, XP, continuous delivery,

and DevOps. LinkedIn

http://dzone.com/guides
https://www.datadoghq.com/docker-adoption/
https://www.digitalocean.com/currents/june-2018/
http://enterprisedevops.org/article/ephemeral-environment-why-what-how-and-where
http://enterprisedevops.org/article/ephemeral-environment-why-what-how-and-where
https://www.linkedin.com/in/loujaybee/

DZONE.COM/GUIDES

PAGE 28 OF 38THE DZONE GUIDE TO CONTAINERS

http://dzone.com/guides
http://www.nuodb.com/database-considerations-containers

DZONE.COM/GUIDES

PAGE 29 OF 38THE DZONE GUIDE TO CONTAINERS

In 2010 we founded NuoDB to build a revolutionary database

formed by two foundational principles:

1.	 Applications that run using Structured Query Language, or

SQL, to store, manipulate, and retrieve data in databases

will continue to do so because they require the data man-

agement criteria synonymous with SQL.

2.	 Cloud technology drives the need for organizations to be

“distributed” at all layers of the technology stack, includ-

ing the database.

With those two beliefs, we set out to build a SQL database

designed for distributed deployment; a database that delivers on

the promise of cloud innovation.

DATABASE MUST-HAVES CUSTOMERS GAIN

•	 Active-Active across mul-

tiple geo configurations

•	 Container-native to de-

liver the agility businesses

and applications need

•	 In-memory transaction

processing boosts perfor-

mance and scalability

•	 On-demand scale that

matches other cloud tech-

nologies

•	 SQL / ACID-compliance

that databases of record

demand

•	 Accuracy: rely on the

accuracy of your data

•	 Control: manage data-

base costs against usage

needs

•	 Flexibility: migrate from

on-prem to ANY cloud

•	 Performance: improve

speed and availability

•	 Redundancy & Reliabil-

ity: eliminate disaster

recovery woes

Why NuoDB?

NuoDB running in container

NuoDB empowers businesses to become agile and always on, to

quickly respond to changing customer, competitive, and busi-

ness demands by providing a container-native SQL database for

enterprise critical transactional applications in hybrid cloud, dis-

tributed, or multi-data center environments. NuoDB’s distributed

SQL database offers the benefits of traditional databases, includ-

ing ACID transactions, SQL support, and enterprise capabilities,

plus the core strengths of NoSQL: it’s always on, cloud-native,

and provides on-demand scalability.

About NuoDB
NuoDB’s distributed SQL database helps enterprise organizations

overcome the complex challenges faced when trying to move

enterprise-grade, transactional applications to the cloud.

For technical organizations adopting a distributed, cloud-first

strategy through hybrid-cloud, container-native, microservices,

and other modern architectures, NuoDB is the only solution

offering flexibility without sacrificing performance, SQL depen-

dency, and availability.

NuoDB is backed by three former CEOs of the four original

relational database companies. Our senior management team

includes former executives from such organizations as ExaGrid,

Hewlett-Packard Enterprise, IONA Technologies, Iron Mountain,

Microsoft, Object Design, Oracle, Teradata, and Veracode.	

NuoDB is headquartered in Cambridge, MA, USA, with offices in

Belfast, Bulgaria, Dublin, and London.

NuoDB | The SQL Database Designed for Distributed Deployments

WRITTEN BY ARIFF KASSAM
VP OF PRODUCTS NUODB

http://dzone.com/guides

DZONE.COM/GUIDES

PAGE 30 OF 38THE DZONE GUIDE TO CONTAINERS

To understand the current and future state of containers, we gathered

insights from 33 IT executives who are actively using containers. Here’s

who we spoke to:

•	 Tim Curless, Solutions Principal, AHEAD

•	 Gadi Naor, CTO and Co-founder, Alcide

•	 Carmine Rimi, Product Manager, Canonical

•	 Sanjay Challa, Director of Product Management, Datical

•	 OJ Ngo, CTO, DH2i

•	 Shiv Ramji, V.P. Product, DigitalOcean

•	 Antony Edwards, COO Eggplant

•	 Anders Wallgren, CTO, Electric Cloud

•	 Armon Dadgar, Founder and CTO, HashiCorp

•	 Gaurav Yadav, Founding Engineer Product Manager, Hedvig

•	 Ben Bromhead, Chief Technology Officer, Instaclustr

•	 Jim Scott, Director, Enterprise Architecture, MapR

•	 Vesna Soraic, Senior Product Marketing Manager, ITOM, Micro Focus

•	 Fei Huang, CEO, NeuVector

•	 Ryan Duguid, Chief Evangelist, Nintex

•	 Ariff Kassam, VP of Products and Joe Leslie, Senior Product Man-

ager, NuoDB

•	 Bich Le, Chief Architect, Platform9

•	 Anand Shah, Software Development Manager, Provenir

•	 Sheng Liang, Co-founder and CEO, and Shannon Williams,

Co-founder, Rancher Labs

•	 Scott McCarty, Principal Product Manager - Containers, Red Hat

•	 Dave Blakey, CEO, Snapt

•	 Keith Kuchler, V.P. Engineering, SolarWinds

•	 Edmond Cullen, Practice Principal Architect, SPR

•	 Ali Golshan, CTO, StackRox

•	 Karthik Ramasamy, Co-Founder, Streamlio

•	 Loris Degioanni, CTO, Sysdig

•	 Todd Morneau, Director of Product Management, Threat Stack

•	 Rob Lalonde, VP and GM of Cloud, Univa

•	 Vincent Lussenburg, Director of DevOps Strategy; Andreas Prins,

Vice President of Product Development; and Vincent Partington,

Vice President Cloud Native Technology, XebiaLabs

And, here’s what they told us:

Key Findings
1. The most important elements of orchestrating and deploying containers

are security and configuration. Think about security from the beginning

by analyzing the deployment files for your container and ensure they

are optimized for best security practices, analyzing runtime behavior,

and building segmentation policies. Follow security best practices with

end-to-end control of risk and change. Have control over what ends up in

different environments. Make sure the containers you are deploying are

always scanned for vulnerabilities.

Have visibility of deployment to improve speed, deliverability, and scal-

ability. This leads to improved isolation of failures and better development

hygiene. The more deployable units you have, the more you have to keep

track of. As such, centralize and automate configuration management.

Develop, test, and deploy container-based applications quickly and seam-

lessly using automated CI/CD pipelines.

2. Containers have accelerated application development and made scal-

ability a non-issue. Containers open DevOps teams to feature and product

velocity, control, and security. There’s greater access to testing and report-

BY TOM SMITH
RESEARCH ANALYST AT DEVADA

Executive Insights on the
State of Containers

QUICK VIEW

01. The most important elements of
orchestrating and deploying containers
are security and configuration.

02. Containers have accelerated
application development and have
made the ability to scale a non-issue.

03. Developers need to keep security,
process engineering, and 12-factor
application methodology in mind to
work effectively with containers.

http://dzone.com/guides
https://www.linkedin.com/in/timcurless/
https://www.thinkahead.com/
https://www.linkedin.com/in/gadinaor/
https://www.alcide.io/
https://www.linkedin.com/in/carminerimi/
https://www.canonical.com/
https://www.linkedin.com/in/sanjaychalla/
https://www.datical.com/
https://www.linkedin.com/in/ojngo/
http://dh2i.com/
https://www.linkedin.com/in/shivenramji/
https://www.digitalocean.com/
https://www.linkedin.com/in/antonyedwards/
https://eggplant.io/
https://www.linkedin.com/in/anderswallgren/
https://electric-cloud.com/
https://www.linkedin.com/in/armon-dadgar/
https://www.hashicorp.com/
https://www.linkedin.com/in/gaurav-yadav-3a74482/
https://www.hedvig.io/
https://www.linkedin.com/in/benbromhead/
https://www.instaclustr.com/
https://www.linkedin.com/in/kingmesal/
https://mapr.com/
https://www.linkedin.com/in/vesnasoraic/
https://www.microfocus.com/en-us/home
https://www.linkedin.com/in/fei-huang-7990162/
https://neuvector.com/
https://www.linkedin.com/in/ryanduguid/
https://www.nintex.com/
https://www.linkedin.com/in/akassam/
https://www.linkedin.com/in/joe-leslie/
https://www.nuodb.com/
https://www.linkedin.com/in/bich-le-270743/
https://platform9.com/
https://www.linkedin.com/in/anand-shah-38892a12/
https://www.provenir.com/
https://www.linkedin.com/in/shengliang/
https://www.linkedin.com/in/smw355/
https://rancher.com/
https://www.linkedin.com/in/scmccarty/
https://www.redhat.com/en
https://www.linkedin.com/in/daveblakey/
https://www.snapt.net/
https://www.linkedin.com/in/keith-kuchler-a3b3941/
https://www.solarwinds.com/
https://www.linkedin.com/in/edmond-cullen-a0b99848/
https://spr.com/
https://www.linkedin.com/in/ali-golshan/
https://www.stackrox.com/
https://www.linkedin.com/in/kramasamy/
https://streaml.io/
https://www.linkedin.com/in/degio/
https://sysdig.com/
https://www.linkedin.com/in/todd-morneau-1553524/
https://www.threatstack.com/
https://www.linkedin.com/in/roblalonde/
http://www.univa.com/
https://www.linkedin.com/in/vincentlussenburg/
https://www.linkedin.com/in/andreasprins/
https://www.linkedin.com/in/vpartington/
https://xebialabs.com/

DZONE.COM/GUIDES

PAGE 31 OF 38THE DZONE GUIDE TO CONTAINERS

ing. Resource isolation reduces mean-time-to-resolution (MTTR). Containers

can be spun up and torn down in seconds. According to research conducted

by Sysdig, 95% of containers live less than one week.

Scaling is no longer a concern for deployment, it’s something runtime takes

care of. The lack of environmental restrictions makes scaling easier as

parameters change dynamically.

3. A variety of methods are used to secure containers during orchestration,

deployment, and ongoing operation. Make sure Kubernetes (K8s) is config-

ured correctly. Think through the lifecycle of containers and the container

platform – especially how they are configured and how they meet the

Federal Information Processing Standards (FIPS).

Automation is crucial – secure SDLC practices as well as CI/CD and fail code

before build time. Force vulnerability scanning of container images. Use

security benchmarks to facilitate profiling and reduce exposure.

Best practices are to protect environments across development, build,

and runtime to ensure the full lifecycle is taken care of, including runtime

post-breech detection. TLS is recommended for communication between

containers using a vault to store secrets.

4. The most frequent use cases for containers are focused on scale, with

multiple industries mentioned. This is a function of the ease of spinning up

new environments in minutes and the ability to automatically scale up a

workload or app in response to an increase in demand and additional load.

Automatic scale-in and -out is used to adjust to application user demand

and build-in continuous availability to meet consumer demands.

5. The most frequently mentioned failures revolve around a lack of skills

and security. There is a lack of highly-skilled talent and production-level

knowledge for running containers, as well as a lack of understanding of

application factors, components, and architectural dependencies. People

think getting into containers will be easy without realizing they need to

plan for platform upgrades and the need to build automation to handle up-

grades. When you start to use microservices, you need to think about how

you are going to manage, deploy, and monitor. People need to understand

containers are immutable components. Deep expertise in K8s, DevOps, and

creating the tools needed to implement application workflows in a contain-

erized environment can be hard to come by.

Be mindful of security best practices such as encrypting sensitive data. Secu-

rity configuration for workloads needs to be hardened. Avoid using network

isolation tools since these can leave huge security gaps that can lead to the

exfiltration of data due to misconfiguration, application vulnerabilities, or

even an open source library coming from a corrupted source. Be aware that

security breaches align with potential application security vulnerabilities.

6. Concerns about containers revolve around security, complexity, and

skills. Understand how to how to handle security and failover within

containers. Neither containers, nor containerized orchestration, deliver

an enterprise-grade secured workload environment. Have proper security

visibility in place. Security measures put in place by newcomers will be inad-

equate given the rise in the number and sophistication of attacks. People

are beginning to realize the broad vulnerability due to images on the public

registry. More education, and learning, needs to take place.

Complexity is a tremendous concern. There continues to be a gap in ease of

use. There are a lot of solutions to add on to a basic K8s cluster with varied

degrees of supportability and incubation. It takes six months to get your

head around what’s going on. It can be an extremely difficult task to pick

the right technology and tools to use. Additional complexity accrues when

deciding on an upgrade strategy for the system and tool set.

There’s a significant skills shortage. Companies are getting on the container

bandwagon; however, their people do not have the skills to help them get the

most out of them. There is a dearth of talent with hands-on experience. Com-

panies are relying on consultancies, third-party vendors, or platform solutions.

7. The future of containers is greater maturity, less complexity, and server-

less. Containers will disappear into the background like all other good

technology. There is solid proof of value with regards to developer experi-

ence and velocity. Use of containers will go mainstream as companies move

from talking about cloud and containers to using them in production. The

technology will only become more stable, standardized, and portable as it

matures. Containers will replace virtual machines and will grow well past

the use of Docker containers as the primary container type. Other container

products will grow in popularity and use as well.

Containers will be made less complicated making K8s easy for a developer

to get up and running quickly. We’re seeing a trend of abstractions built on

top of K8s. Containers are also making it easy for everyone to go serverless.

There’s no need to rely on a machine with a VM, it’s easier to go serverless.

Serverless and FaaS are on the way, and service meshes like Istio will help to

track myriad smaller components.

8. Developers need to keep security, process engineering, and the 12-factor

application methodology in mind. Be cognizant of the security of contain-

ers from the beginning. Embrace security tools that perform continuous

analysis on all activities within the container environment from a granular

level. Understand the security and privacy implications of the data you are

manipulating. The more developers can adopt frameworks and guardrails

to help the security teams manage the security of containers.

Follow process engineering best practices and look for “HelloWorld”

tutorials for K8s, Docker, and Docker Swarm. Learn how to organize an

application to optimize for containers and orchestration guidelines like the

12-factor application methodology. The entire container architecture needs

to be 12-factor.

TOM SMITH is a Research Analyst at Devada who excels

at gathering insights from analytics—both quantitative

and qualitative—to drive business results. His passion

is sharing information of value to help people succeed. In his spare

time, you can find him either eating at Chipotle or working out at the

gym. LinkedIn - Twitter

http://dzone.com/guides
https://www.linkedin.com/in/ctsmithiii/
https://twitter.com/ctsmithiii

DZONE.COM/GUIDES

PAGE 32 OF 38THE DZONE GUIDE TO CONTAINERS

Secure Your Open Source
Components in Your Containers

http://dzone.com/guides
https://resources.whitesourcesoftware.com/engineering/containers-datasheet?utm_source=dzone&utm_medium=channel&utm_term=ebook-container-security-guide&utm_content=datasheet-container&utm_origin=3rd
https://www.whitesourcesoftware.com/docker_security/?utm_source=dzone&utm_medium=channel&utm_term=ebook-container-security-guide&utm_content=free-trial-whitesource-container&utm_origin=3rd

DZONE.COM/GUIDES

PAGE 33 OF 38THE DZONE GUIDE TO CONTAINERS

Containers rely heavily on open source components, comprising

the vast majority of code in most modern applications today. While

providing a powerful building block for our software, these open source

components can be used by attackers to exploit your product if they are

not protected.

As developers play a greater role in vulnerability management for their

applications, we have a responsibility to make sure the open source

components in our containers are secure and compliant.

The challenge that many developers face in working securely is

achieving sufficient visibility into the multiple layers of their containers,

lacking the control to guard against risky components. It is hard to stay

protected if you can’t see what you’re working with.

Responding to the need to ensure security coverage, WhiteSource for

Containers offers teams a holistic solution for the entire container

development lifecycle from building your container registries and even

all the way to Kubernetes with real-time alerts and policy enforcement

so developers can focus on building great products.

Providing support for over 200 programming languages, WhiteSource

for Containers offers native integration to all environments along

the way, including all CI servers, container registries, and container

orchestration tools like Kubernetes.

View all the relevant information pertaining to containers with easy

to navigate dashboards to produce container vulnerability reports,

manage policies, and track the security status of deployed containers.

Containers are a powerful tool that help teams reach deployment faster.

However, in order to reap their benefits, you need to take control of

your vulnerability management. WhiteSource for Containers allows

developers to code with confidence without compromising on security.

WhiteSource for Containers
WhiteSource for Containers provides continuous and automated open source security throughout
the container lifecycle.

WRITTEN BY RAMI SASS
CEO & CO-FOUNDER, WHITESOURCE

Category Container Security | Application Security |

Software Composition Analysis | DevOps | Secure Coding

Case Study
Due to the sensitive regulatory environment Siemens

Healthineers works in, Siemens H. needed assurance that they

are remaining compliant and secure in their use of open source

components.

“With open source software, usually the source code is available

for all to see, including hackers,” explained Code Clinic Lead, Neil

Langmead. In order to avoid costly mistakes that can result from

vulnerable or risky open source components being added to their

products, Siemens Healthineers turned to WhiteSource.

“We chose WhiteSource because of its ease of use, its excellent

data, and for the in-depth security vulnerability information that

comes with the reporting engine.” With WhiteSource, Siemens

was offered the widest coverage of plugins and languages that

they needed, as well as the continuous monitoring and policy

enforcement safeguards they required in order to allow their

team to code with confidence. Read more here

Strengths

New Release Continuous Open Source? Yes

Secure the Open Source in Your
Containers From Start to Finish

•	 Automated workflow: Enforce policies automatically at all stages of the

container lifecycle

•	 Native integrations to container registries: Track vulnerabilities in

images automatically

•	 Kubernetes deployment: Automatically scans any image deployed to

production

•	 Comprehensive coverage: Supports 200+ programming languages and

many Linux distributions

•	 Pinpoint accuracy: Proprietary algorithms guarantee no false positives

Notable Customers
•	 Microsoft

•	 Comcast

•	 EllieMae

•	 IGT

•	 Spotify

Website

Twitter

Blog

whitesourcesoftware.com

@WhiteSourceSof t

resources.whitesourcesoftware.com

PARTNER SPOTLIGHT

http://dzone.com/guides
https://resources.whitesourcesoftware.com/product-datasheets/containers-datasheet?utm_source=dzone&utm_medium=ebookebook-container-guide&utm_content=whitesource-container-brochure&utm_origin=3rd&utm_from=DZone
https://resources.whitesourcesoftware.com/product-datasheets/containers-datasheet?utm_source=dzone&utm_medium=ebookebook-container-guide&utm_content=whitesource-container-brochure&utm_origin=3rd&utm_from=DZone
https://resources.whitesourcesoftware.com/product-datasheets/containers-datasheet?utm_source=dzone&utm_medium=ebookebook-container-guide&utm_content=whitesource-container-brochure&utm_origin=3rd&utm_from=DZone
https://resources.whitesourcesoftware.com/case-studies/siemens-h-cs-5-1?utm_source=dzone&utm_medium=ebook&utm_term=ebook-container-guide&utm_content=siemens-healthineers-case-study&utm_origin=3rd&utm_from=DZone
https://www.influxdata.com/
https://www.whitesourcesoftware.com/whitesource-for-containers/?utm_source=dzone&utm_medium=ebook&utm_term=ebook-container-guide&utm_content=whitesource-website&utm_origin=3rd&utm_from=DZone
http://twitter.com/InfluxDB
http://twitter.com/WhiteSourceSoft
https://www.influxdata.com/blog/
https://resources.whitesourcesoftware.com/?utm_source=dzone&utm_medium=ebook&utm_term=ebook-container-guide&utm_content=whitesource-resources&utm_origin=3rd&utm_from=DZone

DZONE.COM/GUIDES

PAGE 34 OF 38THE DZONE GUIDE TO CONTAINERS

This directory of container platforms, orchestration tools, cloud platforms, and registries provides

comprehensive, factual comparisons of data gathered from third-party sources and the tool creators’

organizations. Solutions in the directory are selected based on several impartial criteria, including

solution maturity, technical innovativeness, relevance, and data availability.

Containers Solutions Directory

Company Product Product Type Open Source? Website

Amazon EC2 Container
Registry

Container image registry Free tier available aws.amazon.com/ecr

Amazon EC2 Container Service Containers-as-a-Service Free tier available aws.amazon.com/ecs

Anchore Anchore
Container image security &
compliance

Open-source
version available

anchore.com

Apache Software
Foundation Mesos Cluster mgmt software Open source mesos.apache.org

Aqua Aqua Container
Security Platform

Container image security
Demo available by
request

aquasec.com/products/
aqua-container-security-
platform

Aspen Mesh Aspen Mesh Enterprise service mesh Open source github.com/aspenmesh

Atos SE Apprenda Cloud
Platform

PaaS, container platform,
Kubernetes-as-a-Service

Demo available by
request

apprenda.com/platform

Bitnami Stacksmith Containers-as-a-Service
Open-source
version available

stacksmith.bitnami.com

CA Technologies Automic Continuous
Service

Service orchestration 30 days
ca.com/us/products/
ca-automic-service-
orchestration.html

CA Technologies
CA Application
Performance
Management

Container monitoring
Available by
request

ca.com/us/products/docker-
monitoring.html

Canonical Ubuntu Core Container OS Open source developer.ubuntu.com/core

http://dzone.com/guides
http://aws.amazon.com/ecr
http://aws.amazon.com/ecs
http://anchore.com
http://mesos.apache.org
http://aquasec.com/products/aqua-container-security-platform
http://aquasec.com/products/aqua-container-security-platform
http://aquasec.com/products/aqua-container-security-platform
http://github.com/aspenmesh
http://apprenda.com/platform
http://stacksmith.bitnami.com
http://ca.com/us/products/ca-automic-service-orchestration.html
http://ca.com/us/products/ca-automic-service-orchestration.html
http://ca.com/us/products/ca-automic-service-orchestration.html
http://ca.com/us/products/docker-monitoring.html
http://ca.com/us/products/docker-monitoring.html
http://developer.ubuntu.com/core

DZONE.COM/GUIDES

PAGE 35 OF 38THE DZONE GUIDE TO CONTAINERS

DZONE.COM/GUIDES

Company Product Product Type Open Source? Website

Chef Chef Automate
Continuous deployment
platform

Demo available by
request

chef.io/products/automate

Cisco Contiv Container-defined networking Open source contiv.io

Cloudera Cloudera Enterprise 6
Analytics, search, data
pipelines

Open-source
components

cloudera.com/products/
cloudera-enterprise-6.html

Cloud Foundry Cloud Foundry
Container Runtime

Container mgmt platform
Open-source
version available

cloudfoundry.org/container-
runtime

Codefresh Codefresh CI/CD platform for containers Free tier available codefresh.io

Couchbase Couchbase NoSQL database
Open-source
versions available

couchbase.com

CyberArk CyberArk Conjur Container security Open source conjur.org

Datadog Datadog Server & container monitoring 14 days datadoghq.com

Datera Datera Container data services
Available by
request

datera.io/
solutions/#containers

Diamanti Diamanti
Container-defined
storage hardware

Demo available by
request

diamanti.com/products

DigitalOcean DigitalOcean Container mgmt platform
Open-source
versions available

digitalocean.com/products/
kubernetes

Docker Docker Container platform Free tier available docker.com/get-docker

Docker Docker Cloud Containers-as-a-Service Free tier available cloud.docker.com

Docker Docker Compose Multi-container app tool Open source
docs.docker.com/compose/
install

Docker Docker EE
Containers-as-a-Service,
container security

Available by
request

docker.com/enterprise-
edition

Docker Docker Hub Container image registry Free tier available hub.docker.com

Docker Docker Swarm
Container orchestration &
clustering

Open source github.com/docker/swarm

Docker Docker Trusted
Registry

Private container image
registry

Open source docs.docker.com/ee/dtr

http://dzone.com/guides
http://chef.io/products/automate
http://contiv.io
http://cloudera.com/products/cloudera-enterprise-6.html
http://cloudera.com/products/cloudera-enterprise-6.html
http://cloudfoundry.org/container-runtime
http://cloudfoundry.org/container-runtime
http://codefresh.io
http://couchbase.com
http://conjur.org
http://datadoghq.com
http://datera.io/solutions/#containers
http://datera.io/solutions/#containers
http://diamanti.com/products
http://digitalocean.com/products/kubernetes
http://digitalocean.com/products/kubernetes
http://docker.com/get-docker
http://cloud.docker.com
http://docs.docker.com/compose/install
http://docs.docker.com/compose/install
http://docker.com/enterprise-edition
http://docker.com/enterprise-edition
http://hub.docker.com
http://github.com/docker/swarm
http://docs.docker.com/ee/dtr

PAGE 36 OF 38THE DZONE GUIDE TO CONTAINERS

DZONE.COM/GUIDES

Company Product Product Type Open Source? Website

Google Kubernetes Container orchestration Open source kubernetes.io

Google Google Cloud
Container Registry

Container image registry $300 free credit
cloud.google.com/container-
registry

Google Google Kubernetes
Engine

Containers-as-a-Service,
container orchestration

$300 free credit
cloud.google.com/
kubernetes-engine

Hedvig Hedvig Distributed
Storage Platform

Container-defined storage
Demo available by
request

hedviginc.com/
product#hedvig-distributed

IBM Cloud Kubernetes
Service

Containers-as-a-Service,
Kubernetes-as-a-Service

Free tier available
ibm.com/cloud/container-
service

InfluxData InfluxData Platform Database-as-a-Service
Available by
request

influxdata.com/products

Instana Infrastructure
Monitoring

Infrastructure monitoring 14 days
instana.com/infrastructure-
management

JFrog Artifactory Artifact repository manager
14 days on cloud,
30 days on prem

jfrog.com/artifactory

Joyent Triton
Container networking & mgmt
platform

Open-source
components

joyent.com/triton/compute

Kontena Kontena Platform Container platform
Open-source
version available

kontena.io/platform

Loggly Solarwinds Loggly Log mgmt & analytics Free tier available loggly.com

Mesosphere DC/OS Container orchestration Open source dcos.io

Mesosphere Enterprise DC/OS
Container orchestration &
monitoring

Demo available by
request

mesosphere.com/product

Microsoft Azure Container
Service

Containers-as-a-Service,
Orchestration-as-a-Service

12 months
azure.microsoft.com/en-us/
services/container-service

NeuVector NeuVector Multi-vector container firewall
Available by
request

neuvector.com/run-time-
container-security

Nirmata Nirmata Container mgmt platform Free tier available nirmata.com/product

Nutanix Acropolis Container
Storage

Container storage Free tier available
nutanix.com/products/
acropolis

http://kubernetes.io
http://cloud.google.com/container-registry
http://cloud.google.com/container-registry
http://cloud.google.com/kubernetes-engine
http://cloud.google.com/kubernetes-engine
http://hedviginc.com/product#hedvig-distributed
http://hedviginc.com/product#hedvig-distributed
http://ibm.com/cloud/container-service
http://ibm.com/cloud/container-service
http://influxdata.com/products
http://instana.com/infrastructure-management
http://instana.com/infrastructure-management
http://jfrog.com/artifactory
http://joyent.com/triton/compute
http://kontena.io/platform
http://loggly.com
http://dcos.io
http://mesosphere.com/product
http://azure.microsoft.com/en-us/services/container-service
http://azure.microsoft.com/en-us/services/container-service
http://neuvector.com/run-time-container-security
http://neuvector.com/run-time-container-security
http://nirmata.com/product
http://nutanix.com/products/acropolis
http://nutanix.com/products/acropolis

DZONE.COM/GUIDES

PAGE 37 OF 38THE DZONE GUIDE TO CONTAINERS

Company Product Product Type Open Source? Website

NuoDB NuoDB Distributed SQL database
Demo available by
request

nuodb.com

Oracle CrashCart Microcontainer debugging tool Open source github.com/oracle/crashcart

Oracle RailCar Rust-based container runtime Open source github.com/oracle/railcar

Oracle Smith Microcontainer builder Open source github.com/oracle/smith

Oracle Wercker CI/CD platform for containers Open source devcenter.wercker.com

Packet Packet Infrastructure-as-a-Service
Open-source
components

packet.net/features

Pivotal Cloud Foundry PaaS, container platform
Available by
request

pivotal.io/platform

Platform9 Platform9 Managed
Kubernetes

Kubernetes-as-a-service Sandbox available
platform9.com/managed-
kubernetes

Portworx Portworx
Container data services &
networking

30 days portworx.com

Prometheus Prometheus Container monitoring Open source prometheus.io

Rancher Labs Rancher 2.0 Container mgmt platform Open source rancher.com/rancher

Rancher Labs RancherOS Container OS Open source rancher.com/rancher-os

Rapid7 Logentries Log mgmt & analytics
Available by
request

logentries.com

Red Hat Atomic Host Container OS Open source projectatomic.io

Red Hat Clair 2.0.1 Container image security Open source github.com/coreos/clair

Red Hat Flannel Container-defined networking Open source github.com/coreos/flannel

Red Hat OpenShift Container
Platform

Container-defined networking 30 days
openshift.com/products/
container-platform

Red Hat Quay Enterprise PaaS, container platform
Available by
request

coreos.com/quay-enterprise

http://dzone.com/guides
http://nuodb.com
http://github.com/oracle/crashcart
http://github.com/oracle/railcar
http://github.com/oracle/smith
http://devcenter.wercker.com
http://packet.net/features
http://pivotal.io/platform
http://platform9.com/managed-kubernetes
http://platform9.com/managed-kubernetes
http://portworx.com
http://prometheus.io
http://rancher.com/rancher
http://rancher.com/rancher-os
http://logentries.com
http://projectatomic.io
http://github.com/coreos/clair
http://github.com/coreos/flannel
http://openshift.com/products/container-platform
http://openshift.com/products/container-platform
http://coreos.com/quay-enterprise

DZONE.COM/GUIDES

PAGE 38 OF 38THE DZONE GUIDE TO CONTAINERS

Company Product Product Type Open Source? Website

Redis Labs Redis Enterprise Private container image registry Free tier available
redislabs.com/redis-
enterprise

Scalyr Scalyr Database-as-a-Service 30 days scalyr.com/product

Sematext Docker Agent Log mgmt & analytics 30 days sematext.com/docker

Sematext Kubernetes Agent
Container monitoring & log
mgmt

30 days sematext.com/kubernetes

Sensu Sensu Core
Kubernetes monitoring & log
mgmt

Free tier available sensuapp.org

StorageOS StorageOS Container monitoring Free tier available storageos.com/product

Splunk Splunk Cloud Container storage 15 days
splunk.com/en_us/products/
splunk-cloud.html

Sumo Logic Sumo Logic Log mgmt & analytics Free tier available sumologic.com

Sysdig Sysdig Cloud Log mgmt & analytics Open source sysdig.com/opensource

Tigera Canal Container monitoring Open source
github.com/projectcalico/
canal

Twistlock Twistlock Trust Container image security
Available by
request

twistlock.com

VMWware CloudHealth Container optimization 14 days
cloudhealthtech.com/
solutions/containers

VMware Photon OS Linux container host Open source vmware.github.io/photon

Wavefront Wavefront Cloud monitoring & analytics 30 days wavefront.com/product

Weaveworks Weave Net Container-defined networking Open source weave.works/oss/net

WhiteSource WhiteSource
OSS detection, selection,
alerting, & reporting

Open-source
version available

whitesourcesoftware.com

WSO2 WSO2 Carbon Integration platform/PaaS Open source wso2.com/products/carbon

WSO2 WSO2 Enterprise
Integrator

ESB Open source
wso2.com/products/
enterprise-service-bus

WSO2 WSO2 Message
Brokers

API mgmt Open source
wso2.com/products/
message-broker

http://dzone.com/guides
http://redislabs.com/redis-enterprise
http://redislabs.com/redis-enterprise
http://scalyr.com/product
http://sematext.com/docker
http://sematext.com/kubernetes
http://sensuapp.org
http://storageos.com/product
http://splunk.com/en_us/products/splunk-cloud.html
http://splunk.com/en_us/products/splunk-cloud.html
http://sumologic.com
http://sysdig.com/opensource
http://github.com/projectcalico/canal
http://github.com/projectcalico/canal
http://twistlock.com
http://cloudhealthtech.com/solutions/containers
http://cloudhealthtech.com/solutions/containers
http://vmware.github.io/photon
http://wavefront.com/product
http://weave.works/oss/net
http://whitesourcesoftware.com
http://wso2.com/products/carbon
http://wso2.com/products/enterprise-service-bus
http://wso2.com/products/enterprise-service-bus
http://wso2.com/products/message-broker
http://wso2.com/products/message-broker

DZONE.COM/GUIDES

PAGE 39 OF 38THE DZONE GUIDE TO CONTAINERS

VISIT THE

Visit the Zone

CASE STUDIESTUTORIALS CODE SNIPPETSBEST PRACTICES

Container technologies have exploded in popularity, leading to diverse use cases

and new and unexpected challenges. Developers are seeking best practices for

container performance monitoring, data security, and more.

Keep a pulse on the industry with topics such as:

• Testing with containers

• Container performance monitoring

• Keeping containers simple

• Deploying containers in your organization

DevOps Zone

http://dzone.com/guides
https://dzone.com/devops-tutorials-tools-news

